
HERMES: File System Support for Multimedia

Streaming in Information Home Appliance?

Youjip Won1, Jinyoun Park1, and Sangback Ma2

1Div. of Electrical and Computer Engineering, Hanyang University, Korea
fyjwon|jyparkg@ece.hanyang.ac.kr

2Department of Computer Science, Hanyang University, Korea
sangback@cse.hanyang.ac.kr

Abstract. The HERMES ÿle system is state-of-the-art ÿle system de-
signed to handle multimedia streaming workload in consumer electronics
platform. The design objective of HERMES is to minimize the delay and
the delay variance of I/O request in the sequential workload. File orga-
nization, meta data structure, unit of storage, or etc. are elaborately
tailored to achieve this objective. Further, HERMES provides a number
of API's speciÿc to mpeg-4 ÿle format. It can greatly facilitate the devel-
opment of multimedia applications. For the seamless integration with the
existing application, HERMES ÿle system is developed under virtual ÿle
system(VFS) layer. Prototype of HERMES ÿle system is implemented
on Linux operating system. Our benchmark test shows that HERMES
ÿle system exhibits suprior performance than EXT2 ÿle system.

Keywords: Multimedia, Streaming, File System, UFS, Scheduling

1 Introduction

1.1 Motivation

Information Appliance for digital video can be thought as a lightweight computer

system designed to store incoming high quality digital video stream at the local

hard disk and=or to play the recorded video clips at user's convenience. Unlike the
general-purpose computer, which has abundant computing resources and storage

capacity, this type of consumer electronics has stringent resource constraints

due to its restriction on power consumption, pricing, acoustic, reliability, etc.

The disk drive in this device is not an exception. It is not feasible to use high

performance disk in this type of device. The realtime playback and the retrieval

of multimedia data puts intense bandwidth demand on the storage device. It

is mandatory that the underlying ÿle system is elaborately designed to fully

utilize the physical performance of the disk by exploiting the characteristics of

multimedia workload. Unfortunately, the fundamental design philosophy of the

? This work was supported by Korea Research Foundation Grant(KRF-2000-003-
E00322.

M.H. Shafazand and A M. Tjoa (Eds.): EurAsia-ICT 2002, LNCS 2510, pp. 172−179, 2002.
 Springer-Verlag Berlin Heidelberg 2002

most commodity ÿle systems, e.g. Unix File System, NTFS, EXT2, FAT32, or
etc. is ill-suited for meeting the real-time performance requirement of the audio
and video data retrieval. One of the reasons is that navigating through multi-
level tree structured ÿle entails non-trivial amount of the disk head movement
overhead in visiting internal nodes of the tree.

EÆciency of the underlying ÿle system plays a critical role in providing the
streaming service in cost eþective manner. To eþectively exploit the physical
bandwidth of the disk, it is important that the ÿle system layout, meta data
structure, ÿle organization, ÿle placement, etc. are elaborately tailored so that
disk fragmentation is avoided and the time to locate the data blocks is mini-
mized. Special care needs to be taken in designing the ÿle system to meet the
requirement of the underlying workload. There is not much debate that the Unix
ÿle system is a landmark achievement in modern ÿle system design. However,
regarding the multimedia data retrieval, there are two major issues in Unix ÿle
system which requires further elaboration: (i) ÿle structure and (ii) data abstrac-
tion. Unix ÿle system abstracts the ÿle as a sequence of byte stream. Mpeg-4
compressed ÿle consists of a set of atoms and each atom may contain video data,
audio data, text data, ÿle meta data, or etc. Since HERMES has well deÿned
target workload, it is possible to provide more speciÿc sets of API's for the tar-
get application. We provide a set of ÿle system level API's which can extract
or record mpeg-4 speciÿc information in HERMES In this work, we present the
novel ÿle system which eþectively address the above mentioned issues: (i) ÿle
system layout, (ii) ÿle organization, and (iii) data abstraction.

1.2 Related Works

Since legacy SCAN, FIFO, and their bifurcations do not provide bandwidth
guarantee, it is not possible to provide continuous ýow of data blocks from the
disk to the end system. A number of works address these issues and propose the
disk scheduling algorithms for multimedia data retrieval[1, 3, 7, 2, 5].

There are a number of prototype ÿle systems which are designed to handle
multimedia data[8, 12]. MMFS[10] improves interactive playback performance
by supporting intelligent pre-fetching, state-based caching, prioritized real-time
disk scheduling, and synchronized multi-stream retrieval. Minorca Multimedia
ÿle system[11] proposed (i) a new disk layout and data allocation techniques
called MOSA which oþers a high degree of contiguous allocation for large con-
tinuous media ÿles and allows the coexistence of small, non-CM ÿles, and (ii) a
new read ahead method to optimize the input of the I/O request queue. These
techniques aim at increasing disk access locality and at reducing disk seek over-
head. Presto File System[4] introduces the idea of storing the data based on the
semantic unit. The unit of placement is extent which consists of ÿxed number
of semantic units. The size of ÿle is limited to one extent. SMART ÿle system[6]
maintains a ÿle as a linked list of extents and thus improves the ÿle size limita-
tion in Presto[6]. Symphony[9] also allows each video ÿle to be accessed either as
a sequence of bytes or as a sequence of frames. To support two diþerent abstrac-
tions in accessing the ÿle, they use two level index structure: index for frame

173HERMES: File System Support for Multimedia Streaming

which maps the frame index to byte oÿset and index for byte which maps the
byte oÿsets to disk block addresses. In Minorca þle system and Symphony þle
system, þle is organized using index block and has tree like structure. Particu-
larly, Minorca þle system clusters the index block and data block together, which
may look like B tree.

2 Synopsis: Unix File System

In Unix þle system, the management information is kept strictly apart from
the data and is collected in a separate structure for each þle. This structure
is called "i-node" and stores the metadata information of each þle as well as
data block references for actual data location. Data references consist of twelve
direct references, one indirect reference, two-step indirect reference and three-
step indirect reference. Given that multimedia þle can easily go beyond a tens of
mega bytes, data block retrieval in multimedia streaming operation entails the
retrieval of the intermediate pointer blocks as well. While tree structure based
þle organization gives greater ýexibility in handling wide variety of þle sizes,
retrieval of pointer blocks gives substantial overhead in the streaming operation.

Since disk needs to access the i-node block and possibly a number of indirect
blocks to access the data block, non trivial amount of additional overhead occurs.
Even though the i-node and pointer blocks are in the buÿer cache, memory
access time can consume signiþcant fraction of CPU cycle. It is very unlikely
that pointer blocks and data blocks are stored consecutively, especially, when a
number of þles co-exist in the þle system. Disk head needs to travel across the
platter to retrieve i-nodes and pointer blocks.

Most þle systems of modern Unix family operating systems, e.g. Linux, So-
laris, NetBSD, etc. adopt the mechanism to place the data blocks consecutively
or as closely as possible. EXT2 þle system, which is the most widely used þle
system in Linux operating system, uses the concept of block group. Using the
concept of block group, þle system can cluster the data blocks for a þle within
relatively closer cylindrical position. Unfortunately, block group based placement
policy still splits the þle into diÿerent block groups when the size of þles exceeds
certain limit and may suÿer from signiþcant overhead in disk seek. EXT2 þle
system consists of multiple block groups. Each group contains the copy of þle
system superblock(for þle system consistency's sake), group descriptor, block
bitmap, i-node bitmap, i-node table, and þnally data blocks, with the respective
order.

3 HERMES: Multimedia File System

UFS (Unix File System) manages both directory þle and multimedia þle equally.
It is possible that multimedia þles and the directory þles are placed in the disk
in interleaved fashion. This can cause substantial overhead in sequential scan-
ning operation on multimedia þle. To resolve this issue, HERMES þle system
maintains the directory block and data block seperately. Fig. 1 illustrates the

174 Y. Won, J. Park, and S. Ma

ÿle system layout of HERMES ÿle system. Its partitions consist of super block,
extent bitmap, i-node bitmap, i-node tables, directory extents and multimedia
extents.

Multimedia
Extend #1

Multimedia
Extend #2

Multimedia
Extend #m

Directory
Extents #1

Directory
Extents #2

Directory
Extents #m

Superblock

......

......

Extent bitmap inode bitmap inode tables

Fig. 1. Layouts of HERMES ÿle system

Superblock is located at the ÿrst block of the ÿle system partition and stores
general information of the ÿle system. It contains the information about the
number of extent, the number of multimedia extent, the number of free extent,
size of extent, the number of i-node, creation time, and etc. Extent is the smallest
allocation unit and consists of consecutive data blocks. Extent size is determined
when formatting ÿle system and cannot be altered unless the ÿle system is re-
formatted. The directory entry is stored in directory extent and the multimedia
ÿle is stored in multimedia extent. By separating directory entry from multi-
media data region, the HERMES ÿle system can reduce the disk seek time and
also store and retrieve multimedia data very eÆciently. Extent bitmap is used
to denote whether the respective extent is in use or not. Free extent is allocated
using ÿrst ÿt algorithm. The i-node table consists of a predeÿned number of
i-nodes. All i-nodes have the same size, 128 bytes. Each i-node maintains the ÿle
meta-data information: owner ID, group ID, ÿle mode and references of allocated
extent, etc. With this design approach, we like to achieve the followings: (i) ef-
ÿcient handling of multimedia playback workload, (ii) minimizing I/O latency,
and (iii) supporting wide range of ÿle size.

Fig. 2 illustrates the i-node structure of HERMES ÿle system. We improve the
i-node design proposed in [11]. The block reference pointer in UFS i-node points
to single block, which can be either data block or pointer block. UFS adopts
skewed tree-like ÿle structure to cover large size ÿle. In HERMES, we like to
avoid using multi-level indirect reference in locating the data block. In HERMES,
each block reference pointer can point to cluster of data blocks. Block reference
pointer is augmented with i count which denotes the number of consecutive
data blocks as in Fig. 2.

4 Operating System Support for Streaming Operation

4.1 VFS and HERMES

HERMES ÿle system is implemented under VFS layer so that the existing appli-
cation can use HERMES ÿle system partition without any modiÿcation. Fig. 3

175HERMES: File System Support for Multimedia Streaming

Extent ExtentExtent

Extent Extent

Extent Extent

i_extent[0] i_count[0]

i_extent[1]

i_extent[2]

i_count[1]

i_count[2]

i_extent[11] i_count[11]

i_extent[12]

i_extent[13]

i_extent[14]

i_extent[]

i_extent[]

i_extent[]

i_extent[] i_count[]

i_count[]

i_count[]

i_count[]

Extent

4 byte 2 byte

8 pointer blocks
12

3

Fig. 2. i-node structure of HERMES ÿle system

illusrates the relationship between operation system kernel, VFS and HERMES.
As can be seen in Fig. 3, user can manipulate the ÿles in HERMES in vari-

Block Device

Block Device Driver

HERMES File System

Virtual File System

HERMES API(for streaming) VFS API

Application

Fig. 3. Structure of HERMES ÿle system

ous ways. It can use the existing API's provided by VFS layer. Also, HERMES
provides a number of API's which is dedicated to handle multimedia speciÿc
information. The application can directly access these API's to manipulate the
multimedia ÿle.

4.2 Interface for Multimedia Streaming

HERMES deÿnes a set of application programming interfaces to handle multi-
media streaming workload. These interfaces facilitate the handling of multimedia
data in more eÆcient manner. It achieves the following objective: (i) organizing
the ÿle as a collection of LDU(logical data unit), (ii) supporting QoS related
data structure and (iii) management of streaming operation speciÿc meta-data.

HERMES deÿnes mminfo structure to convey the meta information related
to streaming operation. The information includes the direction(forward or back-

176 Y. Won, J. Park, and S. Ma

ward) or speed(x1, x2,...) of playback. The information of mminfo is used for
scheduling the data retrieval operation in HERMES ÿle system. The mp4track
structure stores the information about the multimedia data track. The infor-
mation shows track ID, creation time, modiÿcation time, the duration and
time scale. The HERMES ÿle system oþers a set of kernel level API's. Table
?? illustrates the API's. When opening a ÿle, mp4open enables the applica-
tion to specify the information related to mutlimedia playback, e.g. QoS, play-
back rate, playback speed, etc. This information is carried in mminfo structure.
mp4GetMovieIOD retrieves IOD(Initial Object Descriptor) in MPEG-4 ÿle and
store this information into iniitalOD. The size of IOD is stored into pIoDLenght.
int mp4GetTrackCount retrieves the number of tracks in MPEG-4 ÿle and stores
into nCount. mp4GetMovieTrack retrieves information of the speciÿed track in
MPEG-4 ÿle. mp4read reads the samples in a track. The sample can be video
frames or the sequence of audio samples. The sample data and its size are read
into buffer data structure. mp4write stores the multimedia samples in a track.

5 Performance Experiment

In this section we examine the performance behavior of the proposed ÿle system.
The HERMES ÿle system is implemented on the Linux operating system. Perfor-
mance of the ÿle system is measured via experiments with a streaming workload.
The experiment is performed on dual Pentium III (Coppermine) 746MHz pro-
cessor with 256 Kbyte cache. The system has the 4 Ultra-Wide SCSI hard disks,
each with 9.1 Gbytes disk space. The disk model is IBM Ultra star 36LP. A
simulation program is written to sequentially scan the entire ÿle. We vary the
number of concurrent streams in the experiments.

We compare the I/O latency between HERMES and EXT2 ÿle system. Since
the streaming workload usually scans the ÿle sequentially, it exhibits higher
degree of spatial locality. Fifty MPEG-4 ÿles with 50Mbyte each are created in
both EXT2 ÿle system partition and HERMES ÿle system partition. In EXT2
ÿle system, 570Mbytes ÿle consist of 12 direct reference and 143 single indirect
pointer blocks. We measure the the I/O latency between HERMES ÿle system
and EXT2 ÿle system varying the number of concurrent streams. Fig. 4 illustrates
the result of experiment. As is shown, I/O latency in the HERMES ÿle system
is approximately 70% of the latency in EXT2 ÿle system. This is because as
the number of concurrent sessions increases, the overhead of reading the indirect
block constitutes more dominant fraction of the elapsed I/O time in the Linux ÿle
system. On the contrary, HERMES ÿle system minimizes the disk seek overhead
by prohibiting the usage of multi-level indirect reference.

In EXT2 ÿle system, complex i-node structure along with multi-level data
block organization and block group oriented placement strategy can make the
latency of data block vary widely. In contrast, HERMES ÿle system has relatively
ýat structure in organizing the data blocks. Thus, I/O latency remains relatively
uniform. We measure the variance of I/O lantecy under diþerent number of

177HERMES: File System Support for Multimedia Streaming

20

40

60

80

100

120

140

160

180

0 10 20 30 40 50 60

tim
e(

m
s)

number of stream

ext2
hermes

(a) I/O Unit size: 16 KByte

0

50

100

150

200

250

0 10 20 30 40 50 60

tim
e(

m
s)

number of stream

ext2
hermes

(b) I/O Unit Size: 64 KByte

Fig. 4. Scalability Test: I/O latency of the streaming operation

concurrent streaming session. Fig. 5 illustrates the result of experiment. We can
observe that the variance of HERMES is much smaller than EXT2 ÿle system.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

10 20 30 40 50

Number of Stream

Ext2
 HERMES

Fig. 5. Variance of I/O latency, 64 KByte I/O

6 Conclusion

In this work, we focus our eþort in devising eÆcient ÿle system for streaming op-
eration and analyze its performance behavior under streaming workload. There
are two design objectives in our ÿle system. First, it should be able to support
sequential access eÆciently. To achieve this objective, we avoid using multi-level
tree like structure. Single ÿle is organized as a collection of data unit groups.
Data unit group contains a ÿxed number of data units. Instead of using small
size data unit(block), each data unit group consists of a collection of semantic

178 Y. Won, J. Park, and S. Ma

data units. Second, the ÿle organization is developed to handle relatively large
ÿles(tens of Mbyte), which are commonly found in multimedia applications. Our
ÿle system is implemented on the Linux platform. We examine the performance
of the given ÿle system under streaming workload and compares it with the per-
formance of the EXT2 ÿle system. There are a number of distinctive features
which deserves attention: HERMES ÿle system has more predictable behavior
and thus is more robust against jitter. It services the I/O request with more
evenly distributed latency compared to legacy UFS. We found that HERMES
ÿle system is more scalable compared to legacy UFS. The performance gap be-
tween HERMES and EXT2 becomes more dominant as there are more number of
concurrent. The result of performance experiments indicates that the HERMES
ÿle system prototype successfully meet the ÿle system constraints for multimedia
streaming application.

References

1. Mon-Song Chen, Dilip D. Kandlur, and Philip S. Yu. Optimization of the grouped
sweeping scheduling(gss) with heterogeneous multimedia streams. In ACM Multi-
media '93, pages 235 { 242, 1993.

2. D. Gemmell, H. Vin, D. Kandlur, P. Rangan, and L. Rowe. Multimedia Storage
Servers: A Tutorial. COMPUTER, 28(5):40{49, May 1995.

3. D.R. Kenchammana-Hosekote and J. Srivastava. Scheduling Continuous Media on
a Video-On-Demand Server. In Proc. of International Conference on Multi-media
Computing and Systems, Boston, MA, May 1994. IEEE.

4. Wonjun Lee, Difu Su, Duminda Wijesekera, Jaideep Srivastava, Deepak
Kenchammana-Hosekote, and Mark Foresti. Experimental evaluation of pfs con-
tinuous media ÿle system. In Proceedings of CIKM, pages 246{253, Las Vegas,
Nevada, USA, 1997.

5. B Ozden, A. Biliris, R. Rastogi, and Avi Silberschatz. A Low-Cost Storage Server
for Movie on Demand Databases. In Proc. of VLDB '94, 1994.

6. Jinyoun Park, Youjip Won, and Jaideep Srivastava. Smart: Yet another ÿle system
for multimedia streaming. In Proceedings of International Conference on Dis-
tributed Multimedia Systems, Taipei, Taiwan, Sep. 2001.

7. P. Rangan, H. Vin, and S. Ramanathan. Designing an on-demand multimedia
service. IEEE Communication Magazine, 30(7):56{65, July 1992.

8. R.L.Haskin. Tiger shark-a scalable ÿle system for multimedia. IBM Journal of
Research and Development, 42:185{197, 1998.

9. Prashant J. Shenoy, Pawan Goyal, Sriram S. Rao, and Harrick M. Vin. Symphony:
An integrated multimedia ÿle system. In Proceedings of SPIE/ACM Conference
on Multimedia Computing and Networking(MMCN'98), pages 124{138, San Jose,
CA, USA, Jan 1998.

10. T. Chiueh T.H. Niranjan and G. A. Schloss. Implemenation and evaluation of a
multimedia ÿle system. In Proceedings of International Conference On Multimedia
Computing and Systems, 1997.

11. C. Wang, V. Goebel, and T. Plagemann. Techniques to increase disk access locality
in the minorca multimedia ÿle system. In Proceedings of the 7th ACM Multimedia,
1999.

12. R.P.Fitzgerald W.J.Bolosky and J.R.Douceur. Distributed schedule management
in the tiger video ÿleserver. ACM SIGOPS Operating Systems Review, 31, 1997.

179HERMES: File System Support for Multimedia Streaming

	1 Introduction
	1.1 Motivation
	1.2 Related Works

	2 Synopsis: Unix File System
	3 HERMES: Multimedia File System
	4 Operating System Support for Streaming Operation
	4.1 VFS and HERMES
	4.2 Interface for Multimedia Streaming

	5 Performance Experiment
	6 Conclusion

