
24

Bringing Order to Chaos: Barrier-Enabled I/O Stack

for Flash Storage

YOUJIP WON and JOONTAEK OH, Hanyang University, Korea

JAEMIN JUNG, Texas A&M University, USA

GYEONGYEOL CHOI and SEONGBAE SON, Hanyang University, Korea

JOOYOUNG HWANG and SANGYEUN CHO, Samsung Electronics, Korea

This work is dedicated to eliminating the overhead required for guaranteeing the storage order in the modern

IO stack. The existing block device adopts a prohibitively expensive approach in ensuring the storage order

among write requests: interleaving the write requests with Transfer-and-Flush. For exploiting the cache bar-

rier command for flash storage, we overhaul the IO scheduler, the dispatch module, and the filesystem so that

these layers are orchestrated to preserve the ordering condition imposed by the application with which the

associated data blocks are made durable. The key ingredients of Barrier-Enabled IO stack are Epoch-based

IO scheduling, Order-Preserving Dispatch, and Dual-Mode Journaling. Barrier-enabled IO stack can control the

storage order without Transfer-and-Flush overhead. We implement the barrier-enabled IO stack in server as

well as in mobile platforms. SQLite performance increases by 270% and 75%, in server and in smartphone,

respectively. In a server storage, BarrierFS brings as much as by 43× and by 73× performance gain in MySQL

and SQLite, respectively, against EXT4 via relaxing the durability of a transaction.

CCS Concepts: • Software and its engineering → File systems management;

Additional Key Words and Phrases: Filesystem, storage, block device, linux

ACM Reference format:

Youjip Won, Joontaek Oh, Jaemin Jung, Gyeongyeol Choi, Seongbae Son, Jooyoung Hwang, and Sangyeun

Cho. 2018. Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage. ACM Trans. Storage 14, 3,

Article 24 (October 2018), 29 pages.

https://doi.org/10.1145/3242091

1 MOTIVATION

The modern Linux IO stack is a collection of the arbitration layers; the IO scheduler, the command
queue manager, and the writeback cache manager shuffle the incoming requests at their own dis-
posal before passing them to the next layers. Despite the compound uncertainties from the multiple

This work was done while Jaemin Jung was a graduate student at Hanyang University.

This work is funded by Basic Research Lab Program (NRF, No. 2017R1A4A1015498), the BK21 plus (NRF), ICT R&D pro-

gram (IITP, R7117-16-0232) and Future OS project (IITP, No. 2018-0-00549).

Authors’ addresses: Y. Won, J. Oh (Corresponding author), G. Choi, and S. Son, Hanyang University, Seoul, Korea; emails:

{yjwon, na94jun, chl4651, afireguy}@hanyang.ac.kr; J. Jung, Texas A&M University, College Station, TX, USA; email:

jmjung@tamu.edu; J. Hwang and J. S. Cho, Samsung Electronics, Suwon, Korea; emails: {jooyoung.hwang, sangyeun.

cho}@samsung.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1553-3077/2018/10-ART24 $15.00

https://doi.org/10.1145/3242091

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

https://doi.org/10.1145/3242091
mailto:permissions@acm.org
https://doi.org/10.1145/3242091

24:2 Y. Won et al.

Fig. 1. Ordered write vs. Orderless write, Except “HDD,” all are flash storages; A: (1ch)/eMMC5.0, B:
(1ch)/UFS2.0, C: (8ch)/SATA3.0, D: (8ch)/NVMe, E: (8ch)/SATA3.0 (supercap), F: (8ch)/PCIe, G: (32ch) Flash
array, The number next to each point is the IOPS of write() followed by fdatasync().

layers of arbitration, it is essential for the software writers to enforce a certain order in which the
data blocks are reflected to the storage surface, storage order, in many cases such as in guaranteeing
the durability and the atomicity of a database transaction [26, 35, 47], in filesystem journaling [2,
41, 66, 69], in soft-update [42, 63], or in copy-on-write or log-structure filesystems [31, 35, 60,
61]. Enforcing a storage order is being achieved by an extremely expensive approach: Dispatching
the following request only after the data block associated with the preceding request is completely
transferred to the storage device and is made durable. We call this mechanism a Transfer-and-Flush.
For decades, interleaving the write requests with a Transfer-and-Flush has been the fundamental
principle to guarantee the storage order in a set of requests [14, 23].

We observe a phenomenal increase in the performance and the capacity of the flash storage.
The performance increase owes much to the concurrency and the parallelism in the Flash stor-
age, e.g., the multi-channel/way controller [4, 75], the large size storage cache [48], and the deep
command queue [17, 27, 74]. A state-of-the-art NVMe SSD reportedly exhibits up to 750 KIOPS
random read performance [74]. It is nearly 4,000× of a HDD’s performance. The capacity increase
is due to the adoption of the finer manufacturing process (sub-10 nm) [24, 36], and the multi-bits
per cell (MLC, TLC, and QLC) [3, 9]. Despite these splendid advancements, the time to program a
Flash cell has barely improved and is even deteriorating in some cases [21]. As the Flash device is
manufactured with a finer manufacturing process or as a Flash cell needs to represent the larger
number of bits, the Flash controller has to spend more time to detect the minor variance in the
voltage level of the cell or to program a Flash cell to a desired voltage level.

The Transfer-and-Flush-based order-preserving mechanism does not align well with the par-
allelism and the concurrency in the modern flash storage. The Transfer-and-Flush-based order-
preserving mechanism neutralizes the parallelism and the concurrency feature of the flash storage.
It also exposes the raw Flash cell programming latency to the host. The overhead of the Transfer-
and-Flush mechanism will become more significant as the flash storage employs a higher degree
of parallelism and the denser Flash device. Figure 1 illustrates an important trend. We measure the
sustained throughput of orderless random write (plain buffered write) and the ordered random
write in EXT4 filesystem. To enforce the order among the writes, each write request is followed
by fdatasync() in the ordered random write workload. The X-axis denotes the throughput of
orderless write that corresponds to the rate at which the storage device services the write requests
at its full throttle. This usually matches the vendor published performance of the storage device.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:3

The number next to each point denotes the sustained throughput of the ordered write. The Y-axis
denotes the ratio between the two. In a single-channel mobile storage for smartphone (SSD A),
the performance of ordered write is 20% of that of unordered write (1351 IOPS vs. 7000 IOPS). In
a 32 channel Flash array (SSD G), this ratio decreases to 1% (2296 IOPS vs. 230K IOPS). In SSD
with supercap (SSD E), the ordered write performance is 25% of that of the unordered write. the
flash storage uses supercap to hide the flush latency from the host. Even in a flash storage with
supercap, the overhead of Transfer-and-Flush is significant.

Many researchers have attempted to address the overhead of storage order guarantee. The tech-
niques deployed in the production platforms include non-volatile writeback cache at the flash stor-
age [22], no-barrier mount option at the EXT4 filesystem [13], and transactional checksum [32,
56, 64]. Efforts such as transactional filesystem [16, 35, 50, 54, 70] and transactional block device
[30, 43, 52, 72, 76] save the application from the overhead of enforcing the storage order associated
with filesystem journaling. A school of works addresses more fundamental aspects in controlling
the storage order, such as separating the ordering guarantee from durability guarantee [7], pro-
viding a programming model to define the ordering dependency among the set of writes [19], and
persisting a data block only when the result needs to be externally visible [49]. Despite their el-
egance, these works rely on Transfer-and-Flush when it is required to enforce the storage order.
OptFS [7] relies on Transfer-and-Flush in enforcing the order between the journal commit and the
associated checkpoint. Featherstitch [19] relies on Transfer-and-Flush to implement the ordering
dependency between the patchgroups.

In this work, we revisit the issue of eliminating the Transfer-and-Flush overhead in the modern
IO stack. We develop a Barrier-Enabled IO stack, in which the filesystem can issue the following
request before the preceding request is serviced, and yet the IO stack can enforce the storage order
between them. The barrier-enabled IO stack consists of the cache barrier-aware storage device, the
order-preserving block device layer, and the barrier enabled filesystem. For cache barrier-aware
storage device, we exploit the “cache barrier” command [28]. The barrier-enabled IO stack is built
on the foundation that the host can control a certain partial order in which the cache contents
are flushed. The “cache barrier” command precisely serves this purpose. For the order-preserving
block device layer, the command dispatch mechanism and the IO scheduler are overhauled so that
the block device layer ensures that the IO requests from the filesystem are serviced preserving
a certain partial order. For the barrier-enabled filesystem, we define new interfaces, fbarrier()
and fdatabarrier(), to separate the ordering guarantee from the durability guarantee. They are
similar to fsync() and fdatasync(), respectively, except that they return without waiting for the
associated blocks to become durable. We modify EXT4 for the order-preserving block device layer.
We develop dual-mode journaling for the order-preserving block device. Based on the dual-mode
journaling, we newly implement fbarrier() and fdatabarrier() and rewrite fsync().

Barrier-enabled IO stack removes the flush overhead as well as the transfer overhead in en-
forcing the storage order. While large body of the works have focused on eliminating the flush
overhead, few works have addressed the overhead of DMA transfer to enforce the storage order.
The benefits of the barrier-enabled IO stack include the following;

• The application can control the storage order virtually without any overheads, including
the flush overhead, DMA transfer overhead, and context switch.

• The latency of a journal commit decreases significantly. The journaling module can enforce
the storage order between the journal logs and the journal commit block without interleav-
ing them with flush or with DMA transfer.

• Throughput of the filesystem journaling improves significantly. The dual-mode journaling
commits the multiple transactions concurrently and yet can guarantee the durability of the
individual journal commits.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:4 Y. Won et al.

By eliminating the Transfer-and-Flush overhead, the barrier-enabled IO stack successfully exploits
the concurrency and the parallelism in modern flash storage. Relaxing the durability of a trans-
action, SQLite performance and MySQL performance increase as much as by 73× and by 43×,
respectively, in server storage.

The rest of the article is organized as follows. Section 2 explains the background. Section 3
explains the order-preserving block device layer. Section 4 describes the BarrierFS. BarrierFS is
the variant of EXT4 that is tailored for order-preserving block device. Section 5 describes the im-
plication of barrier-enabled IO stack over the applications. Section 6 presents the result of the
experiment. Section 7 summarizes the preceding works. Section 8 concludes the article.

2 BACKGROUND

2.1 Orders in the IO Stack

A write request travels a complicated route until the data blocks reach the storage surface. The
filesystem puts the request to the IO scheduler queue. The block device driver removes one or
more requests from the queue and constructs a command. It probes the device and dispatches the
command if the device is available. The device is available if the command queue is not full. The
storage controller inserts the incoming command at the command queue. The storage controller
removes the command from the command queue and services it (i.e., transfers the associated data
block between the host and the storage). When the transfer finishes, the device signals the host.
The contents of the writeback cache are committed to the storage surface either periodically or by
an explicit request from the host.

We define four types of orders in the IO stack; Issue Order, I; Dispatch Order,D; Transfer Order,
X; and Persist Order,P. The issue orderI = {i1, i2, . . . , in } is a set of write requests issued by the file
system. The subscript denotes the order in which the requests enter the IO scheduler. The dispatch
order D = {d1,d2, . . . ,dn } denotes a set of the write requests dispatched to the storage device.
The subscript denotes the order in which the requests leave the IO scheduler. The transfer order,
X = {x1,x2, . . . ,xn }, is the set of transfer completions. The persist order, P = {p1,p2, . . . ,pn }, is a
set of operations that make the data blocks in the writeback cache durable. We say that a partial
order is preserved if the relative position of the requests against a designated request, barrier, are
preserved between two different types of orders. We use the notation “=” to denote that a partial
order is preserved. The partial orders between the different types of orders may not coincide due
to the following reasons.

• I � D. The order in which a filesystem issues are set of requests is not aligned with the
order in which they are dipatched to the storage device. The IO scheduler reorders and coa-
lesces the IO requests subject to the scheduling principle, e.g., CFQ, DEADLINE, and so on.
Some scheduler services the incoming requests in FIFO manner, e.g., NO-OP scheduler [1].
Some of the modern IO subsystem such as NVMe [11] interface eliminates the scheduling
layer to minimize the unnecessary processing overhead.

• D � X. The order in which the commands are dispatched to the storage device is not aligned
with the order in which the storage controller services them. The storage controller removes
the command from the head of the command queue and services it. However, the storage
controller can freely insert a command anywhere at the command queue subject to the
priority of the command. The details of the command insertion algorithm is vendor specific
and is unknown to the public. In addition, the commands can be serviced in out-of-order
manner due to the errors, the time-outs, and the retry.

• X � P. The order in which the data blocks in the storage’s writeback cache reach the stor-
age service is different from the order in which the data blocks are transferred. There are

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:5

Fig. 2. IO stack organization.

a number of reasons for this discordance. The writeback cache of the storage is not FIFO.
The victim selection algorithm of the writeback cache manager controls the persist order.
The physical nature of the Flash device adds another dimension of uncertainty in persist
order. In flash storage, the order in which the Flash pages are programmed and the order in
which the associated mapping table entries are updated may not coincide. A persist order
is governed not by the order in which the data blocks are programmed at the destination
Flash pages but by the order in which the associated mapping table entries are updated.

Due to all these sources of uncertainties, the modern IO stack is said to be orderless [6].

2.2 Transfer-and-Flush

Enforcing a storage order corresponds to preserving a partial order between the order in which
the filesystem issues the requests, I, and the order in which the associated data blocks are made
durable, P. It is equivalent to collectively enforcing the partial orders between the pair of the
orders in the adjacent layers in Figure 2. It can be formally represented as in Equation (1),

(I = P) ≡ (I = D) ∧ (D = X) ∧ (X = P). (1)

The modern IO stack has evolved under the assumption that the host cannot control the persist
order, i.e., X � P. The constraint that the host cannot control the persist order is a fundamental
limitation in modern IO stack design. Due to the constraint ofX � P, Equation (1) is unsatisfiable.
This assumption stems from the physical characteristics of the rotating media. For rotating media
such as HDDs, a persist order is governed by disk scheduling algorithm. The disk scheduling is
entirely left to the storage controller due to its complicated sector geometry that is hidden from
outside [20]. When the host blindly enforces a certain persist order in which a set of data blocks
in the writeback cache are persisted, the host may experience anomalous delay in IO service.

The block device layer adopts the indirect and the expensive approach to control the storage
order in spite of the constraint X � P. First, after dispatching the write command to the storage
device, the caller postpones dispatching the following command until the preceding command is
serviced, i.e., until the associated DMA transfer completes. We refer to this mechanism as Wait-

on-Transfer. Wait-on-Transfer mechanism ensures that the commands are serviced in order and
to satisfyD = X. Wait-on-Transfer is expensive; it blocks the caller and interleaves the preceding
request and the following request with the latency of DMA transfer. Second, when the caller is
notified that the preceding command has been completed, the caller issues the flush command.
The caller issues the following command only after the flush command returns. This is to ensure
that the associated data blocks are persisted in order. This is to satisfy X = P. We refer to this
mechanism as Wait-on-Flush. The modern block device layer uses Wait-on-Transfer and Wait-on-
Flush in pair when it needs to enforce the storage order between the write requests. We call this
mechanism as Transfer-and-Flush.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:6 Y. Won et al.

Fig. 3. DMA, flush, and context switches in fsync(), “D,” “JC,” and “JC” denote the DMA transfer time for
D, JD and JC , respectively. “Flush” denotes the time to service the flush request.

The cost of Transfer-and-Flush is prohibitive. It disarms the internal parallelism of the flash
storage controller, stalls the command queue, and exposes the caller to DMA transfer and raw cell
programming delays.

2.3 Analysis: fsync() in EXT4

We examine how the EXT4 filesystem controls the storage order in an fsync(). In Ordered jour-
naling mode (default), the journaling module guarantees that the data blocks are persisted before
the journal transaction does. fsync() accounts for dominant fraction of IO’s in popular workloads,
e.g., OLTP [34], smartphone [26, 65], or mail server [73].

Figure 3 illustrates the behavior of an fsync(). The filesystem issues the write requests for a
set of dirty pages, D. D may consist of the data blocks from different files. After issuing the write
requests, the application thread blocks waiting for the completion of the associated DMA transfer.
When the DMA transfer is completed, the application thread resumes and triggers the JBD thread
to commit the journal transaction. After triggering the JBD thread, the application thread sleeps
again. When the JBD thread makes journal transaction durable, the fsync() returns. It should be
emphasized that the application thread triggers the JBD thread only after D is transferred. Other-
wise, the storage controller may service the write request for D and the write requests for journal
commit in an out-of-order manner, and the journal transaction may become durable prematurely
before D is transferred.

A journal transaction is usually committed using two write requests: one for writing the co-
alesced chunk of the journal descriptor block and the log blocks and the other for writing the
commit block. In the rest of the article, we will use JD and JC to denote the coalesced chunk of the
journal descriptor block and the log blocks, and the commit block, respectively. In committing a
journal transaction, JBD needs to enforce the storage orders in two relations: within a transaction
and between the transactions. Within a transaction, JBD needs to ensure that JD is made durable
ahead of JC . Between the journal transactions, JBD has to ensure that journal transactions are
made durable in order. When either of the two conditions are violated, the file system may recover
incorrectly in case of unexpected failure [7, 69]. For the storage order within a transaction, JBD in-
terleaves the write request for JD and the write request for JC with Transfer-and-Flush. In EXT4,
the transactions are guaranteed to be made durable in order, since the filesystem journaling is serial
operation; the filesystem commits the following transaction only after the preceding transaction
becomes durable. JBD uses Transfer-and-Flush mechanism in enforcing both intra-transaction and
inter-transaction storage order.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:7

An fsync() can be represented as in Equation (2). D, JD and JC denote the write request for
D, JD and JC , respectively. “xfer” and “flush” denote Wait-on-Transfer and Wait-on-Flush, respec-
tively. The host issues a write request for D and waits for DMA transfer completion. Once the
DMA completes, it dispatches the write request for JD and waits for DMA transfer completion
again. When the DMA completes, it sends the flush command. When the flush command returns,
the host issues the write request for JC and waits for DMA completion. When the DMA transfer
completes, the host issues a flush command to the storage device. In Equation (2), the first flush
is to control the storage order between {D, JD} and JC . The second flush is to control the storage
order among the transactions,

D → xfer→ JD → xfer→ flush→ JC → xfer→ flush
︸������������������������������︷︷������������������������������︸

REQ_FLUSH|REQ_FUA

. (2)

In earlier days of Linux, the block device layer explicitly issued a flush command in commit-
ting a journal transaction (Figure 3) [13]. The flush command blocks not only the caller but also
the other requests in the same dispatch queue, since the block layer has to wait until the flush
command returns. Since Linux 2.6.37, the filesystem (JBD) resorts to implicitly issues a flush com-
mand [14]. The kernel community defines new flags, REQ_FUA and REQ_FLUSH. In writing JC , JBD
tags the write request for JC with REQ_FLUSH and REQ_FUA flags. When the write request has the
REQ_FLUSH flag set, the storage controller flushes the writeback cache before servicing the com-
mand. When the write request has REQ_FUA flag set, the storage controller persists the associated
data block directly to storage surface bypassing the writeback cache. The reasonably capable device
supports these flags. The block layer can dispatch the following write command without waiting
for the completion of the preceding write command. When the filesystem, i.e., the JBD thread, uses
REQ_FLUSH and REQ_FUA flags in writing JC , only the JBD thread blocks to make JC durable and
the other threads that share the dispatch queue can proceed. When the filesystem uses REQ_FLUSH
and REQ_FUA flags in writing JC , the fsync() can be represented as in Equation (3). The last four
terms in Equation (2) is replaced with a single write command with REQ_FLUSH|REQ_FUA flag in
Equation (3),

D → xfer→ JD → xfer→ JCREQ_FLUSH | REQ_FUA. (3)

The fundamental principle that drives the evolution from Equation (2) to Equation (3) is simple:
to make the storage device more capable. In Equation (3), the storage device is made to handle
REQ_FUA flag and REQ_FLUSH flag. Exploiting this feature, the host side IO stack is relieved from
the burden of explicitly issuing the flush command. Our effort can be thought as a continuation
to this evolutionary path of the modern IO stack. We make the storage device more capable; we
make the storage device to support cache barrier command. Then, we offload the responsibility of
enforcing the persist order to the storage device. We mitigate the Transfer-and-Flush overhead by
redesigning the host side IO stack exploiting the barrier feature at the storage device.

3 ORDER-PRESERVING BLOCK DEVICE LAYER

3.1 Design

The order-preserving block device layer consists of the newly defined barrier write command,
the order-preserving dispatch module, and the Epoch-based IO scheduler. We overhaul the IO
scheduler, the dispatch module, and the write command so that they can preserve the partial order
between the different types of orders, I = D, D = X, and X = P, respectively. Order-preserving
dispatch module eliminates the Wait-on-Transfer overhead and the newly defined barrier write
command eliminates the Wait-on-Flush overhead. They collectively together preserve the partial
order between the issue order I and the persist order P without Transfer-and-Flush.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:8 Y. Won et al.

Fig. 4. Organization of the barrier-enabled IO stack.

The order-preserving block device layer categorizes the write requests into two types, orderless

write and order-preserving write. The order-preserving requests are the ones that are subject to the
storage ordering constraint. The orderless requests are the ones that are irrelevant to the ordering
constraint and that can be scheduled freely. The order preserving block device layer separates
the two to avoid imposing unnecessary ordering constraint in scheduling the requests. Let us
provide an example. When the JBD thread commits a journal transaction, the block device layer
needs to enforce the storage order between the journal logs and the journal commit block. When
the pdflush flushes the dirty page cache entries, the block layer does not have to enforce the
storage order among the write requests triggered by pdflush. The write requests for committing
a filesystem journal transaction and the write requests triggered by pdflush can be interleaved
with each other entering the block device layer. The proposed order-preserving block device layer
imposes the ordering constraint only to the write requests for committing a journal transaction
while leaving the requests originated by pdflush freely scheduled.

We refer to a set of the order-preserving requests that can be reordered with each other as an
epoch [12]. We define a special type of order-preserving write as a barrier write. A barrier write is
used to delimit an epoch. We introduce two new attributes, REQ_ORDERED and REQ_BARRIER, for a
write request. For an order-preserving write, the associated bio object and the associated request
object have REQ_ORDERED attribute. For a barrier write request, the associated bio object and the
associated request object have both REQ_ORDERED attribute and REQ_BARRIER attribute. The IO
scheduler and the dispatch module of the order-preserving block device layer handle the order-
preserving request and the orderless request differently. The details are to be explained shortly.
Figure 4 illustrates the organization of Barrier-Enabled IO stack.

3.2 Barrier Write, the Command

The “cache barrier,” or “barrier” for short, command is defined in the standard command set for
mobile flash storage [28]. With a barrier command, the host can control the persist order without
explicitly invoking the cache flush. When the storage controller receives the barrier command, the
controller guarantees that the data blocks transferred before the barrier command becomes durable
after the ones that follow the barrier command do. A few eMMC products in the market support
cache barrier command [25, 67]. The barrier command is the boon to the modern IO stack. The
barrier command satisfies the condition X = P in Equation (1), which has been unsatisfiable for
the several decades due to the mechanical characteristics of the rotating media. The naive way of
using the barrier command is to replace the existing flush operation [68]. This simple replacement
saves the caller from the latency of the flush operation in the Transfer-and-Flush overhead. How-
ever, the caller is still subject to Wait-on-Transfer overhead to enforce the storage order.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:9

Implementing a barrier as a separate command occupies one entry in the command queue and
costs the host the latency of dispatching a command. To avoid this overhead, we define a barrier
as a command flag. We designate one unused bit in the SCSI command for a barrier flag. We set
the barrier flag of the write command to make itself a barrier write. When the storage controller
receives a barrier write command, it services the barrier write command as if the barrier command
has arrived immediately following the associated write command. With reasonable complexity,
flash storage can be made to support a barrier write command [30, 39, 57]. When flash storage
has Power Loss Protection (PLP) feature, e.g., a supercapacitor or non-volatile RAM for writeback
cache, the writeback cache contents are guaranteed to be durable. The storage controller can flush
the writeback cache fully utilizing its parallelism and yet can guarantee the persist order. In flash
storage with PLP, we expect that the performance overhead of the barrier write is insignificant.

For the devices without PLP, the barrier write command can be supported in three ways: in-
order writeback, transactional writeback, or in-order recovery. In in-order writeback, the storage
controller flushes the data blocks in epoch granularity. The amount of data blocks in an epoch may
not be large enough to fully utilize the parallelism of the Flash storage. The in-order writeback
style of the barrier write implementation can bring the performance degradation in cache flush.
In transactional writeback, the storage controller flushes the writeback cache contents as a single
unit [39, 57]. Since all epochs in the writeback cache are flushed together, the persist order imposed
by the barrier command is satisfied. The transactional writeback can be implemented without any
performance overhead if the controller exploits the spare area of the Flash page to represent a set
of pages in a transaction [57]. The in-order recovery method relies on a crash recovery routine to
control the persist order. High-performance SSD is loaded with the multiple controller cores. Each
of these cores may be assigned an exclusive set of Flash dies to handle and the multiple controller
cores can concurrently write the data blocks across the multiple Flash packages. For multi-core
multi-channel high performance SSD, one may have to use sophisticated crash recovery protocol
such as ARIES [46] to recover the storage to consistent state in case of unexpected system failure.
For embedded flash storage such as flash storage for smartphones, the flash storage has only single
core with one or two channels. In this storage, the controller can treat the entire flash storage as a
single log device. The Flash controller can use simple crash recovery algorithm used in LFS [61].
Since the persist order is enforced when the system recovers from the crash, the storage controller
can flush the writeback cache fully utilizing its internal parallelism such as multiple channels and
multiple ways as if there is no ordering dependency. The controller is saved from performance
penalty at the cost of complexity in the recovery routine.

In this work, we modify the firmware of the UFS storage device to support the barrier write
command. We adopt a simple LFS style in-order recovery scheme. The modified firmware is loaded
at the commercial UFS product of the Galaxy S6 smartphone.1 The modified firmware treats the
entire storage device as a single log structured device. The FTL of the UFS storage maintains an
active segment in memory. FTL appends incoming data blocks to the active segment in the order
in which they are transferred. When an active segment becomes full, the controller stripes the
active segment across the multiple Flash chips in log-structured manner. Here, the persist order is
preserved. The recovery routine works as follows. When the system crashes, the UFS controller
locates the beginning of the most recently flushed segment in the recovery phase. It scans the
pages in the most recently flushed segment from the beginning until it encounters the page that
has not been programmed successfully. The storage controller discards the rest of the pages in the
segment including the incomplete one.

1Some of the authors are firmware engineers at Samsung Electronics and have an access to the FTL firmware of flash

storage products.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:10 Y. Won et al.

Developing a barrier-enabled SSD controller is an engineering exercise. It is governed by a num-
ber of design choices and should be addressed in a separate context. In this work, we demonstrate
that the performance benefit achieved by the barrier command well deserves its complexity if the
host side IO stack can properly exploit it.

3.3 Order-Preserving Dispatch

Order-preserving dispatch is a fundamental innovation in this work. In order-preserving dispatch,
the block device layer dispatches the following command immediately after it dispatches the pre-
ceding one (Figure 6). The host dispatches the following command without waiting for the comple-
tion of the preceding command and yet the order-preserving dispatch mechanism enables the host
to ensure that the two commands are serviced in order. We refer to this mechanism as Wait-on-

Dispatch. The order-preserving dispatch is to satisfy the conditionD = X in Equation (1) without
Wait-on-Transfer overhead.

The dispatch module constructs a command from one or more requests. The dispatch module
treats the order-preserving write and the orderless write differently. The order-preserving dispatch
module constructs the barrier write command when it encounters the barrier write request, i.e., the
write request with barrier bit set. For the other requests, the order-preserving dispatch module
constructs the command as the legacy dispatch module used to do.

Despite the profound implication of order-preserving dispatch, implementing an order-
preserving dispatch is simple and straightforward: The block device driver sets the priority of
a barrier write command as ordered. Then, the SCSI compliant storage device services the com-
mand satisfying the ordering constraint. Simply by setting the priority of a barrier write command
to ordered, the dispatch module naturally becomes an order-preserving one. The following is the
reason behind the scene. SCSI standard defines three command priority levels: head of the queue,
ordered, and simple [59]. For the head of the queue priority command, the storage controller places
it at the head of the command queue. For the command with ordered priority, the storage controller
places it at the tail of the command queue. For the command with simple priority, the controller
determines the position of the command at its disposal. The command with simple priority cannot
be inserted in front of the existing ordered or head of the queue command. The default priority is
simple. Exploiting the command priority of existing SCSI interface, the order-preserving dispatch
module ensures that the barrier write is serviced only after the existing requests in the command
queue are serviced and before any of the commands that follow the barrier write are serviced.

The storage device can temporarily be unavailable or the caller can be switched out involuntarily
after dispatching a write request. Then, the dispatch module needs to retry the command. The
order-preserving dispatch module uses the same error handling routine of the existing block device
driver; the kernel daemon inherits the task and retries the failed command after a certain time
interval, e.g., 3ms for SCSI devices [59]. Figure 5 illustrates the behavior of the order-preserving
block device layer when the underlying device is temporarily unavailable.

The ordered priority command has rarely been used in the existing block device implementa-
tions. When the host cannot control the persist order, ordered priority barely carries any meaning.
This is because the partial order in which the commands are serviced is not aligned with the partial
order in which the writeback cache contents are flushed. In the emergence of the barrier write, the
ordered priority plays a vital role in making the entire IO stack an order-preserving one.

The importance of order-preserving dispatch cannot be emphasized further. With order-
preserving dispatch, the host can control the transfer order without releasing the CPU and with-
out stalling the command queue. IO latency can become more predictable, since there exists less
chance that the CPU scheduler interferes with the caller’s execution. ΔWoT and ΔWoD in Figure 6
illustrate the delays between the consecutive requests in Wait-on-Transfer and Wait-on-Dispatch,

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:11

Fig. 5. Wait-On-Dispatch when the device is Busy.

Fig. 6. Wait-on-Dispatch vs. Wait-on-Transfer, Wi : ith write, Wi+1(WoD): (i + 1)th write under Wait-on-
Dispatch,Wi+1(WoT): (i + 1)th write under Wait-on-Transfer.

respectively. In Wait-on-Dispatch, the host issues the next requestWi+1 (WoD) immediately after it
issuesWi . In Wait-on-Transfer, the host issues the next requestWi+1 (WoT) only afterWi is serviced.
ΔWoD is an order of magnitude smaller than ΔWoT.

3.4 Epoch-Based IO Scheduling

Epoch-based IO scheduling is designed to preserve the partial order between the issue order and
the dispatch order. It satisfies the condition I = D. It is designed with three principles: (i) It pre-
serves the partial order between the epochs, (ii) the requests within an epoch can be freely sched-
uled with each other, and (iii) an orderless request can be scheduled across the epochs.

When an IO request enters the scheduler queue, the IO scheduler determines if it is a barrier
write. If the request is a barrier write, then the IO scheduler removes the barrier flag from the re-
quest and inserts it into the queue. Otherwise, the scheduler inserts it to the queue as is. When the
scheduler inserts a barrier write to the queue, it stops accepting more requests. Since the scheduler
blocks the queue after it inserts the barrier write, the requests in the queue are either orderless re-
quests or the order-preserving requests belonging to the same epoch. The requests in the queue can
be freely re-ordered and merged with each other without compromising the ordering constraint.
The order-preserving IO scheduler is built on top of the existing scheduling discipline, e.g., CFQ.
The merged request will be order-preserving if one of the components is an order-preserving re-
quest. The IO scheduler designates the last order-preserving request that leaves the queue as a
new barrier write. This mechanism is called Epoch-Based Barrier Reassignment. When there are no
order-preserving requests in the queue, the IO scheduler starts accepting the IO requests again.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:12 Y. Won et al.

Fig. 7. Epoch-based barrier reassignment.

When the IO scheduler unblocks the queue, there can be one or more orderless requests in the
queue. These orderless requests are scheduled with the requests in the following epoch. Differenti-
ating orderless requests from the order-preserving ones, we avoid imposing unnecessary ordering
constraint on the irrelevant requests.

Figure 7 illustrates an example. The circle and the rectangle that enclose the write request de-
note the order-preserving flag and barrier flag, respectively. An fdatasync() creates three write
requests: w1,w2, and w4. The barrier-enabled filesystem, which will be detailed shortly, marks
the write requests as ordering preserving ones. The last request, w4, is designated as a barrier
write and an epoch, {w1,w2,w4}, is established. A pdflush creates three write requests, w3,w5,
and w6. They are all orderless. The requests from the two threads are fed to the IO scheduler as
w1,w2,w3,w5,w

barrier
4 ,w6. When the barrier write, w4, enters the queue, the scheduler blocks the

queue. Thus, w6 cannot enter the queue. The IO scheduler reorders the requests in the queue and
dispatches them as w2,w3,w4,w5,w

barrier
1 order. The IO scheduler relocates the barrier flag from

w4 to w1. The epoch is preserved after IO scheduling.
The order-preserving block device layer now satisfies all three conditions, I = D, D = X, and

X = P in Equation (1) with an Epoch-based IO scheduling, an order-preserving dispatch, and a
barrier write, respectively. The order-preserving block device layer successfully eliminates the
Transfer-and-Flush overhead in controlling the storage order and can control the storage order
with only Wait-on-Dispatch overhead.

4 BARRIER-ENABLED FILESYSTEM

4.1 Programming Model

The barrier-enabled IO stack offers four synchronization primitives: fsync(), fdatasync(),
fbarrier(), and fdatabarrier(). We propose two new filesystem interfaces, fbarrier() and
fdatabarrier(), to separately support ordering guarantee. fbarrier() and fdatabarrier()
synchronize the same set of blocks with fsync() and fdatasync(), respectively, but they return
without ensuring that the associated blocks become durable. fbarrier() bears the same seman-
tics as osync() in OptFS [7] in that it writes the data blocks and the journal transactions in order
but returns without ensuring that they become durable.
fdatabarrier() synchronizes the same set of blocks as fdatasync(). Unlike fdatasync(),

fdatabarrier() returns without persisting the associated blocks. fdatabarrier() is a generic
storage barrier. By interleaving the write() calls with fdatabarrier(), the application ensures
that the data blocks associated with the write requests that precede fdatabarrier() are made
durable ahead of the data blocks associated with the write requests that follow fdatabarrier().
It plays the same role as mfence for memory barrier [53]. Refer to the following codelet. Using
fdatabarrier(), the application ensures that the “world” is made durable only after “Hello” does,

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:13

Fig. 8. Details of fsync() and fbarrier().

write(fileA, "Hello") ;
fdatabarrier(fileA) ;
write(fileA, "World") ;

The order-preserving block device layer is filesystem agnostic. In our work, we modify EXT4 for
barrier enabled IO stack and call it as BarrierFS.

4.2 Dual Mode Journaling

Committing a journal transaction essentially consists of two separate tasks: (i) dispatching the
write commands for JD and JC and (ii) making JD and JC durable. Exploiting the order-preserving
nature of the underlying block device, we physically separate the control plane activity (dispatch-
ing the write commands) and the data plane activity (persisting the associated data blocks and the
journal transaction) of a journal commit operation.

We allocate the separate threads for control plane and for data plane so that the two activities
can proceed in parallel with minimum dependency. The two threads are called the commit thread
and flush thread, respectively. We refer to this mechanism as Dual Mode Journaling. The Dual
Mode Journaling mechanism can support two journaling modes, the durability guarantee mode
and ordering guarantee mode, in a versatile manner.

The commit thread is responsible for dispatching the write requests for JD and JC . The commit
thread writes each of JD and JC with a barrier write so that JD and JC are persisted in order. The
commit thread dispatches the write requests without any delay in between (Figure 8(b)). After
dispatching the write request for JC , the commit thread inserts the journal transaction to the
committing transaction list and hands over the control to the flush thread.

The flush thread is responsible for (i) issuing the flush command, (ii) handling error and retry,
and (iii) removing the transaction from the committing transaction list. The behavior of the flush

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:14 Y. Won et al.

thread varies subject to the durability requirement of the journal commit. If the journal commit is
triggered by fbarrier(), then the flush thread does not have much things to do. It omits issuing
the flush command and returns after removing the transaction from the committing transaction
list. If the journal commit is triggered by fsync(), then the flush thread involves more steps. It
issues a flush command and waiting for the completion. When the flush completes, it removes the
the associated transaction from the committing transaction list and returns. BarrierFS supports all
journal modes in EXT4: WRITEBACK, ORDERED, and DATA.

The dual thread organization of BarrierFS journaling bears profound implications in filesys-
tem design. First, the separate support for the ordering guarantee and the durability guarantee
naturally becomes an integral part of the filesystem. Ordering guarantee involves only the con-
trol plane activity. Durability guarantee requires the control plane activity as well as data plane
activity. BarrierFS partitions the journal commit activity into two independent components, con-
trol plane and data plane, and dedicates separate threads to each. This modular design enables
the filesystem primitives to adaptively adjust the activity of the data plane thread with respect to
the durability requirement of the journal commit operation; fsync() vs. fbarrier(). Second, the
filesystem journaling becomes concurrent activity. Thanks to the dual thread design, there can be
multiple committing transactions in flight. In most journaling filesystems that we are aware of,
the filesystem journaling is a serial activity: The journaling thread commits the following trans-
action only after the preceding transaction becomes durable. In dual thread design, the commit
thread can commit a new journal transaction without waiting for the preceding committing trans-
action to become durable. The flush thread asynchronously notifies the application thread about
the completion of the journal commit.

4.3 Synchronization Primitives

In fbarrier() and fsync(), BarrierFS writes D, JD, and JC in a piplelined manner without any
delays in between (Figure 8(b)). BarrierFS writes D with one or more order-preserving writes,
whereas it writes JD and JC with the barrier writes. In this manner, BarrierFS creates two epochs
{D, JD} and {JC} in an fsync() or in an fbarrier() and ensures the storage order between these
two epochs. fbarrier() returns when the filesystem dispatches the write request for JC . fsync()
returns after it ensures that JC is made durable. The order-preserving block device satisfies the
prefix constraint [71]. When JC becomes durable, the order-preserving block device guarantees
that all blocks associated with preceding epochs have been made durable. An application may
repeatedly call fbarrier() committing multiple transactions simultaneously. By writing JC with
a barrier write, BarrierFS ensures that these committing transactions become durable in order. The
latency of an fsync() reduces significantly in BarrierFS. It reduces the number of flush operations
from two in EXT4 to one and eliminates the Wait-on-Transfer overheads (Figure 8). An fsync()
and an fbarrier() in BarrierFS can be represented as in Equation (4). DOP denotes the order-
preserving write for D. JCBAR and JCBAR denote the barrier-writes for JD and JC , respectively.
farrier() returns after the filesystem dispatches a write command for JC . A write command for
JC is a barrier write. fsync() returns when the flush command finishes,

fsync()
︷���︸︸���︷

DOP → JDBAR → JCBAR
︸�����������������������︷︷�����������������������︸

fbarrier()

→ xfer → flush . (4)

In fdatabarrier() and fdatasync(), BarrierFS writes D with a barrier write. If there are more
than one write requests in writing D, then only the last one is set as a barrier write and the
others are set as the order-preserving writes. An fdatasync() returns after the data blocks, D,

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:15

become durable. An fdatabarrier() returns immediately after dispatching the write requests for
D. fdatabarrier() is the crux of the barrier-enabled IO stack. With fdatabarrier(), the appli-
cation can control the storage order virtually without any overheads: without waiting for the flush,
without waiting for DMA completion, and even without the context switch. fdatabarrier() is a
very lightweight storage barrier.

An fdatabarrier() (or fdatasync()) may not find any dirty pages to synchronize on its ex-
ecution. In this case, BarrierFS explicitly triggers the journal commit. It forces BarrierFS to issue
the barrier writes for JD and JC . Through this mechanism, fdatabarrier() or fdatasync() can
delimit an epoch as desired by the application even in the absence of any dirty pages.

4.4 Handling the Page Conflicts

A buffer page may have been held by the committing transaction when an application tries to insert
it to the running transaction. We refer to this situation as page conflict. Blindly inserting a conflict
page into the running transaction yields its removal from the committing transaction before it
becomes durable. The EXT4 filesystem checks for the page conflict when it inserts a buffer page to
the running transaction [69]. If the filesystem finds a conflict, then the thread stores a copy of the
metadata page being held by the committing transaction to a temporary location(b_frozen_data)
and overwrites the existing metadata block with a new content. This mechanism is similar to
undo logging [18]. When the committing transaction becomes durable, the JBD thread identifies
the conflict pages in the committed transaction and inserts them to the running transaction. In
EXT4, there can be at most one committing transaction. The running transaction is guaranteed
to be free from page conflict when the JBD thread has made it durable and finishes inserting the
conflict pages to the running transaction. Figure 9(a) illustrates an example. Thread 1 and thread 2
write “Hello” and “World” to fileA, respectively. Both of the threads synchronize the result of their
updates with fsync(). Assume that thread 2 starts after thread 1 does. They update the same
file. Thread 2 updates the data block. When thread 2 attempts to update the metadata block for
file A, the metadata block already has been held by the committing transaction. When the JBD
finishes committing the current transaction at C1, it inserts the updated metadata block that has
been subject to the page conflict to the running transaction. The JBD thread changes the state
of the associated transaction from running to committing and commits the transaction. The JBD
commits the updated metadata by Thread 2 at time S2.

In BarrierFS, there can be more than one committing transactions. A running transaction can
have more than one conflict page. Each of the conflict pages may be associated with the differ-
ent committing transaction. We refer to this situation as multi-transaction page conflict. Multi-

transaction page conflict calls for a different mechanism for resolving the page conflict. As in EXT4,
BarrierFS inserts the conflict pages to the running transaction when it makes a committing trans-
action durable. However, BarrierFS cannot commit a running transaction even though one of the
committing transaction has become durable and has resolved the conflicts associated with it. Each
time when a committing transaction becomes durable, the flush thread notifies the commit thread
about the completion of a journal commit. To commit a running transaction, BarrierFS needs to
ensure that the running transaction is free from any page conflicts. The commit thread has to scan
all buffer pages of the existing committing transactions for page conflicts. When there exists a
large number of committing transactions, the scanning overhead to check for the page conflict
can be prohibitive in BarrierFS.

To reduce the overhead of handling multi-transaction page conflict, we propose the conflict-page

list for a running transaction. The conflict-page list represents the set of conflict pages associated
with a running transaction. The filesystem inserts the buffer page to the conflict-page list when it
finds that the buffer page that it needs to insert to the running transaction is subject to the page

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:16 Y. Won et al.

Fig. 9. Handling Page Conflict in EXT4 and in BarrierFS. MA, metadata block for file A; DA, Data block for
file A; JC, Journal commit block.

conflict. When the flush thread has made a committing transaction durable, it removes the conflict
pages from the conflict-page list in addition to inserting them to the running transaction. A run-
ning transaction can only be committed when the conflict-page list is empty. An order-preserving
IO stack is carefully designed not to make any substantial changes in the existing filesystem
and the block device layer. Conflict-page list is the only data structure newly introduced by
BarrierFS.

Figure 9(b) illustrates a multi-page conflict in BarrierFS. Thread 1 writes “Hello” to fileA and
calls fsync(). Thread 2 writes “World” to fileB and calls fsync(). These two threads work with
different files. The commit thread of BarrierFS commits the two journal transactions in concurrent
manner, since they are independent. Thread 3 writes “Hi” to fileA and and “University” to fileB.
Then, Thread 3 calls fsync()to make the result of the updates durable. There are two committing
transactions when the Thread 3 calls fsync(). The metadata for fileA and the metadata for fileB
are still being committed when Thread 3 calls fsync(). The commit transaction that has been
triggered by Thread 1 finishes at C3. The commit transaction that has been triggered by Thread 2
finishes at C4. The metadata for fileA that has been updated by thread 3 can be inserted to the
running transaction atC3. The metadata for fileB that has been updated by thread 3 can be inserted
to the running transaction at C4. At C4, the running transaction is free from the page conflicts.
The commit thread of BarrierFS commits the running transaction created by Thread 3 after both
committing transactions become durable (at C4).

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:17

Fig. 10. Concurrency in filesystem journaling under varying storage order guarantee mechanisms; tD , dis-
patch latency; tX , transfer latency; tϵ , flush latency in supercap SSD; tF , flush latency.

4.5 Concurrency in Filesystem Journaling

In most journaling filesystems, e.g., EXT4 and XFS, the filesystem journaling is a serial activity; the
filesystem commits the following journal transaction only after the preceding journal transaction
becomes durable. A number of techniques are being used to introduce some degree of concurrency
into the filesystem journaling. The objective of these techniques is to enable the host to commit
the following transaction before the preceding transaction reaches the disk surface. One of the
popular approaches is to use super-capacitor-based SSD. In supercap SSD, the storage controller
returns the flush command without actually flushing the writeback cache. With supercap SSD,
the filesysem commits the following journal transaction before the preceding journal transaction
reaches the disk surface. Another widely used approach is using a no-barrier mount option in
the EXT4 filesystem. When the filesystem is mounted with the no-barrier option, the filesys-
tem omits issuing the flush command in committing a journal transaction. With this option, the
EXT4 guarantees neither durability nor ordering in the journal commit operation, since the stor-
age controller may make the data blocks durable out-of-order. When a server is equipped with
uninterruptible power supply (UPS) or maintains multiple replicas of the data, one can choose to
use the no-barrier mount option for the filesystem without the risk of data loss.

We examine the details of filesystem journaling behavior under four different ways to commit-
ting a journal transaction: BarrierFS, EXT4 with no-barrier option (EXT4 (no flush)), EXT4 with
supercap SSD (EXT4 (quick flush)), and plain EXT4 (EXT4 (full flush)). We examine the EXT4 (no
flush) to illustrate the filesystem journaling behavior when the flush command is removed in the
journal commit operation.

Figure 10 schematically illustrates how the filesystem commits the journal transactions in four
different ways of filesystem journal commit. In Figure 10, each horizontal line segment represents
a journal commit activity. A horizontal line segment consists of the solid line segment and the
dotted line segment. The end of the horizontal line segment denotes the time when the transaction
reaches the disk surface. The end of the solid line segment represents the time when the journal
commit returns. If they do not coincide, then it means that the journal commit finishes before
the transaction actually reaches the disk surface. EXT4 (full flush), EXT4 (quick flush), and EXT4
(no flush) share the same journaling mechanism; the filesystem commits the new transaction only
after the preceding journal commit finishes. They differ in the time when the journal commit
finishes. In EXT4 (full flush), the journal commit finishes only after all associated blocks reaches
the disk surface. The consecutive journal commit operations are interleaved with dispatch latency
(tD), transfer latency (tX), and flush latency (tF). In EXT4 (quick flush), the journal commit finishes

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:18 Y. Won et al.

before the journal transaction reaches the disk surface. The durability of a journal commit is still
guaranteed, since the contents in the writeback cache of the storage device are guaranteed to be
durable thanks to supercap. The journal commit operation finishes more quickly than in EXT4
(full flush). The consecutive journal commit operations are interleaved with dispatch latency (tD),
transfer latency (tX), and very short flush latency (tϵ). In EXT4 (no flush), the journal commit
finishes when the associated filesystem blocks reach the writeback cache of the storage device. In
EXT4 (no flush), the journal commit finishes more quickly than EXT (quick flush). The consecutive
journal commit operations are interleaved with dispatch latency (tD) and transfer latency (tX).

In BarrierFS, the filesystem journaling is grounded on the fundamentally different operating
principle from the above-mentioned three schemes, EXT4 (full flush), EXT4 (quick flush), and EXT4
(no flush). In BarrierFS, the filesystem commits the following journal transaction without waiting
for the preceding journal commit to finish. BarrierFS commits the following journal transaction
immediately after it dispatches the write requests for the preceding journal commit. Dedicating
the separate threads for control plane activity and for data plane activity, respectively, the commit
thread that is in charge of control plane activity can keep committing the transactions without
waiting for the preceding journal transaction to finish. Dual thread design of the BarrierFS journal
module changes the operating principle of the modern filesystem journaling. In BarrierFS, the
consecutive journal commit operations are interleaved by dispatch latency (tD). From the aspect
of the throughput of the filesystem journaling, BarrierFS prevails the remainders by far, since the
interval between the consecutive journal commits is as small as the dispatch latency in BarrierFS.

The performance improvements in EXT4 (no flush) and in EXT4 (quick flush) have their price.
EXT4 (quick flush) requires the additional hardware component, the supercap, in the SSD. EXT4
(quick flush) guarantees neither durability or ordering in the journal commit. BarrierFS commits
multiple transactions concurrently and yet can guarantee the durability of the individual journal
commit without the assistance of the additional hardware.

The barrier enabled IO stack does not require any major changes in the existing in-memory or
on-disk structure of the IO stack. The only new data structure we introduce is the “conflict-page-
list” for a running transaction. Barrier enabled IO stack consists of approximately 3K LOC changes
in the existing block device layer and EXT4 code base of the Linux kernel.

4.6 Comparison with OptFS

As the closest approach of our sort, OptFS deserves an elaboration. OptFS and barrier-enabled
IO stack differ mainly in three aspects; the target storage media, the technology domain, and the
programming model. First, OptFS is not designed for flash storage but the barrier-enabled IO stack
is. OptFS is designed to reduce the disk seek overhead in a filesystem journaling. Via committing
multiple transactions together (delayed commit), OptFS gives the storage controller more of an
opportunity to reduce the seek time associated with persisting a set of blocks. Via logging some
of the updated data blocks to the journal transaction instead of updating them in place, OptFS
transforms the disk access for journal commit operation into a sequential one (selective data mode
journaling). Second, OptFS is the filesystem technique while the barrier-enabled IO stack deals
with the entire IO stack; the storage device, the block device layer, and the filesystem. OptFS is
built on the legacy block device layer. It suffers from the same overhead as the existing filesystems
do. OptFS uses Wait-on-Transfer to control the transfer order between D and JD. OptFS relies on
Transfer-and-Flush to control the storage order between the journal commit and the associated
checkpoint in osync(). Barrier-enabled IO stack eliminates the overhead of Wait-on-Transfer and
Transfer-and-Flush in controlling the storage order. Third, OptFS focuses on revising the filesystem
journaling model. BarrierFS is not limited to revising the filesystem journaling model but also
exports generic storage barrier with which the application can group a set of writes into an epoch.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:19

Fig. 11. 4KB Randwom Write; XnF, write() followed by fdatasync(); X, write() followed by
fdatasync()(no-barrier option); B, write() followed by fdatabarrier(); P, orderless write().

5 APPLICATIONS

To date, fdatasync() has been the sole resort to enforce the storage order between the write re-
quests. The virtual disk managers for VM disk image, e.g., qcow2, use fdatasync() to enforce the
storage order among the writes to the VM disk image [5]. SQLite uses fdatasync() to control
the storage order between the undo-log and the journal header and between the updated database
node and the commit block [37]. In a single insert transaction, SQLite calls fdatasync() four times,
three of which are to control the storage order. In these cases, fdatabarrier() can be used in place
of fdatasync(). In some modern applications, e.g., mail server [62] or OLTP, fsync() accounts for
the dominant fraction of IO. In TPC-C workload, 90% of IOs are created by fsync() [51]. With im-
proved fsync() of BarrierFS, the performance of the application can increase significantly. Some
applications prefer to trade the durability and the freshness of the result for the performance and
scalability of the operation [10, 15]. One can replace all fsync() and fdatasync() with ordering
guarantee counterparts, fbarrier() and fdatabarrier(), respectively, in these applications.

6 EXPERIMENT

We implement a barrier-enabled IO stack on three different platforms: enterprise server (12 cores,
Linux 3.10.61), a PC server (4 cores, Linux 3.10.61), and a smartphone (Galaxy S6, Android 5.0.2,
Linux 3.10). We test three storage devices: 843TN (SATA 3.0, QD2 = 32, 8 channels, supercap),
850PRO (SATA 3.0, QD= 32, 8 channels), and mobile storage (UFS 2.0, QD= 16, single channel). We
refer to each of these as supercap-SSD, plain-SSD, and UFS, respectively. We compare the BarrierFS
against EXT4 and OptFS [7]. We implement the barrier write command in the UFS device. In plain-
SSD and supercap SSD, we assume that the performance overhead of barrier write is 5% and none,
respectively.

6.1 Order-Preserving Block Layer

We examine the performance of 4KB random write with different ways of enforcing the storage
order: P (orderless write [i.e., plain buffered write]), B (barrier write), X (Wait-on-Transfer), and
XnF (Transfer-and-Flush). Figure 11 illustrates the result.

The overhead of Transfer-and-Flush is severe. With Transfer-and-Flush, the IO performances
of the ordered write are 0.5% and 10% of orderless write in plain-SSD and UFS, respectively. In su-
percap SSD, the performance overhead is less significant but is still considerable; the performance
of the ordered write is 35% of the orderless write. In supercap SSD, the flush command returns
instantly and therefore the overhead of flush command is not significant. However, the write
requests are still interleaved with Wait-on-Transfer overhead, which leaves the performance of

2QD: queue depth.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:20 Y. Won et al.

Fig. 12. Queue Depth, 4KB Random Write.

ordered write in supercap SSD is 35% of the orderless write. Supercap SSD successfully mitigates
the overhead of flush command and improves the performance of ordered write significantly.

In this experiment, we find that the overhead of Wait-on-Transfer is significant in modern flash
storage. When we interleave the write requests with DMA transfer, the IO performance is less
than 40% of the orderless write in all three storage devices. We carefully argue that based on this
observation, it is vital to eliminate the Wait-on-Transfer overhead in storage order guarantee to
exploit the hardware potential of the modern high-performance storage device.

Order-preserving block device layer brings substantial performance gain. In all storage devices,
via using barrier write instead of Wait-on-Transfer, the performance of the ordered write increases
to 2× and becomes nearly as good as the performance of the orderless write. The barrier write is
successful enforcing the storage order while fully exploiting the performance of the underlying
SSD. With a barrier write, the ordered write exhibits 90% performance of the orderless write in
plain-SSD and super-cap SSD. For UFS, it exhibits 80% performance of the orderless write.

Figure 11 also illustrates the average depth of the command queue in each storage device. We
observe that the average queue depth is lower in buffered IO than in barrier write. This is because
in barrier write, each ordered write request is dispatched as a single command, whereas in buffered
IO, a number of write requests can be merged together to form a single IO command.

The barrier write drives the queue to its maximum in all three flash storages. The storage per-
formance is closely related to the command queue utilization [33]. In Wait-on-Transfer, the queue
depth never goes beyond one (Figure 12(a) and Figure 12(c)). In barrier write, the queue depth
grows near to its maximum in all storage devices (Figure 12(b) and Figure 12(d)). Note that the
command queue depths of plain SSD and UFS storage are 32 and 16, respectively.

6.2 Filesystem Journaling

We examine the latency, the number of context switches and the queue depth in filesystem jour-
naling in EXT4 and BarrierFS. We use Mobibench [26]. For latency, we perform 4KB allocating
write() followed by fsync(). With this, an fsync() always finds the updated metadata to jour-
nal and the fsync() latency properly represents the time to commit a journal transaction. For

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:21

Table 1. fsync() Latency Statistics (ms)

UFS plain-SSD supercap-SSD
(%) EXT4 BFS EXT4 BFS EXT4 BFS
μ 1.29 0.51 5.95 3.52 0.15 0.09

Median 1.20 0.44 5.43 3.01 0.15 0.09
99th 4.15 3.51 11.41 8.96 0.16 0.10

99.9th 22.83 9.02 16.09 9.30 0.28 0.24
99.99th 33.10 17.60 17.26 14.19 4.14 1.35

Fig. 13. Average Number of Context Switches, EXT4-DR: fsync(), BFS-DR: fsync(), EXT-OD: fsync() with
no-barrier, BFS-OD: fbarrier(), “DR” = durability guarantee, “OD” = ordering guarantee, “EXT4-OD”
guarantees only the transfer order but not storage order.

context switch and queue depth, we use 4 KB non-allocating random write followed by different
synchronization primitives.

Latency: In plain-SSD and supercap-SSD, the average fsync() latency decreases by 40% when
we use BarrierFS against when we use EXT4 (Table 1). In UFS, the fsync() latency decreases by
60% in BarrierFS compared against EXT4. UFS experiences more significant reduction in fsync()
latency than the other SSDs do.

BarrierFS makes the fsync() latency less variable. In supercap-SSD and UFS, the fsync() laten-
cies at the 99.99th percentile are 30× of the average fsync() latency (Table 1). In BarrierFS, the tail
latencies at 99.99th percentile decrease by 50%, 20%, and 70% in UFS, plain-SSD, and supercap-SSD,
respectively, against EXT4.

Context Switches: We examine the number of application-level context switches in different
journaling modes (Figure 13). In EXT4, fsync() wakes up the caller twice: after D is transferred
and after the journal transaction is made durable(EXT4-DR). This applies to all three storages.
In BarrierFS, the number of context switches in an fsync() varies subject to the storage de-
vice. In UFS and supercap SSD, fsync() of BarrierFS wakes up the caller twice, as in the case
of fsync() of EXT4. However, the reasons are entirely different. In UFS and supercap-SSD, the
intervals between the consecutive write requests are much smaller than the timer interrupt in-
terval due to small flush latency. UFS uses MLC Flash. Supercap SSD returns the flush command
instantly. A write() request rarely finds the updated metadata and an fsync() often resorts to
an fdatasync(). fdatasync() wakes up the caller (the application thread) twice in BarrierFS:
after transferring D and after flush completes. In plain SSD, fsync() of BarrierFS wakes up the
caller once: after the transaction is made durable. The plain-SSD uses TLC Flash. The interval be-
tween the successive write()s is longer than the timer interrupt interval. The application thread
blocks after triggering the journal commit and and wakes up after the journal commit operation
completes.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:22 Y. Won et al.

Fig. 14. Queue Depth in BarrierFS: fsync() and fbarrier().

Fig. 15. fxmark: scalability of filesystem journaling.

BFS-OD manifests the benefits of BarrierFS. The fbarrier() rarely finds the updated metadata,
since it returns quickly, and, as a result, most fbarrier() calls are serviced as fdatabarrier().
fdatabarrier() does not block the caller and therefore does not accompany any involuntary
context switch.

Command Queue Depth: In BarrierFS, the host dispatches the write requests for D, JD, and
JC in tandem. Ideally, there can be as many as three commands in the queue. We observe only up
to two commands in the queue in servicing an fsync() (Figure 14(a)). This is due to the context
switch between the application thread and the commit thread. Writing D and writing JD are 160μs
apart, but it takes 70μs to service the write request for D. In fbarrier(), BarrierFS successfully
drives the command queue to its full capacity (Figure 14(b)).

Throughput and Scalability: The filesystem journaling is a main obstacle against building a
manycore scalable system [44]. We examine the throughput of filesystem journaling in EXT4 and
BarrierFS with a varying number of CPU cores in a 12-core machine. We use modified DWSL work-
load in fxmark [45]; each thread performs a 4KB allocating write followed by fsync(). Each thread
operates on its own file. BarrierFS exhibits much more scalable behavior than EXT4 (Figure 15). In
plain-SSD, BarrierFS exhibits 2× performance against EXT4 in all numbers of cores (Figure 15(a)).
In supercap-SSD, the performance saturates with six cores in both EXT4 and BarrierFS. BarrierFS
exhibits 1.3× journaling throughput against EXT4 (Figure 15(b)).

6.3 Server Workload

We run two workloads: varmail [73] and OLTP-insert [34]. OLTP-insert workload uses MySQL
DBMS [47]. varmail is a metadata-intensive workload. It is known for the heavy fsync() traffic.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:23

Fig. 16. varmail (ops/s) and OLTP-insert (Tx/s).

There are total four combinations of the workload and the SSD (plain-SSD and supercap-SSD)
pair. For each combination, we examine the benchmark performances for durability guarantee
and ordering guarantee, respectively. For durability guarantee, we leave the application intact
and use two filesystems, the EXT4 and the BarrierFS (EXT4-DR and BFS-DR). The objective of
this experiment is to examine the efficiency of fsync() implementations in EXT4 and BarrierFS,
respectively. For ordering guarantee, we test three filesystems, OptFS, EXT4, and BarrierFS. In
OptFS and BarrierFS, we use osync() and fdatabarrier() in place of fsync(), respectively.
In EXT4, we use nobarrier mount option. This experiment examines the benefit of Wait-on-
Dispatch. Figure 16 illustrates the result.

Let us examine the performances of varmail workload. In plain-SSD, BFS-DR brings 60% per-
formance gain against EXT4-DR in varmail workload. In supercap-SSD, BFS-DR brings 10% per-
formance gain against EXT4-DR. The experimental result of supercap-SSD case clearly shows the
importance of eliminating the Wait-on-Transfer overhead in controlling the storage order. The
benefit of BarrierFS manifests itself when we relax the durability guarantee. In ordering guarantee,
BarrierFS achieves 80% performance gain against EXT4-OD. Compared to the baseline, EXT4-DR,
BarrierFS achieves 36× performance (1.0 vs. 35.6 IOPS) when we enforce only ordering guarantee
with BarrierFS (BFS-OD) in plain SSD .

In MySQL, BFS-OD prevails EXT4-OD by 12%. Compared to the baseline, EXT4-DR, BarrierFS
achieves 43× performance (1.3 vs. 56.0 IOPS) when we enforce only ordering guarantee with
BarrierFS (BFS-OD) in plain SSD.

6.4 Mobile Workload: SQLite

We examine the performances of the library-based embedded DBMS, SQLite, under the durability
guarantee and the ordering guarantee, respectively. We examine two journal modes, PERSIST and
WAL. We use “Full Sync,” and the WAL file size is set to 1,000 pages, both of which are default
settings [58]. In a single insert transaction, SQLite calls fdatasync() 4 times. Three of them are
to control the storage order, and the last one is for making the result of a transaction durable.

For durability guarantee mode, we replace the first three fdatasync()’s with fdatabarrier()’s
and leave the last fdatasync() intact. In mobile storage, BarrierFS achieves 75% performance
improvement against EXT4 in default PERSIST journal mode under durability guarantee
(Figure 17). In ordering guarantee, we replace all four fdatasync()’s with fdatabarrier()’s.
In UFS, SQLite exhibits 2.8× performance gain in BFS-OD against EXT4-DR. The benefit of
eliminating the Transfer-and-Flush becomes more dramatic as the storage controller employs
higher degree of parallelism. In plain-SSD, SQLite exhibits 73× performance gain in BFS-OD
against EXT4-DR (73 vs. 5,300inserts per second).

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

24:24 Y. Won et al.

Fig. 17. SQLite Performance: inserts per second, 100K inserts.

Notes on OptFS: OptFS does not perform well in our experiment (Figure 16 and Figure 17),
unlike that in Reference [7]. We find two reasons. First, the benefit of delayed checkpoint and se-
lective data mode journaling becomes marginal in flash storage. Second, in flash storage (i.e., the
storage with short IO latency) the delayed checkpoint and the selective data mode journaling
negatively interact with each other and bring substantial increase in the memory pressure. The
increased memory pressure severely hurts the performance of osync(). Here is the reason. When
an osync() is called, it scans all dirty pages to determine if each of them can be checkpointed. This
scanning overhead turns out to be non-trivial when OptFS is used for flash storage. In selective
data mode journaling, OptFS inserts the updated data blocks to the journal transaction when the
update is about modifying the existing block, not about allocating a new one. The selective data
mode journaling can quickly increase the number of dirty pages in the system. Delayed checkpoint
prohibits the data blocks in the journal transaction from being checkpointed until the associated
Asynchronous Durability Notification (ADN) arrives. When combined together, the selective data
mode journaling can create a large amount of dirty pages in a journal transaction, whereas the de-
layed checkpoint bars the filesystem from removing the dirty pages from a journal transaction. As
a result, osync() checkpoints only a small fraction of dirty pages each time it is called. On the same
token, the dirty pages in the journal transactions are scanned multiple times before they are check-
pointed. The osync() shows particularly poor performance in OLTP workload (Figure 16). This
is because in OLTP workload, most writes are for update operations. They overwrite the existing
file blocks. Selective data mode journaling leaves most write operations to data mode journaling.

6.5 Crash Consistency

We test if the BarrierFS recovers correctly against the unexpected system failure. We use
CrashMonkey for the test [40]. We modify CrashMonkey to understand the barrier write so that
the CrashMonkey can properly delimit an epoch when it encounters a barrier write. We run
two workloads; rename_root_to_sub and create_delete. Table 2 summarizes the result of the
test. For durability guarantee (fsync()), BarrierFS passes all 1,000 test cases as EXT4 does in
both workloads. For ordering guarantee (fsync() in EXT4-OD and fbarrier() in BarrierFS),
BarrierFS passes all 1,000 test cases, whereas EXT4-OD fails in some cases. This is not surprising,
since EXT4 with nobarrier option guarantees neither the transfer order nor the persist order in
committing the filesystem journal transaction.

7 RELATED WORK

Featherstitch [19] proposes a programming model to specify the set of requests that can be sched-
uled together, patchgroup, and the ordering dependency between them, pg_depend(). While

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:25

Table 2. Crash Consistency Test of EXT4 and BarrierFS, Scenario A:
rename_root_to_sub; Scenario B: create_delete

Scenario — EXT4-DR BFS-DR EXT4-OD BFS-OD

A
clean 1,000 1,000 547 1,000
fixed 0 0 0 0
failed 0 0 453 0

B
clean 1,000 1,000 109 1,000
fixed 0 0 891 0
failed 0 0 0 0

xsyncfs [49] mitigates the overhead of fsync(), it needs to maintain complex causal dependen-
cies among buffered updates. NoFS (no order file system) [8] introduces “backpointer” to eliminate
the Transfer-and-Flush–based ordering in the file system. It does not support transaction.

A few works proposed to use multiple running transactions or multiple committing transactions
to circumvent the Transfer-and-Flush overhead in filesystem journaling [29, 38, 55]. IceFS [38]
allocates a separate running transaction for each container. SpanFS [29] splits a journal region into
multiple partitions and allocates committing transactions for each partition. CCFS [55] allocates
separate running transactions for individual threads. In these systems, each journaling session still
relies on the Transfer-and-Flush mechanism.

A number of file systems provide a multi-block atomic write feature [16, 35, 54, 70] to relieve
applications from the overhead of logging and journaling. These file systems internally use the
Transfer-and-Flush mechanism to enforce the storage order in writing the data blocks and the
associated metadata blocks. Exploiting the order-preserving block device layer, these filesystems
can use the Wait-on-Dispatch mechanism to enforce the storage order between the data blocks
and the metadata blocks and can be saved from the Transfer-and-Flush overhead.

8 CONCLUSION

Flash storage provides the cache barrier command to allow the host to control the persist order.
Mechanical characteristics of the HDD prohibits the host from controlling the order in which the
contents in the writeback cache reach the disk surface. This fundamental nature of HDD prohibits
itself from providing the storage function such as cache barrier. It is time for designing the new
IO stack for the flash storage that is free from the unnecessary constraint inherited from the old
legacy that the host cannot control the persist order. We built a barrier-enabled IO stack based
on the foundation that the host can control the persist order. In the barrier-enabled IO stack,
the host can dispense with Transfer-and-Flush overhead in controlling the storage order and can
successfully saturate the underlying flash storage. We like to conclude this work with two key
observations. First, the “cache barrier” command is a necessity rather than a luxury. It should be
supported in all flash storage products ranging from the mobile storage to the high-performance
flash storage with supercap. Second, the block device layer should be designed to eliminate the
DMA transfer overhead in controlling the storage order. As the flash storage becomes quicker,
the relative cost of tardy “Wait-on-Transfer” will become more substantial. To saturate the flash
storage, the host should be able to control the transfer order with neither Flush overhead nor
DMA transfer overhead. We hope that this work provides a useful foundation in designing a new
IO stack for the flash storage.3

3The source code for barrier enabled IO stack is available at https://github.com/ESOS-Lab/barrieriostack.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

https://github.com/ESOS-Lab/barrieriostack

24:26 Y. Won et al.

ACKNOWLEDGMENT

We thank Vijay Chidambaram and the anonymous reviewers of USENIX FAST 2018 for their valu-
able comments. Their comments and guidance have been extremely helpful in strengthening this
article. We also like to thank Jayashree Mohan for her help with CrashMonkey.

REFERENCES

[1] Jens Axboe. 2004. Linux block IO present and future. In Proceedings of the Ottawa Linux Symposium. Ottawa, Ontario,

Canada.

[2] Steve Best. 2000. JFS Overview. Retrieved from http://jfs.sourceforge.net/project/pub/jfs.pdf.

[3] Yu-Ming Chang, Yuan-Hao Chang, Tei-Wei Kuo, Yung-Chun Li, and Hsiang-Pang Li. 2015. Achieving SLC perfor-

mance with MLC flash memory. In Proceedings of the Design Automation Conference (DAC’15).

[4] F. Chen, R. Lee, and X. Zhang. 2011. Essential roles of exploiting internal parallelism of flash memory based solid

state drives in high-speed data processing. In Proceedings of the IEEE Symposium on High Performance Computer

Architecture (HPCA’11).

[5] Qingshu Chen, Liang Liang, Yubin Xia, Haibo Chen, and Hyunsoo Kim. 2016. Mitigating sync amplification for copy-

on-write virtual disk. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’16). 241–247.

[6] Vijay Chidambaram. 2015. Orderless and Eventually Durable File Systems. Ph.D. Dissertation. University of Wisconsin–

Madison.

[7] Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. 2013. Optimistic crash consistency. In Proceedings of the ACM Symposium on Operating Systems Principles

(SOSP’13).

[8] Vijay Chidambaram, Tushar Sharma, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2012. Consistency

without ordering. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’12).

[9] Yong Sung Cho, Il Han Park, Sang Yong Yoon, Nam Hee Lee, Sang Hyun Joo, Ki-Whan Song, Kihwan Choi, Jin-Man

Han, Kye Hyun Kyung, and Young-Hyun Jun. 2013. Adaptive multi-pulse program scheme based on tunneling speed

classification for next generation multi-bit/cell NAND flash. IEEE J. Solid-State Circ. 48, 4 (2013), 948–959.

[10] James Cipar, Greg Ganger, Kimberly Keeton, Charles B Morrey III, Craig AN Soules, and Alistair Veitch. 2012. Lazy-

Base: Trading freshness for performance in a scalable database. In Proceedings of the ACM European Conference on

Computer Systems (EuroSys’12).

[11] Danny Cobb and Amber Huffman. 2012. NVM express and the PCI express SSD revolution. In Proceedings of the Intel

Developer Forum.

[12] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek, Benjamin Lee, Doug Burger, and Derrick

Coetzee. 2009. Better I/O through byte-addressable, persistent memory. In Proceedings of the ACM Symposium on

Operating Systems Principles (SOSP’09).

[13] Jonathan Corbet. 2010. Barriers and journaling filesystems. Retrieved from http://lwn.net/Articles/283161/.

[14] Jonathan Corbet. 2010. The end of block barriers. Retrieved from https://lwn.net/Articles/400541/.

[15] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar, Jinliang Wei, Wei Dai,

Gregory R. Ganger, Phillip B. Gibbons, and others. 2014. Exploiting bounded staleness to speed up big data ana-

lytics. In Proceedings of the USENIX Annual Technical Conference (ATC’14).

[16] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. 2001. Wide-area cooperative storage

with CFS. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP’01).

[17] Brian Dees. 2005. Native command queuing-advanced performance in desktop storage. IEEE Potent. Mag. 24, 4 (2005),

4–7.

[18] Ramez Elmasri. 2008. Fundamentals of Database Systems. Pearson Education India, 815–817.

[19] Christopher Frost, Mike Mammarella, Eddie Kohler, Andrew de los Reyes, Shant Hovsepian, Andrew Matsuoka, and

Lei Zhang. 2007. Generalized file system dependencies. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP’07).

[20] Jongmin Gim and Youjip Won. 2010. Extract and infer quickly: Obtaining sector geometry of modern hard disk drives.

ACM Trans. Stor. 6, 2 (2010).

[21] Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. The bleak future of NAND flash memory. In Proceedings

of the USENIX Conference on File and Storage Technologies (FAST’12). 1.

[22] Jie Guo, Jun Yang, Youtao Zhang, and Yiran Chen. 2013. Low cost power failure protection for MLC NAND flash stor-

age systems with PRAM/DRAM hybrid buffer. In Proceedings of the Design, Automation and Test Conference (DATE’13).

859–864.

[23] Christoph Hellwig. Patchwork Block: Update Documentation for REQ_FLUSH/REQ_FUA. Retrieved from https://

patchwork.kernel.org/patch/134161/.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

http://jfs.sourceforge.net/project/pub/jfs.pdf
http://lwn.net/Articles/283161/
https://lwn.net/Articles/400541/
https://patchwork.kernel.org/patch/134161/

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:27

[24] Mark Helm, Jae-Kwan Park, Ali Ghalam, Jason Guo, Chang wan Ha, Cairong Hu, Heonwook Kim, Kalyan Kavalipu-

rapu, Eric Lee, Ali Mohammadzadeh, and others. 2014. 19.1 A 128Gb MLC NAND-flash device using 16nm planar

cell. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSCC’14).

[25] SK hynix. 2015. eMMC5.1 solution in SK hynix. Retrieved from https://www.skhynix.com/kor/product/nandEMMC.

jsp.

[26] Sooman Jeong, Kisung Lee, Seongjin Lee, Seoungbum Son, and Youjip Won. 2013. I/O stack optimization for smart-

phones. In Proceedings of the USENIX Annual Technical Conference (ATC’13). Berkeley, CA.

[27] JEDEC Standard JESD220C. 2016. Universal flash storage(UFS) version 2.1.

[28] JEDEC Standard JESD84-B51. 2015. Embedded multi-media card(eMMC) electrical standard (5.1).

[29] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai Ma, and Jinpeng Huai. 2015. SpanFS: A scalable

file system on fast storage devices. In Proceedings of the USENIX Annual Technical Conference (ATC’15). Berkeley, CA.

[30] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and Changwoo Min. 2013. X-FTL: Transactional FTL

for SQLite databases. In Proceedings of the ACM Special Interest Group on Management of Data (SIGMOD’13).

[31] Ram Kesavan, Rohit Singh, Travis Grusecki, and Yuvraj Patel. 2017. Algorithms and data structures for efficient

free space reclamation in WAFL. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’17).

USENIX Association, Berkeley, CA, 1–14.

[32] Hyeong-Jun Kim and Jin-Soo Kim. 2011. Tuning the Ext4 filesystem performance for android-based smartphones.

In Proceedings of the 2011 International Conference on Frontiers in Computer Education (ICFCE’11), Sabo Sambath and

Egui Zhu (Eds.), Vol. 133. Springer, 745–752.

[33] Youngjae Kim. 2015. An empirical study of redundant array of independent solid-state drives (RAIS). Cluster Comput.

18, 2 (2015), 963–977.

[34] Alexey Kopytov. 2004. SysBench Manual. Retrieved from http://imysql.com/wp-content/uploads/2014/10/sysbench-

manual.pdf.

[35] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. F2FS: A new file system for flash storage.

In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’15). Berkeley, CA.

[36] Seungjae Lee, Jin-yub Lee, Il-han Park, Jongyeol Park, Sung-won Yun, Min-su Kim, Jong-hoon Lee, Minseok Kim,

Kangbin Lee, Taeeun Kim, and others. 2016. 7.5 A 128Gb 2b/cell NAND flash memory in 14nm technology with

tPROG=640us and 800MB/s I/O rate. In Proceedings of the IEEE International Solid-State Circuits Conference (ISSC’16).

[37] Wongun Lee, Keonwoo Lee, Hankeun Son, Wook-Hee Kim, Beomseok Nam, and Youjip Won. 2015. WALDIO: Elimi-

nating the filesystem journaling in resolving the journaling of journal anomaly. In Proceedings of the USENIX Annual

Technical Conference (ATC’15). Berkeley, CA.

[38] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.

2014. Physical disentanglement in a container-based file system. In Proceedings of the USENIX Symposium on Operating

Systems Design and Implementation (OSDI’14).

[39] Youyou Lu, Jiwu Shu, Jia Guo, Shuai Li, and Onur Mutlu. LightTx: A lightweight transactional design in flash-based

SSDs to support flexible transactions. In Proceedings of the IEEE IEEE International Conference on Computer Design

(ICCD’13).

[40] Ashlie Martinez and Vijay Chidambaram. 2017. CrashMonkey: A framework to automatically test file-system crash

consistency. In Proceedings of the 9th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’17).

[41] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger, Alex Tomas, and Laurent Vivier. 2007. The

new ext4 filesystem: Current status and future plans. In Proceedings of the Linux Symposium 2007.

[42] Marshall K. McKusick, Gregory R. Ganger, and others. 1999. Soft updates: A technique for eliminating most synchro-

nous writes in the fast filesystem. In Proceedings of the USENIX Annual Technical Conference (ATC’99).

[43] Changwoo Min, Woon-Hak Kang, Taesoo Kim, Sang-Won Lee, and Young Ik Eom. 2015. Lightweight application-level

crash consistency on transactional flash storage. In Proceedings of the USENIX Annual Technical Conference (ATC’15).

Berkeley, CA.

[44] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim. 2016. Understanding manycore scalability of file

systems. In Proceedings of the USENIX Annual Technical Conference (ATC’16).

[45] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim. 2016. Understanding manycore scalability of file

systems. In Proceedings of the USENIX Annual Technical Conference (ATC’16). 71–85.

[46] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. 1992. ARIES: A transaction recovery

method supporting fine-granularity locking and partial rollbacks using write-ahead logging. ACM Trans. Database

Syst. 17, 1 (1992), 94–162.

[47] AB MySQL. 2007. Mysql 5.1 Reference Manual. Sun Microsystems.

[48] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write off-loading: Practical power manage-

ment for enterprise storage. ACM Trans. Stor. 4, 3 (2008), 10:1–10:23.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

https://www.skhynix.com/kor/product/nandEMMC.jsp
http://imysql.com/wp-content/uploads/2014/10/sysbench-penalty -@M manual.pdf

24:28 Y. Won et al.

[49] Edmund B. Nightingale, Kaushik Veeraraghavan, Peter M. Chen, and Jason Flinn. 2006. Rethink the sync. In Proceed-

ings of the USENIX Symposium on Operating Systems Design and Implementation (OSDI’06).

[50] M. Okun and A. Barak. 2002. Atomic writes for data integrity and consistency in shared storage devices for clusters.

In Proceedings of the International Conference on Algorithms and Architectures for Parallel Processing (ICA3PP’02).

[51] Jiaxin Ou, Jiwu Shu, and Youyou Lu. 2016. A high performance file system for non-volatile main memory. In Proceed-

ings of the ACM European Conference on Computer Systems (EuroSys’16).

[52] Xiangyong Ouyang, David Nellans, Robert Wipfel, David Flynn, and Dhabaleswar K Panda. 2011. Beyond block

I/O: Rethinking traditional storage primitives. In Proceedings of the IEEE Symposium on High Performance Computer

Architecture (HPCA’11).

[53] Salvador Palanca, Stephen A. Fischer, Subramaniam Maiyuran, and Shekoufeh Qawami. 2016. MFENCE and LFENCE

micro-architectural implementation method and system. (July 5 2016). US Patent 9,383,998.

[54] Stan Park, Terence Kelly, and Kai Shen. 2013. Failure-atomic msync(): A simple and efficient mechanism for preserving

the integrity of durable data. In Proceedings of the ACM European Conference on Computer Systems (EuroSys’13).

[55] Thanumalayan Sankaranarayana Pillai, Ramnatthan Alagappan, Lanyue Lu, Vijay Chidambaram, Andrea C. Arpaci-

Dusseau, and Remzi H. Arpaci-Dusseau. 2017. Application crash consistency and performance with CCFS. In Pro-

ceedings of the USENIX Conference on File and Storage Technologies (FAST’17). Berkeley, CA, 181–196.

[56] Vijayan Prabhakaran, Lakshmi N. Bairavasundaram, Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. 2005. IRON file systems. In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP’05).

[57] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong Zhou. 2008. Transactional flash. In Proceedings of the USENIX

Symposium on Operating Systems Design and Implementation (OSDI’08). Berkeley, CA, 147–160. http://dl.acm.org/

citation.cfm?id=1855741.1855752

[58] Dhathri Purohith, Jayashree Mohan, and Vijay Chidambaram. 2017. The dangers and complexities of SQLite bench-

marking. In Proceedings of the 8th Asia-Pacific Workshop on Systems (APSys’17). ACM, New York, NY. DOI:http://

dx.doi.org/10.1145/3124680.3124719

[59] H. Rev. 2014. SCSI Commands Reference Manual. Seagate.

[60] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The linux B-tree filesystem. ACM Trans. Stor. 9, 3 (2013).

[61] Mendel Rosenblum and John K. Ousterhout. 1992. The design and implementation of a log-structured file system.

ACM Trans. Comput. Syst. 10, 1 (Feb. 1992), 26–52. DOI:http://dx.doi.org/10.1145/146941.146943

[62] Priya Sehgal, Vasily Tarasov, and Erez Zadok. 2010. Evaluating performance and energy in file system server work-

loads. In Proceedings of the USENIX Conference on File and Storage Technologies (FAST’10). Berkeley, CA.

[63] Margo I. Seltzer, Gregory R. Ganger, Marshall K. McKusick, Keith A. Smith, Craig A. N. Soules, and Christopher A.

Stein. 2000. Journaling versus soft updates: Asynchronous meta-data protection in file systems. In Proceedings of the

USENIX Annual Technical Conference (ATC’00). Berkeley, CA.

[64] Girish Shilamkar. 2007. Journal Checksums. Retrieved from http://wiki.old.lustre.org/images/4/44/Journal-\
checksums.pdf.

[65] SQLite. 2018. Well-known Users of SQLite. Retrieved from https://www.sqlite.org/famous.html.

[66] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson, Mike Nishimoto, and Geoff Peck. 1996. Scalability in the

XFS file system. In Proceedings of the USENIX Annual Technical Conference (ATC’96). Berkeley, CA, 1. http://dl.acm.

org/citation.cfm?id=1268299.1268300

[67] Toshiba. 2015. Toshiba Expands Line-up of e-MMC Version 5.1 Compliant Embedded NAND Flash Memory Modules.

Retrieved from http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html.

[68] Theodore Ts’o. 2015. Using Cache barrier in liue of REQ_FLUSH. Retrieved from http://www.spinics.net/lists/

linux-ext4/msg49018.html.

[69] Stephen C. Tweedie. 1998. Journaling the linux ext2fs filesystem. In Proceedings of the 4th Annual Linux Expo.

[70] Rajat Verma, Anton Ajay Mendez, Stan Park, Sandya Mannarswamy, Terence Kelly, and Charles Morrey. 2015. Failure-

atomic updates of application data in a linux file system. In Proceedings of the USENIX Conference on File and Storage

Technologies (FAST’15). Berkeley, CA

[71] Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha Kirubanandam, Lorenzo Alvisi, and Mike

Dahlin. 2013. Robustness in the salus scalable block store. In Proceedings of the 10th USENIX Conference on Networked

Systems Design and Implementation (NSDI’13). USENIX Association, Berkeley, CA, 357–370. http://dl.acm.org/citation.

cfm?id=2482626.2482661

[72] Zev Weiss, Sriram Subramanian, Swaminathan Sundararaman, Nisha Talagala, Andrea Arpaci-Dusseau, and Remzi

Arpaci-Dusseau. 2015. ANViL: Advanced virtualization for modern non-volatile memory devices. In Proceedings of

the USENIX Conference on File and Storage Technologies (FAST’15). Berkeley, CA.

[73] Andrew Wilson. 2008. The new and improved filebench. In Proceedings of the USENIX Conference on File and Storage

Technologies (FAST’08). Berkeley, CA.

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

http://dl.acm.org/citation.cfm?id$=$1855741.1855752
http://dx.doi.org/10.1145/3124680.3124719
http://dx.doi.org/10.1145/146941.146943
http://wiki.old.lustre.org/images/4/44/Journal-{protect edef LinuxLibertineT-TLF{TNRUnicode00}protect xdef T1/LinuxLibertineT-TLF/m/n/10 {T1/LinuxLibertineT-TLF/m/n/8 }T1/LinuxLibertineT-TLF/m/n/10 size@update enc@update char '134}checksums.pdf
https://www.sqlite.org/famous.html
http://dl.acm.org/citation.cfm?id$=$1268299.1268300
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://www.spinics.net/lists/linux-ext4/msg49018.html
http://dl.acm.org/citation.cfm?id$=$2482626.2482661

Bringing Order to Chaos: Barrier-Enabled I/O Stack for Flash Storage 24:29

[74] Qiumin Xu, Huzefa Siyamwala, Mrinmoy Ghosh, Tameesh Suri, Manu Awasthi, Zvika Guz, Anahita Shayesteh, and

Vijay Balakrishnan. 2015. Performance analysis of NVMe SSDs and their implication on real world databases. In

Proceedings of the ACM International Systems and Storage Conference (SYSTOR’15). Haifa, Israel.

[75] S. y. Park, E. Seo, J. Y. Shin, S. Maeng, and J. Lee. 2010. Exploiting internal parallelism of flash-based SSDs. IEEE

Comput. Arch. Lett. 9, 1 (2010), 9–12.

[76] C. Zhang, Y. Wang, T. Wang, R. Chen, D. Liu, and Z. Shao. 2014. Deterministic crash recovery for NAND flash based

storage systems. In Proceedings of the ACM/EDAC/IEEE Design Automation Conference (DAC’14).

Received June 2018; accepted July 2018

ACM Transactions on Storage, Vol. 14, No. 3, Article 24. Publication date: October 2018.

