164 ICASE: The Institute of Control, Automation, and Systems Engineers, KOREA Vol. 4, No. 2, June, 2002

Resolving Cycle Extension Overhead Multimedia Data Retrieval'

Youjip Won and Kyungsun Cho

Abstract: In this article, we present the novel approach of avoiding temporal insufficiency of data blocks, jitter, which occurs due to
the commencement of new session. We propose to make the sufficient amount of data blocks available on memory such that the on-
going session can survive the cycle extension. This technique is called “pre-buffering”. We examine two different approaches in pre-
buffering: (i) loads all required data blocks prior to starting playback and (it) incrementally accumulates the data blocks in each cycle
We develop an elaborate model to determine the appropriate amount of data blocks necessary to survive the cycle extension and to
compute startup latency involved in loading these data blocks. The simulation result shows that limiting the disk bandwidth utiliza-
tion to 60% can greatly improve the startup latency as well as the buffer requirement for individual streams.
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I. Introduction

1. Motivation

In this article, we propose a technique, “pre-buffering”,
which enables to absorb this jittery situation by preload a cer-
tain amount of data blocks prior to starting the service. We
propose a model to compute the amount of data blocks to be
loaded to avoid startup jitter. In this work, our modeling and
scheduling effort is targeted towards multi-zoned disk envi-
ronment.
2. Related works

To provide online playback of multimedia data, the server is
required to retrieve the data blocks from the disk satisfying a
certain data transfer rate. The rate variability in multi-zoned
disk thus adds another dimension of complexity in developing
the scheduling algorithm for multimedia file system. [5] pre-
sented the placement model of multimedia data and the disk
scheduling technique in multi-zoned disk. They effectively
incorporated the variability in data transfer rate of the disk. [8]
proposed an analytical model for multi-zoned disk and per-
formed physical experiment of the file system performance in
zoned disk. [6] proposed the method of placing video files
depending on its access frequency. [9] showed that multi-
zoned disk exhibits significant improvement in throughput and
proposed optimal partitioning scheme to achieve maximum
transfer rate. [11] examine the behavior of low power disk
whose platter does not rotate when the system is idle and
model the data block loading operation for multimedia data
retrieval.

II. Multimedia disk scheduling in zoned disk

The objective of multimedia disk scheduling is to retrieve
the data blocks while providing a certain playback bandwidth
to individual streaming session. Multi-zoning is a technique
adopted by hard disk manufacturers to increase the capacity of
the disk. The objective of zoning is to exploit the storage ca-
pacity in the cylinder with larger perimeter using the constant
linear bit density. Two conditions of continuity guarantee can
be formally described as in Eq. 1 and Eq. 2. T, rgispiay, njand b
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denotes the length of the cycle, playback rate, the number of
blocks to be read in a cycle for stream i, and the size of block,
respectively. Eq. 1 illustrates the condition that the number of
blocks read in a cycle should be sufficient for playback of
length T.

T X Fypiey Sh;xb M

Eq. 2 denotes the condition that the time to read data blocks
for all ongoing sessions for single cycle’s playback should be
less than T. T, Thaencys Thutiseeks Zs Tj and S denotes the aver-
age seek time, rotational latency, worst case seek time, the
number of zones in the disk and data transfer rate of zone j and
the number of on going streams.
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Solving Eq. | and Eq. 2, the length of cycle T can be ob-
tained as in Eq. 3. Details can be found in [5]. € in Eq. 3 corre-
sponds to the total disk head movement.

£ (3)

rdl\plm x S Z 1
— X —
o

j=t 0y

T >

From the condition 7 X isplay <n,xb, and Eq. 3, we can

obtain the number of data blocks to read in a cycle.

II1. Starting new session in zoned disk

In the streaming server, the number of ongoing playbacks or
the aggregate playback bandwidth from the disk subsystem
dynamically changes. While cycle based disk scheduling pol-
icy efficiently utilizes the disk bandwidth, it cannot seamlessly
adapt to the dynamic change in the playback bandwidth. As
can be seen in Eq. 3, the cycle length and the amount of data
blocks read in a cycle needs to be dynamically adjusted in
accordance with the change of aggregate playback rate from
the disk. The extension of cycle entails the temporal insuffi-
ciency of data blocks and subsequently causes jitters to on
going streams.

Fig.1 illustrates the occurrence of jitter in ongoing stream
when cycle length is extended due to the start of new session.
Top half of Fig. 1 illustrates sequence of data block loading
from the disk. Initially, the disk subsystem is servicing three
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streams, s;, 5; and s; and the respective cycle length is denoted
by P;. From the third cycle, the cycle length is extended to
accommodate new streaming session. Data blocks loaded in
the extended cycle are available for playback only after t;. The
bottom half of Fig.1 illustrates playback sequence of s;. The
amount of data blocks in memory fetched in the second cycle
is only for the P;’s playback duration. Since the blocks fetched
in the third cycle will be available only after t3, it is inevitable
that s, is exposed temporal lack of data blocks due to the de-
lays in data block retrieval. In this work, we assume that the
data blocks are placed using the placement strategy proposed
in [5]. Under this placement strategy, the number of data
blocks retrieved for a session in a cycle needs to be the integer
multiples of the number of zones.
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Fig. 1. Extension of cycle and jitter.

IV. Pre-Buffering
1. Concept of pre-buffering

There are two different ways of loading the data blocks. The
first approach is to load sufficient amount of data blocks prior
to starting the service. The amount of preloaded data blocks
should be sufficient so that the user can consume these data
blocks when cycle extension occurs. The length of the cycle
and the amount of data blocks read in a cycle is set as small as
possible while satisfying the continuity requirement of Eq. 3.
We call the operation of loading the data blocks prior to start-
ing the service as pre-buffering. The problem of this approach
is long startup latency. The second approach is to make the
length of cycle large enough so that the amount of data blocks
read is larger than the amount of data blocks consumed in a
cycle. Then, we can accumulate a certain amount of data
blocks as the playback proceeds since the amount of the data
blocks read in a cycle exceeds the amount of data blocks con-
sumed in a cycle. These surplus data blocks will be used when
cycle extension occurs. The advantage of the second approach
is relatively short startup latency. However, it is possible that
the streaming session has not accumulated sufficient data
blocks when the new streaming request arrives,

Fig. 2 illustrates how preloading can resolve the insuffi-
ciency of data blocks when extending a cycle. X and y axis
denotes the time and the amount of data blocks in memory,
respectively. ¢; denotes the length of the cycle to service i
number of streams and let us assume that there are n number
of ongoing streams at time t,. Cycle length is c,, initially. New
service request arrives at t;. As a result of new request arrival,
cycle length is extended to c,.; to accommodate the new ses-
sion. However, the amount of data blocks available at t; is for
c.’s playback and the data blocks loaded in the newly ex-
tended cycle is available after t,. The streaming session suffer

from jitter for duration, ¢4 - Cp.
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Fig. 2. Preloading of data blocks.

In bottom half of Fig. 2, prior to starting service, disk sub-
system prebuffers a certain amount of data blocks in addition
to data blocks for c¢,’s playback. m denotes the amount of data
blocks which should be available prior to starting service.
When the cycle length is extended to accommodate the new
stream, system requires c.;’s worth of data blocks to avoid
any jitter. By preloading a certain amount of data blocks, we
can avoid temporal insufficiency of data blocks. However,
prebuffering mechanism increases the startup latency.

2. Amount of data blocks to preload

The important issue in prebuffering is to determine the ap-
propriate amount of data blocks for prebuffering. The length
of the cycle and the amount of data blocks read in a cycle is
proportional to the disk bandwidth utilization. More impor-
tantly, this amount increases very fast as the disk bandwidth
utilization approaches 100%. It is advised not to fully utilize
the bandwidth of the disk due to its excessive buffer overhead.
Actual limit on the maximum number of concurrent streams
needs to be much lower than the capacity of the disk.

Let T; and B; be the cycle length and the amount of data
blocks retrieved in a cycle for a stream when there are I
concurrent streams, respectively. max denotes the maximum
number of concurrent streams. Given that there are i number
of streams, the server retrieves B; amount of data blocks from
the disk and transfers same amount of data blocks to end user
in each cycle. Cycle extension keeps occuring until the num-
ber of concurrent session reaches the upper limit. To survive
the cycle extension, By,,, amount of data blocks needs to be
available in memory for each stream. Total amount of buffer
for individual session is the sum of and B; and can be formu-
lated as in Eq. 4.

Buﬁéri = Bmax + Bi = (T + 7: )X rdiypluy (4)

max

V. Pre-Buffering strategy
1. Pre-Buffering and latency
If each stream has B, amount of data blocks in memory,
the stream is free from the temporal insufficiency of data
blocks in cycle extension. However, the individual session can
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suffer from longer service startup latency because client can
consume the data blocks only after B, amount of data blocks
becomes available in memory before starting service. L in Fig.
2 corresponds to session start-up latency in pre-buffering. We
like to examine the length of startup latency when the server
preloads By, amount of data blocks prior to starting service.
Let us assume that with the arrival of new stream, the cycle
length is extended to T;. Assuming that the playback rate for
the individual session is the same, each ongoing stream is
allocated same fraction of a cycle to load the data blocks, i.e.
T; /i fraction of a cycle will be dedicated to individual streams
to load the data blocks. Each stream loads B; amount of data
blocks. The newly arrived stream can start the playback only
after B,,, amount of data blocks are accumulated in memory.
Thus, the start up latency, T s can be formulated as in Eq. 5.
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Fig. 3. Full pre-buffering vs. Incremental pre-buffering.

2. Incremental pre-buffering

To improve the startup latency, we propose a scheme called
Incremental Pre-buffering. In Incremental Pre-buffering, we
exploit the fact that if the cycle length is longer than the mini-
mum cycle length requirement in Eq. 3, a certain fraction of
cycle becomes idle, and consequently, idle fraction of a cycle
can be used to accumulate the data blocks for each session to
survive the cycle extension. In Incremental Prebuffering, the
server does not have to wait until the B, amount of data
blocks is available in memory. It can start playback as soon as
the sufficient amount of data blocks for single cycle’s
playback duration becomes available. Let us examine the
characteristics of incremental prebuffering in more detail. Let
T be the minimum length of cycle to satisfy the continuity
requirement for ongoing service session. We like to extend the
length of cycle by extension factor, a(a>1), such that a certain
fraction of cycle can be used for accumulating the data blocks.
Then, the continuity requirement of Eq. 1 needs to be re-stated
asin Eq. 6.

al X Iy <, xb, (6)
Eq. 6 states the condition that the amount of data blocks

read in each cycle should be sufficient for aT;’s playback.
However, the Eq. 2, i.e. total time to retricve all the data

blocks, should still be satisfied. Eq. 6 and Eq. 2 together im-
plies that the amount of data blocks read in a cycle should be
sufficient for aT;’s playback(Eq. 6), and time to read all the
data blocks for a cycle should be less than Ty(Eq. 2). In each
cycle, oT; -T; remains unused and thus can be used to accumu-
late the data blocks. Solving Eq. 6 and Eq. 2, we can obtain
the amount of data blocks to be loaded in each cycle as in Eq.
7. Details of derivation step can be found in [7].
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Let us examine the relationship between the amount of data
blocks accumulated in each cycle and o. (o-1) fraction of the
cycle will be used to incrementally preload the data blocks.
Since retrieving the additional data blocks from the same file
does not entail any additional disk head movement overhead,
(a-1) fraction of cycle can be effectively dedicated to transfer-
ring the data blocks. In single zoned disk, we can compute the
amount of data blocks preloaded for individual session in each
cycle, Byrepusrer can be formulated as in Eq. 8. n and 1y, denotes
the number of sessions and maximum transfer rate of the disk.

b ((a—l)T) )

'prebuffer = n "max

In multi-zoned disk, amount of preloaded data blocks in
each cycle needs to be the integer multiples of the number of
zones since the server retrieves the same number of blocks
from each zone. We like to obtain the amount of data blocks
which can be preloaded in each cycle under multi-zoned disk.
Let n, m, B; and z be the number of sessions, the number of
blocks preloaded for a single stream in a zone, maximum
transfer rate of zone i and the number of zones, respectively.
In a single zone, m number of blocks are loaded for prebuffer-
ing for a stream, and thus mb/B; corresponds to the time to
accumulate the data blocks for a single stream in a single zone
where b denotes the block size. The total time to accumulate
the data blocks in a cycle should be less than (a-1)T and this
relationship can be formulated as in Eq. 9.

[
i=1 Bi 9
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The amount of preloaded buffer for individual session for each
cycle can be formulated as in Eq. 10 where my,,, in Eq. 10 is
largest m satisfying Eq. 9.

bprebuﬁ’er =M max zb (10)

Fig. 3 characterizes the difference between the Full pre-
buffering and Incremental prebuffering. Full prebuffering has
longer startup latency since the start of service is delayed until
the B,,,, amount of data blocks are accumulated on memory.
On the other hand, Incremental prebuffering incrementally



Transactions on Control, Automation, and Systems Engineering Vol. 4, No. 2, June, 2002 167

accumulates the data blocks in each cycle and thus enables the
session to start service right after the first cycle completes.
However, in incremental prebuffering, it is possible that new
request arrives before the sufficient amount of data blocks
becomes available.

VL. Simulation study
We perform simulation based experiment to examine the
overhead of prebuffering. The disk is modeled after IBM
Deskstar 34 GXP(27.3 GB,7200 RPM). The transfer rate of
the disk ranges from 13.8 MByte/s to 22.9 MByte/s. There are
17494 numbers of cylinders and the number of zones is 12.
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Fig. 6. Start-up latency with 19.2 Mbps.

1. Prebuffering overhead

The size of prebuffer depends on the predefined service
limit of the disk subsystem. We examine the prebuffer size
ATSC compressed stream(19.2 Mbits/sec) and MPEG-1 com-
pressed stream(1.5Mbits/sec). The disk used in the simulation
can theoretically support upto seven ATSC compressed
streams and 95 MPEG-1 compressed streams, respectively.
The buffer size is size of prebuffer plus the size of the data
blocks retrieved in a cycle. Fig. 4 illustrates the buffer size for
each stream when the disk service limit is set to 70, 80, and 90,
respectively. As can be seen in Fig. 4 and Fig. 5, buffer size
varies widely depending on the upper bound of the concurrent

number of streams. In Fig.4, i.e. in case of MPEG] com-
pressed stream with 1.5 Mbits/sec playback rate, per stream
buffer size is 4 Mbyte when the number of concurrent streams
is 70. However, the buffer size increases six times when the
maximum number of concurrent streams is 90. We can ob-
serve the similar phenomenon when the playback rate of the
stream is 9 Mbits/sec. Fig. 5 illustrates the buffer size when
the maximum number of streams is 5, 6, and 7 respectively.
When the maximum number of streams is 5, the buffer size is
3.5 Mbyte. However, when the maximum number of concur-
rent streams is 7 which is the largest number of concurrent
stream supported by the disk, the buffer size increases by eight
times.
2. Start-Up latency

Fig. 6 illustrates the startup latency for ATSC compressed
stream. When the maximum number of concurrent streams is
7, startup latency is 10.5sec. With the maximum number of
streams being 5 and 6 respectively, the startup latency is 1.3
sec and 2.5 sec, respectively. In the incremental prebuffering,
the start up latency is not governed by the maximum number
of concurrent streams, but is proportional to the number of
concurrent sessions. The startup latency is actually longer in
the incremental prebuffering when the maximum number of
concurrent streams is set to five or six.

VII. Summary

In this article, we present the novel approach of avoiding
temporal insufficiency of data blocks, jitter, which occurs due
to cycle extension. We propose technique called pre-buffering
which is to make the sufficient amount of data blocks avail-
able on memory such that the streaming session can survive
the temporal insufficiency of data blocks with cycle extension.
We propose two ways of making the sufficient amount of data
blocks available in memory. The first approach, Full Pre-
buffering, is to load the sufficiently large amount of data
blocks in memory prior to start service. In the second ap-
proach, Incremental Prebuffering, each session retrieves more
data blocks than it consumes in a cycle. The main advantage
of incremental prebuffering is relatively short startup latency.
In this article, we develop an elaborate model to compute the
length of the cycle which incorporate the time to preload the
data blocks in both full prebuffering and incremental pre-
buffering. The result of this work can be effectively incorpo-
rated into modemn streaming server design especially in file
system, disk scheduling, and resource allocation module.
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