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HEAPO: Heap-Based Persistent Object Store

TAEHO HWANG, JAEMIN JUNG, and YOUJIP WON, Hanyang University

In this work, we developed a Heap-Based Persistent Object Store (HEAPO) to manage persistent objects
in byte-addressable Nonvolatile RAM (NVRAM). HEAPO defines its own persistent heap layout, the per-
sistent object format, name space organization, object sharing and protection mechanism, and undo-only
log-based crash recovery, all of which are effectively tailored for NVRAM. We put our effort into develop-
ing a lightweight and flexible layer to exploit the DRAM-like access latency of NVRAM. To address this
objective, we developed (i) a native management layer for NVRAM to eliminate redundancy between in-core
and on-disk copies of the metadata, (ii) an expandable object format, (iii) a burst trie-based global name
space with local name space caching, (iv) static address binding, and (v) minimal logging for undo-only crash
recovery. We implemented HEAPO at commodity OS (Linux 2.6.32) and measured the performance. By elim-
inating metadata redundancy, HEAPO improved the speed of creating, attaching, and expanding an object
by 1.3×, 4.5×, and 3.8×, respectively, compared to memory-mapped file-based persistent object store. Burst
trie-based name space organization of HEAPO yielded 7.6× better lookup performance compared to hashed
B-tree-based name space of EXT4. We modified memcachedb to use HEAPO in maintaining its search struc-
ture. For hash table update, HEAPO-based memcachedb yielded 3.4× performance improvement against
original memcachedb implementation which uses mmap() over ramdisk approach to maintain the key-value
store in memory.
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1. INTRODUCTION

The demand for larger main memory has been increasing. Rapid proliferation of mi-
croblog sites, such as Facebook and Twitter, and web search engines [Chang et al. 2008;
Apache 2009; Chodorow 2010] requires a working set of large size key-value stores and
database tables to be in memory to overcome the limited performance of the block
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device. Today’s servers are loaded with several hundred gigabytes of DRAM, but the
size of the entire key-value store is still larger than what a single server can host.

The amount of DRAM that can be installed in a single node is limited due to various
reasons, for example, power consumption [Qureshi et al. 2009] and scaling factor [Yoon
et al. 2013]. Also, the volatile nature of DRAM makes crash recovery and checkpoint
particularly cumbersome in a system with a large size DRAM. A few works proposed
combining DRAM and NAND Flash into a single device to provide a large size non-
volatile main memory [Badam and Pai 2011; Diblotechnology 2013; Vikingtechnology
2013]. While these devices address volatility and the size issue of DRAM, they are much
more expensive than DRAM and the long-term retention and endurance behavior of
their NAND Flash device are yet to be known.

Newly emerging memory devices that can hold data without electricity and access
data at the byte granularity have brought forth a new opportunity to address the techni-
cal issues that current a DRAM-based computer system faces: volatility, crash recovery
overhead, power consumption, serialization overhead, and limited DRAM scale. The
use of these devices is expected to bridge the chasm between DRAM (byte-addressable
and volatile) and storage (block-addressable and nonvolatile). New Nonvolatile RAM
(NVRAM) devices include Spin-Transfer Torque Magnetic RAM (STT-MRAM) [Kim
and Lam 2012], Phase-Change RAM (PCRAM) [Kryder and Kim 2009], Ferroelectric
RAM (FRAM) [Perez 2012], Resistive RAM (RRAM) [Wang and Amiri 2012], and oth-
ers. Each of these devices has unique physical characteristics, for example, scalability,
energy consumption, access latency, and endurance.

In this work, we aim at developing a lightweight and flexible management layer
for persistent heap. The existing persistent heap approaches, which rely on memory-
mapped files [Coburn et al. 2011; Volos et al. 2011], can utilize the rich features of the
underlying file system, for example, metadata operations and name space management
service. However, we carefully argue that inefficiencies caused by redundant metadata
and system call overhead leave much to be desired in terms of fully exploiting the
DRAM-like access latency and byte addressability of emergent devices. In this work,
we developed a lightweight and robust persistent heap management layer, HEAPO
(Heap-based Persistent Object Store). The key design features of HEAPO are as
follows.

—Native management layer for persistent heap: Via providing a direct management
layer for NVRAM, HEAPO does not discretely retain in-core and on-disk metadata.
HEAPO defines its own metadata for persistent object, removing redundancy be-
tween in-core and on-disk metadata of a file. HEAPO manages the persistent object
with a single metadata, eliminating the metadata synchronization overhead from
which the mmap-based persistent heap design [Coburn et al. 2011; Volos et al. 2011]
may suffer.

—Global name space with local name space caching: HEAPO has trie-based [Heinz
et al. 2002] memory-friendly directory structure. It maintains global name space
and defines its own lightweight name space since the existing directory structures,
for example, linked list [Cao et al. 2005] and B-Tree [Sweeney et al. 1996; Mathur
et al. 2007], are designed for block devices.

—Extensible object: Persistent objects in HEAPO, different from the legacy heap object,
can dynamically extend. HEAPO expands a persistent object by allocating additional
pages directly from the persistent heap. In HEAPO, a persistent object does not have
to be allocated to a consecutive address space, which makes the use of a persistent
heap segment much more efficient.

—Static binding: In HEAPO, a section of the virtual address space is reserved for a
persistent heap, and all processes share a global persistent heap. A persistent object

ACM Transactions on Storage, Vol. 11, No. 1, Article 3, Publication date: December 2014.



HEAPO: Heap-Based Persistent Object Store 3:3

Table I. Comparison of Memories [Kryder and Kim 2009; Perez 2012; Wang and Amiri 2012;
Kim and Lam 2012].

Item DRAM FRAM PCRAM MRAM STT-MRAM NAND

Maturity Product Product Product Product Prototype Product
Byte addressable Yes Yes Yes Yes Yes No
Nonvolatile No Yes Yes Yes Yes Yes
Access time (W/R) 10/10ns 50/75μs 100/20ns 12/12ns 10/10ns 200/25μs
Program energy 2pJ 2pJ 100pJ 120pJ 0.02pJ 10nJ
Cell size 6F2 6F2 5F2 20F2 4F2 4F2

Endurance 1016 1015 105 1016 1016 105

is statically bound to its virtual address, rendering the object sharing and pointer
resolution versatile.

HEAPO solves the issues that the memory-mapped file approach fails to address in
realizing a persistent heap [Coburn et al. 2011; Volos et al. 2011]: redundant metadata,
heavy system call-based name space management, and inflexible object expansion in
memory-mapped file.

The results of our performance experiments with HEAPO are promising. Trie-based
in-memory directory structure of HEAPO yields 7.6× faster lookup than B-Tree-based
directory structure of EXT4. Eliminating metadata redundancy between in-core and
on-disk metadata improves the speed of attaching and expanding a persistent object
by 4.5× and 3.8×, respectively, compared to a memory-mapped file approach. We de-
veloped a key-value library with HEAPO, H-KVLib, which offers B-Tree and hash
table-based store. We examined the performance of H-KVLib and Berkeley DB; H-
KVLib exhibits 7.5× and 18.1× performance improvement in insert and lookup of a
hash table, respectively. We modified Memcachedb [Chu 2008], a distributed key-value
store, to adopt H-KVLib in lieu of Berkeley DB. H-KVLib-based Memcachedb exhibits
3.4× performance improvement over Berkeley DB-based Memcachedb in hash table
update.

The remainder of this article consists of a brief description of the background
(Section 2), the design of HEAPO (Section 3), its implementation (Section 4), its evalua-
tion (Section 6), and a summary of related work (Section 7). Our conclusion is presented
in Section 8.

2. BACKGROUND AND PROBLEM ASSESSMENT

2.1. Memory Device Technologies

There is a wide variety of device technologies for byte-addressable nonvolatile mem-
ory (Table I) including FRAM [Perez 2012], PCRAM [Kryder and Kim 2009], and
STT-MRAM. Each of these devices has unique physical characteristics. FRAM has a
scalability issue. The largest FRAM chip available to date is 64Mbit [Kang et al. 2006].
FRAM finds its use as a lower-energy memory device in automotives or sensor devices.
PCRAM is the most mature technology [Research 2009]. It is used as a fast storage
with small IO latency [Jantunen et al. 2010; Akel et al. 2011], as a cache layer between
a main memory and a secondary storage [Liu et al. 2012], or as disparate memory
structure [Qureshi et al. 2009]. STT-MRAM aims at directly replacing DRAM. The
read and write speeds of STT-MRAM are similar to, or two to three times slower than,
those of DRAM [Kryder and Kim 2009]. STT-MRAM effectively addresses the heat and
energy consumption issues of DRAM in modern enterprise class servers. It can be used
as a memory device.

The software stack for exploiting byte-addressable NVRAM should properly re-
flect the physical characteristics of individual devices. This work particularly aims
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at NVRAM with DRAM-like latency which makes STT-MRAM the right device for
HEAPO.

2.2. Persistent Heap versus Byte-Addressable File Ssystem

There are two main approaches to incorporating the NVRAM device into a legacy
computer hierarchy: (i) persistent heap [Coburn et al. 2011; Volos et al. 2011] and (ii)
byte-addressable file system [Condit et al. 2009; Wu and Reddy 2011]. In the persis-
tent heap approach, the NVRAM device is directly mapped into the process address
space. In the process address space, a new type of segment, called persistent heap, is
allocated to harbor the NVRAM device. The objects in the persistent heap segment are
dynamically allocated and deallocated as the objects in the legacy heap. However, the
objects in the persistent heap remain orthogonal during the course of the process that
created them. The management module of a persistent heap can use a legacy memory
management algorithm, e.g., a buddy algorithm. The management module needs to be
augmented with naming system, sharing and protection, and pointer resolution fea-
tures. The persistent heap approach is suitable for NVRAM that has DRAM-like access
characteristics, for example, STT-MRAM. Maintaining an object in a heap instead of
a block-based storage device removes the burden of serializing and deserializing an
object between the block-based storage device and the virtual address space. It also
eases the burden of going through complex software stacks, for example, system call,
file system, and device driver, to access the objects at the storage device. The existing
heap management module needs to be reinforced with name space and mechanisms
for protection and sharing.

In the byte-addressable file system approach, the NVRAM device is imposed with file
system abstraction [Condit et al. 2009; Wu and Reddy 2011], which exports non-POSIX
interfaces to access the file data in subblock granularity. The main advantage of using a
file system is that it can inherit various features of the extant file system, for example,
the hierarchical name space organization, scalable access control mechanism, and
metadata structure, which have evolved over the years and reached sufficient maturity.
However, this approach includes a heavy system call, block device, and device driver.
Additionally, in accessing file system objects, the context switch-based IO pollutes the
Translation Lookaside Buffer (TLB) and Central Processing Unite (CPU) cache and
negatively affects the overall system performance. The existing file system separately
defines the in-core and on-disk versions of metadata and name space entries. The
synchronization overhead becomes rather significant when the storage device bears
DRAM-like latency.

2.3. Memory-Mapped File versus Native Heap Management

There are two approaches to maintaining an object in an NVRAM region: memory-
mapped files and native heaps. Existing works [Coburn et al. 2011; Volos et al. 2011]
depend on memory-mapped files to realize persistent heaps. An nvheap in Coburn et al.
[2011] and a region in Volos et al. [2011] correspond to a single chunk of persistent
memory region and are realized using a memory-mapped file. In terms of abstract
notions, an nvheap and a region correspond to a persistent object in HEAPO. Memory-
mapped file approach imposes block device abstraction on NVRAM [msdn 2010] and
organizes the block device with a commodity file system, for example, EXT2. The objects
in the virtual address space are endowed with persistency via being mapped to an
NVRAM-based block device. This approach significantly simplifies the implementation
because it can exploit all the existing file system primitives, for example, metadata and
system calls.

Despite its simplicity, this approach suffers from a number of serious drawbacks,
making it practically infeasible. As each persistent object in this approach is basically a
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Fig. 1. Architecture of HEAPO.

file, creating and accessing a persistent object involves searching of on-disk metadata,
initializing them, and creating in-core metadata (i-node) from the object’s on-disk
counterpart. The replication overhead of metadata (in-core and on-disk) is crucial.
Expanding or shrinking a persistent object requires system calling, which entails
crossing the protection boundary and updating metadata, and this is a very expensive
operation. In addition, the file must be mapped into consecutive virtual address space,
and it is possible that the file cannot grow linearly in the virtual address space because
the page that needs to be allocated for the file expansion is already in use. If this
happens, the entire file must be remapped to another part of the virtual address space.
In a persistent object store, remapping an object to a different virtual address space
entails remapping overhead and more importantly, it requires updates on all pointers
that point to the remapped object.

2.4. Address Binding: Static versus Dynamic

In static binding, an object is statically bound to a virtual address. In dynamic binding,
an object’s virtual address may change every time it is mapped to a process’ address
space. In dynamic binding, the pointers in the persistent object need to be resolved
every time the persistent object is mapped to virtual address space. In dynamic binding,
the persistent object can be transported across the node into the distributed system.
The objective of employing “address relocation” in a modern operating system lied in
reusing the limited address space among the processes. If there exists a sufficiently
large virtual memory space, static binding will yield better performance. In static
binding, heap defragmentation and garbage collection can become more burdensome.

3. HEAP-BASED PERSISTENT OBJECT STORE

3.1. Design

Figure 1 schematically illustrates the hardware organization of the HEAPO system.
NVRAM is located on a par with its DRAM counterpart and is directly connected to the
system bus. We assume that DRAM and NVRAM form a single physical address space
[Freitas and Wilcke 2008]. Figures 2(a) and 2(b) demonstrate the software organization
in a legacy computer system and in an NVRAM-enabled computer system hierarchy,
respectively.

HEAPO defines a native layer with its own metadata, heap layout, access control,
name space, and other parameters without using memory-mapped file over ramdisk.
As the name suggests, HEAPO conveys a persistent heap instead of a byte-addressable
file system to manage NVRAM. This is primarily to avoid the expensive system call
in managing the persistent object. A native management layer eliminates redundancy
between the in-core copy and the on-disk copy of the file metadata.
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Fig. 2. System layout.

Table II. Design Issues of Persistent Object Store

HEAPO NV-Heaps Mnemosyne SoftPM

Mapping Static Dynamic Static Dynamic
Global name space Native NS File system NS None None
Local name space Yes No No No
Sharing Yes Yes No No
Protection Native ACL File system ACL File system ACL None
Space allocation Noncontiguous Contiguous Contiguous Contiguous
Persistency At allocation At allocation At allocation At commit
Address mode User User User Kernel
Implementation Native heap Memory-mapped file Memory-mapped file Native heap

Address binding scheme is one of the essential components in persistent heap de-
sign. HEAPO allocates a sufficient space (32TByte of virtual address range) to the
persistent heap and therefore each object can be assigned a unique location at the time
it is created. HEAPO adopts static address binding as in Mnemosyne, wherein each
persistent object has a fixed address in the virtual address space. Static address bind-
ing relieves HEAPO from the overhead caused by object store relocation, for example,
inter- and intraobject store pointer resolution. Through static address binding, sharing
of persistent objects becomes much easier.

We compared HEAPO with other recently presented persistent heap proposals:
Mnemosyne [Volos et al. 2011], NV-Heaps [Coburn et al. 2011], and SoftPM [Guerra
et al. 2012] (Table II). Mnemosyne adopts static address binding, as does HEAPO.
NV-heap has its own name space structure, as does HEAPO. The salient features that
distinguish HEAPO from the rest are native heap management module, object exten-
sibility, and minimal logging. Table II illustrates the summary of comparisons.

3.2. Persistent Heap Organization

First, let us provide important terminologies in HEAPO. Persistent heap is a consecutive
address segment in a virtual address space which is mapped to the NVRAM device.
A persistent object is an object that has a name; it is a linked list of the consecutive
pages called a cluster. The cluster can be thought of as the extent in the extent-based
file system.

HEAPO reserves a fixed address range in the virtual address space (0x5FFEF800000-
0x7FFEF800000, total 32TByte) for the persistent heap. HEAPO uses the existing buddy
algorithm (Linux 2.6.32) to manage NVRAM. It maintains page frame allocation
information on the first page of NVRAM, which enables HEAPO to recover the state
of NVRAM across power off and reboot.
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Fig. 3. Virtual address space layout and persistent heap in HEAPO.

Figure 3 illustrates virtual address organization of HEAPO. The persistent object
is allocated to a virtual address when it is created. A persistent object is bound to the
process’ virtual address space when the process opens it; this is called “attaching” in
HEAPO and it is done to distinguish a persistent object from open system call in the
file system. There are three persistent objects in NVRAM—A, B, and C—each of which
is allocated to a single page frame. Objects A and B are attached to process X’s address
space. Objects B and C are attached to process Y’s address space.

3.3. Persistent Object

We designated the first cluster in the linked list as a special one, called the prime cluster,
to contain the metadata of what is stored in the persistent object. The metadata for a
persistent object contain a pointer to the prime cluster. A persistent object corresponds
to a file in the legacy file system.

HEAPO defines primarily three metadata: metadata for the persistent heap, meta-
data for the persistent object, and name space data. Metadata for persistent heap and
persistent objects correspond to superblock and inode, respectively, in the legacy file
system. Kernel allocates a persistent region in its address space. Kernel maintains all
metadata in the persistent region.

HEAPO also fully implements the notion of persistent variables. A persistent vari-
able in HEAPO is the same as a static variable in C except that a persistent variable
retains its data across the invocation of a process, while a static variable does so across
the invocation of a function. In HEAPO, a persistent variable in NVRAM is deallocated
when the process image that defines the persistent variable is removed from the file
system.

Figure 4 shows a sample layout of a persistent heap and persistent objects. There
are two objects, A and B, in the persistent heap; A and B contain a binary tree and a
linked list, respectively, in themselves. Persistent object A is comprised of two clusters.
The first cluster contains two nodes and the second cluster contains three nodes in the
linked list.

3.4. Name Space

Creating, attaching, and expanding a persistent object require name space access. The
file system adopts a linked list [Cao et al. 2005], a B-Tree [Sweeney et al. 1996; Mathur
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Fig. 4. Persistent object stores and objects in persistent heap.

Fig. 5. Library level mapping table.

et al. 2007], and a hash table [Sun Microsystems 2004] to organize the on-disk file
system name space and a hash table to organize in-memory file system name space
[Lever and Alliance 2000]. When persistent heap is implemented on top of the mmap
file system service, the persistent heap layer and the file system layer will maintain
their own name space entries for the same persistent object. This redundancy causes
significant performance degradation. We used unified organization for HEAPO name
space and eliminated the name space redundancy in the legacy operating system. We
used an efficient in-memory search structure, burst trie [Heinz et al. 2002], for the
global name space and a hash table for the local name space cache.

Because the name space resides in the kernel address space, it may incur signifi-
cant overhead to examine this data structure for each memory allocation crossing the
protection boundary. In HEAPO, each process maintains the list of directory entries
that have been attached to its address space. A similar analogy can be found in the
dentry cache in the legacy file system which is used to expedite the directory accesses.
The local name space is organized as a chaining hash table and synchronized with
the global name space entry in a transactional manner. Figure 5 illustrates the rela-
tionship between the local name space at the user space and the name space at the
kernel.
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Fig. 6. Attaching before actual mapping.

3.5. Accessing a Persistent Object

Accessing an object store is composed of three major steps: (i) locating the object store,
(ii) attaching the object, and (iii) mapping the actual pages (page fault handling). Each
of these steps is performed by a kernel module. When a process needs to access a
persistent object, it first needs to find the address of the respective object using the
HEAPO naming system. HEAPO checks whether a given process has proper access
rights to the given object. Each persistent object is protected by an access control
mechanism. Figure 6 illustrates the details in the act of attaching and mapping an
object store. When the process has proper access rights, HEAPO reserves the page
table entries for the respective persistent object and creates the necessary metadata to
manage the reserved page table addresses. We call this step “attaching the object store.”
When the process actually reads or writes the persistent object, a page fault occurs since
the respective page table entry has not yet been set. The page fault handler for NVRAM
maps the physical page from NVRAM to the respective page table entry. This process
is called “mapping.”

HEAPO is designed to harbor large size persistent objects, for example, in-memory
key-value store [Chu 2008], XML-based document [Harter et al. 2012], etc. It is not
fit for maintaining small size kernel objects, for example, inode, socket, file object. A
persistent object is initially allocated a 4KByte page. Expanding a persistent object
involves attaching one or more pages from the persistent heap to the virtual address
space of the caller. The implementation of sharing is subject to the virtual memory
architecture of the operating system. In our Linux-based implementation, each process
has its own virtual address map. When the persistent object is shared by multiple
processes, the virtual address spaces of all sharing processes are immediately updated
so that the result becomes visible for the expansion and shrinkage of the persistent
object. In allocating additional pages for expansion, the persistent heap management
module finds the page frame(s) that are consecutive to the already allocated pages. If
it fails, it scans the page table and moves on to the next available page frame. HEAPO
uses a lock mechanism to synchronize the accesses to the shared object. Software
transactional memory has been employed in former Mnemosyne and NV-heap.

The HEAPO library (libheapo.a) is a user-level library responsible for manipulating
the space within the persistent object. An application requests a chunk of memory in the
persistent object via heapo_malloc() and frees the chunk of memory via heapo_free().
For each persistent object, the HEAPO library maintains the linked lists of free chunks.
HEAPO uses the same heap management algorithm of glibc2.11.1. There is an
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Fig. 7. Example of inserting a node to list data structure.

important difference between the HEAPO library and glibc in the way they manip-
ulate the heap segment. For glibc implementation of a heap segment, each process
maintains free space information of the heap segment in the local address space. In the
case of Linux, this information resides at the mmap segment. In HEAPO, the persistent
object can be shared among the processes. Free space information should persist and
should be visible to all processes with proper access rights to that object. In HEAPO,
we reserved 2KByte at the beginning of the persistent object to maintain its free space
information.

Update consistency for a shared persistent object is guaranteed since the HEAPO
library synchronizes the accesses to the shared object metadata with a lock. As each
process maintains its own mapping information for the shared object, unmapping
a persistent object for a process does not affect others’ accessibility. A kernel module
provides a truncate feature to shrink the persistent object, sys_heapo_cluster_free().
The truncate request is granted only when the respective cluster is entirely free.

In HEAPO, heapo_free() checks if the cluster to which it belongs is entirely free.
If this holds, it returns the respective cluster to the kernel module and the persistent
object is automatically shrunk. The virtual address space of the sharing processes is
updated altogether.

3.6. Crash Recovery: Minimal Logging

For crash recovery, HEAPO adopts undo-only logging; to be precise, HEAPO does not
know when to log and what to log. We developed a HEAPO-based key-value store; KVLib.
KVLib implements its insert, delete, and update operations with undo-only logging. The
logging mechanism of KVLib is elaborately crafted to minimize the overhead. In general,
software transactional memory logs all the update operations enclosed within the
atomic keyword in redo (or undo) the transaction for crash recovery as well as consistent
update. When it comes to crash recovery, not all this information is needed. For every
key-value operation, we carefully identified the minimal set of updates required to
undo the transaction. We call this logging mechanism minimal logging.

Let us provide an example. Figure 7 illustrates the situation where a node is in-
serted between the root node and node B. Making this change consists of three steps:
(i) allocating a node and storing the value, (ii) setting the pointer field of the newly
allocated node to node B, and (iii) setting the pointer field of the root node to the
newly allocated node. When these three steps are enclosed in the atomic key word, all
three updates are logged. However, in this case, only the old value of the root pointer
is needed to undo the transaction. In minimal logging, only the old value of the root
pointer is solely recorded.

Due to the cache management algorithm of modern processors, the order in which an
application issues updates may differ from the order in which the updates are reflected
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Fig. 8. HEAPO system organization and interfaces.

to memory. In HEAPO, a log record should be written to the storage device before an
actual update is made. In current implementations, HEAPO uses mfence and clflush
of ×86 to guarantee that log records always reach the persistent memory before the
respective updates are reflected to NVRAM.

4. IMPLEMENTATION

We implemented the prototype of HEAPO using Linux 2.6.32. The total implementation
includes 2,800 lines of kernel code and 3,800 lines of user-level library code. Figure 8
summarizes the interface exported by HEAPO.

4.1. NVRAM Zone and Persistent Heap

Linux partitions physical memory into three regions: ZONE_DMA, ZONE_NORMAL,
and ZONE_HIGHMEM [Wong et al. 2002]. We added ZONE_HEAPO to harbor the
page frames of NVRAM. A page bitmap is used to denote the allocation status of the
page frames of NVRAM. The page bitmap for NVRAM resides at the beginning of
ZONE_HEAPO. There exists a separate page fault handler to map the persistent heap
to NVRAM.

HEAPO adopts the segment organization of Linux OS to organize the persistent
heap. The persistent heap is a collection of memory clusters. HEAPO organizes these
memory clusters as a linked list as well as an rb-tree, as in Linux. Rb-tree and linked
list representations are used to expedite the address search and the scan of the address
space, respectively. The persistent heap is represented by a data structure called the
heapo_superblock. The heapo_superblock contains the start and end of the persistent
heap in the virtual address space, the number of allocated pages, the location of the
name space for persistent objects, pointers to the root of the rb-tree, and a linked list
for the persistent heap.

Each process has a local view of the persistent heap which is made up of a set of
memory clusters of the persistent objects attached to the process’ virtual address space.
Figure 9 shows persistent heap implementation.

4.2. Manipulating Persistent Objects

A persistent object is represented by metadata called heapo_descriptor. Creating an
object involves allocating an object descriptor (heapo_descriptor) and a memory cluster
descriptor (heapo_vm_area). The page fault handler for the persistent heap allocates a
page frame from ZONE_HEAPO to the created object. The object is then registered
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Fig. 9. Global persistent heap.

Fig. 10. Details of creating, attaching, and expanding an object.

at the name space and is attached to the creating process’ virtual address space.
Figure 10(a) illustrates creating a persistent object. Deleting an object is the inverse
of the creating process.

Accessing an existing object consists of checking for accessibility, attaching an object,
and mapping the pages. Once the access is granted, HEAPO initializes the memory
cluster descriptors for the persistent object and inserts them within the process’ virtual
address space. The physical pages are mapped when the actual read or write operations
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Fig. 11. Process of compiling, linking, and loading a persistent variable.

occur. HEAPO also adds the task ID to the set of processes that maps the persistent
object. Figure 10(b) illustrates the details of attaching an object.

Expanding an object indicates allocating more virtual address space, that is, page
table entry, to a given persistent object. The persistent heap of individual processes
contains the virtual address information of the mapped object. One of the remarkable
features of HEAPO is a shared update. When a process expands a persistent object,
HEAPO updates the persistent heap of all processes that have the expanded persistent
object attached to their own address space, as well as the requesting process. The kernel
metadata for the persistent heap are updated as follows: (i) the HEAPO library requests
more persistent heap area for a given kernel by calling sys_heapo_cluster_alloc(); (ii)
the kernel allocates a memory cluster, creating the metadata for the memory cluster
(the heapo vm area) and inserting it in the list of memory cluster descriptors for the
respective persistent object; (iii) the newly created memory cluster is attached to each
of the process’ address space that has previously mapped the persistent object; and (iv)
metadata for the new memory cluster, vm_area_struct, is created and inserted at the
virtual address space. Figure 10(c) illustrates the expanding operation.

4.3. Persistent Variables

HEAPO has a persistent variable feature. The persistent variable is annotated with
__attribute__ prefix, for example, __attribute__ ((section(‘‘PDATA’’))) int i.
The compiler coalesces all variables with this prefix into the PDATA section and the
linker relocates the PDATA section to a PDATA segment. The persistent variable fea-
ture of HEAPO consists of two main technical ingredients: the persistency mechanism
and the loader.

In HEAPO, the life span of the persistent variable is aligned with that of the ex-
ecutable file in the filesystem. When the respective process image is deleted from
the filesystem, the segment for persistent variables is deallocated. For this purpose,
HEAPO maintains devices and inode numbers of the executable files that contain
persistent variables. An entry of this set consists of an inode number and the set of
physical pages for the persistent variables in the respective executable file. When a
file is deleted, HEAPO searches the persistent file pool and deallocates all physical
pages related to that file. The HEAPO loader loads the PDATA segment of the ELF
executable into page frames from ZONE_HEAPO. Figure 11 shows the compiling, linking,
and loading processes for the persistent variable.
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Fig. 12. H-KVLib organization and interfaces.

Fig. 13. Sample code.

5. H-KVLIB: KEY-VALUE LIBRARY FOR PERSISTENT HEAP

With HEAPO, we developed a key-value library, H-KVLib. H-KVLib provides two types
of key-value store: B-Tree and hash table. The key-value library provides creation and
deletion of the key-value store and insert/delete/search operation of the <key, value>
pair. Management of the <key, value> pair becomes very efficient in HEAPO since the
operations are performed in byte granularity without any metadata redundancy. In
H-KVLib, a shared object is protected by a lock.

Figure 12 illustrates the organization and interfaces of the HEAPO-based key value
library. Each key-value operation is protected by undo-only minimal logging. The con-
current accesses to the key-value store are synchronized using a lock. heapo_kv_init()
creates the key-value store as the persistent object and maps it to the process’ virtual
address space. heapo_kv_open() maps the key-value store to the process’s virtual ad-
dress space. heapo_kv_insert() inserts the key-value pair in a transactional manner.
H-KVLib adopts minimal logging. heapo_kv_open() checks if the respective key-value
store is in the consistent state and triggers a recovery mechanism if necessary.

Figure 13 illustrates a sample code using HEAPO. This code creates the persistent
object which has a linked list. The application creates a persistent object named “list,”
heapo_create(‘‘list’’). If this object already exists, the application attaches it to
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Table III. Average Name Space Lookup Latency

HEAPO EXT2 EXT4

Latency (sec) 0.9 4.4 6.5

its virtual address space, heapo_map(‘‘list’’). The application obtains the starting
address of the persistent object via heapo_get_prime_node(). If “list” is new, HEAPO
reserves a fraction of the persistent heap for “list.” At this phase, the persistent page
has not been allocated yet. The persistent node is allocated to the persistent object
by calling heapo_malloc(). Once the application is done with accessing the persistent
object, it detaches the persistent object from its name space, heapo_unmap(). In this
code, memory leak may occur if the system crashes after the call to heapo_malloc but
before the memory is passed on heapo_set_prime_node. The cause for this problem is
that it does not have any crash recovery handling feature in it. This problem can be
resolved if we use heapo_kv_insert() of H-KVLib.

6. PERFORMANCE EXPERIMENTS

We implemented HEAPO on Linux 2.6.32 (64bit). All experiments were performed
on an AMD Phenom X4 925 Processor (2.8GHz) and 12GB DDR3 DRAM. Berkeley
DB (v. 5.1.29) [Olson et al. 1999], Memcachedb 1.2.0 [Chu 2008], libevent (v2.0.11),
and libmemcached (v1.0.16) were used. For comparison with mmap with ramdisk, we
formatted 10GByte ramdisk with EXT4. We enabled logging functionality of BDB to
compare with minimal logging of HEAPO. All of the BDB file was stored in ramdisk.

The performance experiment encompasses six themes. First, we examined the lookup
latency of name space. Second, we examined the overhead of creating, attaching, and
expanding an object. Third, we examined, in detail, the overhead of metadata redun-
dancy and of remapping involved in object expansion. Fourth, we developed a key-value
library with HEAPO and compared the performance of database operations of the
HEAPO-enabled key-value library with that of the Berkeley DB. Fifth, we examined
the performance of Memcachedb to compare application-level performance. Sixth, we
examined the lookup performance of the key-value library under absolute and relative
address mode.

6.1. Name Space Lookup

We examined the name space lookup performance among HEAPO, EXT2, and EXT4.
EXT2 and EXT4 adopt a linked list [Cao et al. 2005] and a B-Tree [Mathur et al. 2007],
respectively, to organize the name space on disk. HEAPO adopts burst trie to organize
in-memory structure of name space. We allocated 10GByte ramdisk and formatted it
with the EXT2 and EXT4 to test the name space lookup performance. We inserted 1,000
entries into the directory and examined the time for directory lookup. Table III shows
the average lookup latency of 1,000 name entries. HEAPO is 5.2× and 7.6× faster than
EXT2 and EXT4, respectively, in searching the directory entry.

6.2. Metadata Operation

We examined the performance of metadata operation for different methods to realize
persistent heap: HEAPO versus mmap() over ramdisk. We examined four operations:
(i) create an object, (ii) attach an object (which corresponds to opening and mapping an
object), (iii) expand an object, and (iv) shrink an object.

In HEAPO, creating a persistent object involves creating metadata and allocating
page table entry. In mmap() over ramdisk, creating a persistent object entails creating
a file and mmapping the file into the process’ address space. File creation is a heavy
process. It involves allocation and initialization of on-disk metadata, as well as its
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Fig. 14. Metadata operations: create, attach, expand (cluster allocation), and shrink (cluster free) in HEAPO
and mmap() over ramdisk.

in-core counterpart, and updating the filesystem superblock and various bitmaps. For
creating and attaching a persistent object, HEAPO is 1.3× and 4.5× faster than a
memory-mapped file approach, respectively. In these tests, we assume that in-core
metadata is already available in memory.

In mmap() over ramdisk, attaching a persistent object consists of opening the file that
represents the persistent object and mapping the file into the process’ virtual address
space. Opening a file requires the operating system to read the file metadata from the
filesystem and to initialize the in-core version of the metadata. In HEAPO, expansion
of a persistent object involves allocating a virtual memory. In the memory-mapped
file approach, expanding and shrinking an object eventually require the invocation
of write() or truncate() system calls. A more serious issue is that in the memory-
mapped file approach, a persistent object may fail to expand when the page frame that
needs to be allocated for expansion has already been allocated.1 If this happens, the
respective persistent object needs to be unmapped and remapped to a different area in
the virtual address space, and all the references need to be recomputed. Expanding and
shrinking a persistent object are 3.8× and 2× faster, respectively, in HEAPO than in
mmap() over ramdisk. Figure 14 summarizes the performance result of four operations:
create, attach, expand, and shrink.

When an in-core copy of the metadata does not exist, the memory-mapped file ap-
proach first initializes the metadata and attaches it to the virtual address space. We
examined the performance of attach and expand (allocate cluster) operations which
accompany creating in-core metadata. Figure 15 illustrates the results. Attaching and
expanding a persistent object are 12.7× and 4.8× faster, respectively, in HEAPO than
in the memory-mapped file approach when in-core metadata needs to be created.

6.3. H-KVLib Versus Berkeley DB

We compared the performance of key-value operations of H-KVLib with that of Berke-
leyDB. Berkeley DB uses files to manage the key-value store in a persistent manner.
We inserted 1 million key-value pairs. The key and the value are 16 and 512 bytes,
respectively. Figure 16 illustrates the results of the experiment. In a B-Tree-based
key-value store, the H-KVLib is 1.4× to 3.6× faster than BerkeleyDB. In a hash table-
based key-value store, the HEAPO-based key-value library is 5.9× to 18.1× faster than
BerkeleyDB.

We examined the size of logs written for key-value operations in KVlib and Berke-
leyDB. Table IV illustrates the log size of HEAPO and Berkeley DB for insert, delete,

1In ramdisk, a file needs to be allocated consecutive pages.
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Fig. 15. Additional overhead of memory mapped file.

Fig. 16. Performance comparison between BDB and HEAPO. “I.,” “L.,” “D.,” and “U.” denote insert, lookup,
delete, and update, respectively.

Table IV. Log Size (MByte) of BDB and HEAPO

B-Tree Hash Table
BDB HEAPO BDB HEAPO

Insert 1,510 150.8 4,410 7.6
Delete 760 86.5 1,440 15.3
Update 1,500 150.4 3,960 11.4

and update operations. Berkeley DB records the state of the database before and after
the update operation. Unlike Berkeley DB that records pre and post state, HEAPO
records merely the old value of 8byte pointer fields. In B-Tree, Berkeley DB generates
8.8× to 10× more logs than HEAPO does. In the hash table, Berkeley DB generates
94.4× to 578× more logs than HEAPO does.

6.4. Memcachedb Performance

Memcachedb is a key-value store using BerkeleyDB (BDB). We modified Memcachedb
to adopt H-KVLib and compared the performance of Memcachedb under two different
key-value storage engines. Figure 17 illustrates the result. We inserted one million
key value pairs in the key-value store and measured the performance. We inserted one
delete operation for every four insert operations. We examined the BDB performance
for both synchronous and asynchronous operations. Memcachedb server and client are
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Fig. 17. Memcached with BDB versus Memcached with HEAPO.

on the same machine to minimize network interference. The sizes of the key and value
are 16 and 512byte, respectively. In the B-Tree and hash table, HEAPO is 1.8× and
3.4× faster, respectively, than BDB. The performance gain of HEAPO becomes more
significant in the hash table-based key-value store.

6.5. Static Binding versus Dynamic Binding

We examined the overhead of address computation in static binding and dynamic
binding. HEAPO adopts static binding and, therefore, it does not entail the relocation
and the pointer resolution overhead. Dynamic binding [Coburn et al. 2011] incurs
address relocation overhead. We performed a lookup operation to B-tree and to a linked
list with 5 million and 50,000 key-value pairs, respectively. In traversing the linked
list, static binding brings 8.4% performance gain against dynamic binding.

7. RELATED WORK

The notion of persistency was proposed by Atkinson in 1981 [Dearle et al. 1992]. The
idea of managing both primary storage (RAM) and secondary storage (disk) as a single
unified storage component has been discussed for more than three decades under the
term single-level store [Moss 1990; Shekita and Zwilling 1990].

NV-Heaps [Coburn et al. 2011] guarantees referential integrity between persistent
and nonpersistent objects. Mnemosyne [Volos et al. 2011] provides consistency of data
through software transactional memory. Mnemosyne supports word-based transac-
tions, while NV-Heaps supports node-based transactions. Consistent and Durable Data
Structures (CDDS) [Venkataraman et al. 2011] provides versioning instead of logging
to support consistency of data structures such as B-Tree. HEAPO uses minimal undo
logging for atomicity and durability and lock primitive for consistency. SoftPM [Guerra
et al. 2012] constructs a persistent object store without including NVRAM in the sys-
tem. It minimizes the number of lines of modified code required for persistency by
allowing users to use a legacy programming interface. However, in SoftPM, explicit
conversion entails extra memory copy overhead. Moraru et al. [2011] proposed pro-
tecting persistent data from wearout or corruption from NVRAM by using a virtual
memory protection mechanism and a cache line counter. NVMalloc [Wang et al. 2012]
proposes a library-level system for persistency of data that can operate on nonvolatile
memory devices, such as solid-state disks (SSDs).

BPFS [Condit et al. 2009] provides atomic, fine-grained updates to NVRAM through
short-circuit shadow paging. SCMFS [Wu and Reddy 2011] locates filesystem space into
kernel space and then manages it by reusing the memory management module of the
operating system for main memory. FRASH [Jung et al. 2010], Conquest [Wang et al.
2006], and LiFS [Ames et al. 2006] store metadata of the file system into NVRAM, thus
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reducing the access time to in-memory metadata. Object-based FS [Kang et al. 2011] is
a filesystem that accesses storage at the granularity of objects, not blocks. Volos et al.
[Volos and Swift 2011] proposed a library-level filesystem that allows the user to access
files on NVRAM in user mode. We carefully argue that the file system-based approach
fits a relatively slower speed NVRAM device, for example, PCRAM owing to its system
call overhead and redundant metadata. These approaches hardly fit our target device
which exhibits DRAM-like access latency.

WSP [Narayanan and Hodson 2012] makes a system that facilitates NVRAM as
main memory persistent by using residual energy through a flush-on-fail mechanism.
With the special hardware used by WSP, the system does not require any consistency
mechanism such as logging or transactional memory. HEAPO uses a software-based
approach, clflush and mfence, for ordering guarantee.

8. CONCLUSION

The objective of this work is to develop a software layer that allows NVRAM to be
seamlessly integrated with the existing computer system hierarchy and that can fully
exploit the physical characteristics of the new memory device. One of the important
constraints of the new software layer is that it should be native. HEAPO is designed to
fully exploit the byte addressability and nonvolatility of the new memory device. The
persistency mechanism of HEAPO does not rely on existing filesystem service. HEAPO
defines its own persistent heap layout, persistent object, and name space structure,
along with the comprehensive set of interfaces that manages them. We show that the
HEAPO native persistent heap management module surpasses existing methods in
performance. HEAPO offers an easy and versatile method for writing applications that
fully exploit the physical characteristics of byte-addressable NVRAM.
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