Multimed Tools Appl
DOI 10.1007/s11042-007-0156-1

HERMES: embedded file system design
for A/V application

Youjip Won - Doohan Kim -
Jinyoun Park - Sichang Lee

© Springer Science + Business Media, LLC 2007

Abstract Embedded systems such as PVR, set-top box, HDTV put unique demand
on I/O subsystem design. Underlying software, particularly file system, needs to be
elaborately designed so that it can meet tight constraints of consumer electronics
platform: performance, price, reliability, and etc. In this work, we develop state-
of-art file system elaborately tailored for A/V workload. There are two design
objectives in our file system: performance and support for logical level abstraction.
For performance, we develop a number of novel features: extent based allocation,
single level file structure with block index augmentation scheme, aggressive free
block allocation to minimize disk fragmentation, elaborate file system meta data
layout, separation of name space data and file data and etc. HERMES enables the
user to view file as a collection of semantic units (frame or audio samples). HERMES
file system encompasses most of state-of-the-art file system technologies published
in preceding works. Via extensive physical experiment, we verify that HERMES
file system successfully addresses the original issues: good scalability, predictable
I/O latency (minimizing variability in I/O latency), efficient disk head movement
and etc. This is the result of harmonious effort of large I/O size, aggressive free

Primitive version of this work has been published on Lecture Note in Computer Science series,
Springer, vol. 2510, pp 172-179, Oct 2002 (Proceedings of EURASIA-ICT).

Y. Won (X)
ECE Division, Hanyang University, Seoul, Korea
e-mail: yjwon@ece.hanyang.ac.kr

D. Kim
Samsung Electronics, Suwon, Korea

J. Park
LG Electronics, Seoul, Korea

S. Lee
Tellion, Seoul, Korea

@ Springer

Multimed Tools Appl

block allocation algorithm, data block placement strategy, file organization, layout of
HERMES file system and etc. The result of performance experiments indicate that
HERMES file system prototype successfully meets the file system constraints for high
volume and high bandwidth multimedia application. HERMES file system exhibits
superior performance to EXT?2 file system (Linux) and XFS file system (SGI).

Keywords Multimedia - A/V workload - File system -
Disk scheduling - Embedded system

1 Introduction
1.1 Motivation

Information Appliance for digital video can be thought as a light weight computer
system designed to store incoming high quality digital video stream at the local
hard disk and/or to play the recorded video clips at user’s convenience. Unlike the
general-purpose computer, which has abundant computing resources and storage
capacity, this type of consumer electronics has stringent resource constraints due to
its restriction on power consumption, pricing, acoustic, reliability, and etc. The disk
drive in this device is not an exception. It is not feasible to use high performance
disk, e.g. SCSI disk, even though the real-time playback and recording of multimedia
data puts intense bandwidth demand on the storage device. It is mandatory that the
underlying file system is elaborately designed to fully utilize the physical performance
of the disk by exploiting the workload characteristics. The fundamental design
philosophy of the most commodity file systems, e.g. Unix File System, NTFS, EXT2,
FAT32, or etc. are ill-suited for meeting the real-time performance requirement of
audio and video retrieval. Small I/O unit size, external fragmentation, complex file
organization (e.g. conditional skewed tree structure) and etc. are just a few examples
which prohibit the effective utilization of commodity file system in A/V devices.

Efficiency of the underlying file system plays a critical role in supporting real-
time A/V application in cost effective manner. To effectively exploit the physical
bandwidth of the disk, it is important that file system layout, metadata structure, file
organization, file placement, etc. are elaborately tailored so that disk fragmentation
is avoided and the time to locate the data block is minimized. Large variation in I/O
latency can negatively affect the efficient scheduling and resource allocation of the
multimedia data block retrieval. In real-time playback and recording of audio and
video data, underlying file system should be able to deliver the requested data in
predictable manner.

There is not much debate that the Unix file system is a landmark achievement
in modern file system design. However, from A/V application’s point of view, there
are a number of issues in Unix file system which require further elaboration. Our
work, HERMES file system, is aimed at addressing these issues: performance, file
system semantics, and reliability. The first issue arises mainly due to organization of
file and file system. The Unix (or Unix like) file system is designed for a general
purpose usage which needs to incorporate wide variety of data types and wide
range of file sizes where most of the files are small. It adopts a skewed tree like
file structure. Unfortunately, this design philosophy is ill-suited for meeting the

@ Springer

Multimed Tools Appl

real-time requirement of audio and video data retrieval. Navigating through the
multi-level tree structured file can entail a non-trivial amount of disk head movement
in visiting the internal nodes of the tree. HERMES file system uses aggressive
organization and layout of file system. It also optimizes the free block allocation and
data block placement algorithm to avoid disk fragmentation. Meta data structure is
designed to achieve this objective. Also, to exploit the characteristics of sequential
I/O, HERMES allocates separate region for directory blocks and file data blocks.
The second issue is data abstraction. In legacy file system, file is a collection of fixed
size physical units, e.g. block or byte. This general abstraction makes the file system
simple and efficient while most of the details are left to the application. Semantically,
multimedia file is collection of logical units, e.g. video frames or audio samples.
Playback, storage and edit operation on multimedia contents deal with video frames
and audio samples, rather than blocks. HERMES file system provides block as well as
semantic (or logical) level abstraction. It enables the user to view file as a collection
of fixed size blocks and in the mean time as a collection of logical units, e.g. video
frame. The third issue is reliability. One of the main differences between computer
and consumer electronics device is reliability requirement. Consumer electronics
device should be much more robust and should be quick in crash recovery. In
practice, average consumer electronics user cannot tolerate lengthy file system check
and rebuild operation, e.g. £sck operation. We elaborately tailor the journaling
scheme to satisfy the robustness and crash recovery requirement for consumer
electronics platform. Some features of HERMES file system, e.g. extent based
allocation, and logical index, have been proposed in preceding works. However, the
effectiveness of these features have not been properly explored in the context of
real-time mutlimedia workload. One of the important contribution of our work is
the comprehensive performance experiment and in depth analysis. Via disk trace
level analysis, we closely examine the physical disk head movement in HERMES,
EXT2 and XFS. This gives us clear understanding of what we need to consider
in designing file system for real-time multimedia application. We find that overall
design of HERMES (file system layout, meta data structure, pre-allocation strategy,
and etc.) successfully achieves its original philosophy.

1.2 Related works

The file system related issues in multimedia workload have been receiving prime
focus since the inception of the multimedia streaming technology. A lot of efforts
have been made on devising an algorithm for continuity guarantee. Since legacy
SCAN, FIFO, and their bifurcations do not provide bandwidth guarantee, it was
not possible to provide continuous flow of the data blocks to the end system. A
number of works address these issues and propose the disk scheduling algorithms
for the multimedia data retrieval [4, 9, 16, 18, 28]. In practice, there is a need to
support real-time multimedia I/O as well as legacy text based I/O in a single disk
based framework. In this case, the disk subsystem is required to service I/O requests
with different priority requirement and in the mean time, it has to maximize disk
performance. A number of disk scheduling algorithm and the prototype system have
been proposed to achieve this objective [19, 21, 25, 27]. Recently, Mokbel et al.
[15] have proposed new disk scheduling scheme which takes into account a number
of scheduling attributes, e.g. deadline, criticality, cylindrical position and etc., and

@ Springer

Multimed Tools Appl

generates a disk schedule based upon the greedy approach. They used the notion of
space-fill-curve to devise a schedule for a given set of disk requests.

There are a number of prototype file systems which are designed specifically to
handle the multimedia data [2, 10]. XFS [22] is designed for general purpose file
system. The most notable mechanism in XFS to increase the scalability of the file
system is the B+ tree. XFS uses B+ trees for tracking the free extents, indexing the
directory entries, managing the file extent maps, and tracking dynamically allocated
i-nodes scattered throughout the file system. XFS is partitioned into regions called
allocation groups, and replaces the block oriented bitmaps with an extent oriented
structure consisting of a pair of B+ trees for each allocation group to allow for
efficient searching for large regions of contiguous space. One of B+ trees is indexed
by the starting block of the free extents, and the other is indexed by the length of the
free extents. MMFS [5] improves interactive playback performance by supporting
intelligent pre-fetching, state-based caching, prioritized real-time disk scheduling,
and synchronized multi-stream retrieval. It defines new file system data structure
called mminfo which carries the streaming specific information, e.g. direction of
playback, playback rate, and speed of playback (x2, x4, etc.). MMFS uses existing
file organization and file system structure of UFS. Minorca Multimedia file system
[24] proposed (a) a new disk layout and data allocation techniques called MOSA
that offers a high degree of contiguous allocation for large continuous media files
and allows the coexistence of small, non-CM files, and (b) a new read ahead method
to optimize the input of the I/O request queue. These techniques aim at increasing
disk access locality and at reducing disk seek overhead.

Presto file system [13] introduces the idea of storing the data based on the logical
unit. The unit of placement is extent that consists of fixed number of semantic units.
This file system can suffer from wastage of space when the actual file size is smaller
than the extent size. SMART file system [17] maintains a file as a linked list of extents
and thus improves the file size limitation in Presto [13]. Symphony [20] also allows
each video file to be accessed either as a sequence of byte or as a sequence of frames.
To support two different abstractions in accessing the file, they use two level index
structure: index for frame which maps the frame index to byte offset and index for
byte which maps the byte offsets to disk block addresses. In Minorca file system and
Symphony file system, file is organized using index block and has tree like structure.
Particularly, Minorca file system takes B-tree approach. It clusters the index block
and the data block together.

In massive scale multimedia server, it is important to reduce the I/O path involved
in streaming out the multimedia data. A number of file system have been recently
proposed to guarantee the QoS of the system [6, 12]. Zimmermann [30] proposed
statistical admission control scheme for multimedia file system. Ahn et al. [1]
developed a network interface card which eliminates the unnecessary memory copy
on the data path from the disk to network interface card and offloads the network
protocol processing.

The rest of the paper is organized follows. Section 2 presents synopsis in Unix file
system. Section 3 describes the basic structure of HERMES file system. Section 4
describes the support for logical level abstraction. Sections 5 and 6 presents the for
block allocation scheme and journaling approach. Section 7 presents the result of
performance experiment. Section 8 concludes the paper.

@ Springer

Multimed Tools Appl

2 Synopsis: Unix file system
2.1 Structure of i-node in Unix file system

In Unix file system, the file management information is kept strictly apart from the
file data itself and collected in a separate structure. This structure is called i-node. It
contains the file meta data and data block references. For example, i-node of EXT2
file system contains the information of file mode (e.g. rwxrw-r—), user id of owner,
file size, and the data references.

Data reference fields in i-node contains the physical location of data blocks. In
case of EXT2 file system in Linux, the data references consist of twelve direct
references, one indirect reference, two-step indirect reference and three-step indirect
reference. With 4 KB data block, up to 48 KB file can be covered with direct
references. Single 4 KB block can hold 1,024 block pointers. With single indirect
reference, up to 4 MB of data can be covered. With two-step indirect reference,
up to 4 GB of data can be stored in a file. Given that multimedia file can easily go
beyond tens of mega byte, the data block retrieval for playback entails the retrieval of
the intermediate pointer blocks as well. While tree structure based file organization
gives greater flexibility in handling wide variety of file sizes, the retrieval of the
pointer blocks may entail substantial overhead in real-time playback and recording
of multimedia data.

Even with compression, single one hour movie requires from hundreds of mega
byte up to several giga byte of disk space. For example, MPEG-1 compressed video
for 90 min (1.5 Mb/s) requires approximately 1 GB of storage space. With MPEG-2
compression scheme whose playback bandwidth ranges from 4 to 10 Mb/s, storage
requirement becomes heavier substantially. This storage volume and bandwidth
requirement becomes further intense in consumer electronics device with the rapid
proliferation on HDTV quality digital broadcasting. For example, ATSC format
video contents requires 19.2 Mb/s playback bandwidth.

Storing the file from hundreds of mega byte to several giga byte requires two-step
or three-step indirect blocks. Thus overhead of accessing i-node block and possibly
a number of pointer blocks can be substantial. To access the last data block in 1 GB
file, maximum of three additional blocks are accessed to retrieve single data block.
These three blocks consist of one i-node block and two indirect blocks (Fig. 1). Even
though the i-node and the pointer blocks are in the buffer cache, memory access time
can consume significant fraction of CPU cycle. It is very unlikely that the pointer
blocks and the data blocks are stored consecutively, especially, when a number of
files co-exist in the file system. Thus, meta data update operations, access to indirect
pointer blocks and access to actual data block altogether can make the disk head
movement very inefficient. We closely examine physical disk head movement in a
number of file systems in Section 7.

2.2 Partition layout in Unix file system
Most file systems of modern Unix family operating systems, e.g. Linux, Solaris,

NetBSD, etc. adopt the mechanism to place the data blocks consecutively or as

@ Springer

Multimed Tools Appl

Fig. 1 Block reference i-node
structure of EXT2 i-node
File mode
User ID
File size

y

Indirect reference m
Two-step °
L]

@ Indirect reference) &)

Threa-step \

Indirect reference

closely as possible. For example, EXT2 file system (Fig. 2), which is the most widely
used file system in Linux operating system, uses the concept of block group. The
block group is a group of consecutive cylinders. With block group, file system can
cluster the file data blocks within relatively closer cylindrical position. However,
block group based placement policy still splits the file into different block groups
when the file size exceeds the size of the block group and may suffer from significant
overhead in disk seek. EXT2 file system partition, consists of multiple block groups.
Each group contains the copy of file system superblock (for file system consistency’s
sake), group descriptor, block bitmap, i-node bitmap, i-node table, and finally data
blocks, with the respective order. The size of the block group is mainly constrained
by the block bitmap. It is used to identify the free and used blocks within a group.
Block bitmap should fit in a block Thus, the maximum number of blocks in a block
group corresponds to 8xb blocks, where b denotes the size of a block in byte. For
4 KB block file system, single block group is as large as 128 MB.

3 HERMES file system structure
3.1 File system organization

Most of the Unix family file systems do not differentiate the file data blocks and
directory entry blocks. Multimedia file, e.g. video file, is not an exception. It is
possible that multimedia files and the directory files are placed in the disk in inter-
leaved fashion. This can negatively affect the performance of sequential scanning
operation on multimedia file. To resolve this issue, HERMES file system maintains
the directory block and data block separately. HERMES reserves a certain fraction
of contiguous disk space to store directory information. Super block contains the
information on the location of directory region and multimedia data region. The size
of the directory extent region is fixed when the file system is formatted. Figure 3a
illustrates the layout of HERMES file system partition. HERMES partition consists

@ Springer

Multimed Tools Appl

Fig. 2 Disk layout of EXT2 Boot Block Block Block
file system block group0 group1 group n-1
Super- Group Block Inode
block descriptors | bitmap | bitmap Inode table | Data blocks

of the following regions: super block, extent bitmap, i-node bitmap, i-node tables,
directory extents and data extents. This file organization was proposed in our earlier
work [26].

Superblock is located at very beginning of the file system partition and stores
general information of the file system. It contains the information about total number
of extents, the number of multimedia extents, the number of free extents, extent size,
the number of i-nodes, creation time and etc. Extent bitmap is used to determine
whether the respective extent is in use or not. The i-node table consists of predefined
number of i-nodes. HERMES adopts extent based structure. In HERMES, extent
is the smallest allocation unit. Extent size is determined in file system format phase.
Directory entries are stored in directory extent region. After directory extent region,
data extent region begins. By separating directory region from the file system data
region, we try to reduce the disk seek overhead. Examination on physical disk head
movement and the number of I/O requests shows that this design approach suc-
cessfully improves the head movement overhead and brings substantial performance
increase.

3.2 File organization

Information in HERMES file meta data block can be categorized into four sets:
legacy file meta data (ownership, most recent access date, etc.), QoS information
(frame rate and playback rate), blocks index fields and frame index fields. Figure 3b
illustrates the structure of HERMES i-node.

There are total fifteen block index and three frame index fields. Data block access
requires the retrieval of pointer block. When the pointer block and the data block are
stored apart, it may cause disk seek in retrieving the pointer information and the data
block. In fact, most of Unix file system family adopts this approach. In HERMES, we
take B-tree like approach and clusters the block index information with data block.

ownership

access time)
version File meta data

etc...

Superblock | Extent bitmap| inode bitmap | inode tables

frame rate(frames/sec)

bit rate(bits/sec) QoS information
Directory Directory | ... Directory
Extents #1 | Extents #2 Extents #n fifteen (pointer, counter) entries| Block Reference
Multimedia Multimedia Multimedia three (pointer, counter) entries | Frame Reference
Extend #1 Extend #2 | Extend #m p ’
a b

Fig. 3 Structure of HERMES file system. a File system layout, b i-node structure
@ Springer

Multimed Tools Appl

Figure 4 illustrates the reference structure of HERMES. UFS adopts skewed tree
like file structure for the faster access to small size file and to cover very large files at
the same time. However, this skewed multi-level tree structure increases not only
the I/O latency but also the variance of I/O latency which negatively affects the
I/O predictability. HERMES file organization is designed to address both of these
issues: reducing the level of indirection and variance in I/O latency. Reducing the
level of indirection requires more pointers in the i-node block. However, we cannot
increase the i-node size arbitrarily. We resort to have the pointer to point to group
of consecutive extents and augment each pointer with the number of consecutive
extents. HERMES i-node has total of fifteen (pointer, count) entries. The first twelve
entries directly points to group of extents. i _count is four byte and thus single
cluster of extents can consist of as large as 23> — 1 number of extents. With 128 KB
extent, single (pointer, count) pair can cover theoretically 512 TB data region. While
pointer augmentation scheme provides effective solution on reducing the number
of pointers and the level of indirections at the same time, it may not behave as
expected. When the disk partition is severely fragmented, each pointer may cover
only one extent. To cope with this situation, the last three (pointer, counter) entries
are designed for indirect access. One of the novel features of HERMES file system is
its design of indirect references. As in Fig. 1, legacy Unix family file system manages
the data block pointers in separate blocks. Thus, accessing a data block via indirect
reference requires the retrieval of pointer blocks as well as data blocks. In HERMES,

i-node
4 byte 2 byte
i_extent[0] i_count[0] = Extent; Extent, | s Extent,
i_extent[1] i_count[1]
12 i_extent[2] i_count[2] Extent, Extent, | ceee- Extent,,
i_extent[11] i_count[11]
i_extent[12] i_count[12] L
3 i_extent[13] | i_count[13] i Extent, j Extent, e Extent,
i_extent[14] | i_count[14] P —— *
First Extent
4 byte byte
i_extent[0] i_count[0] Extent; Extent, RO Extenty
Pointer Region i_extent[1] i_count[1]
32Kbyte
i_extent[4095] i_count[4095]
Data Region

Fig. 4 Block reference structure of HERMES i-node
@ Springer

Multimed Tools Appl

we cluster the data block and block pointers together. This is to save I/O operations
for pointer block retrieval. Figure 4 illustrates the data block reference structure in
HERMES file system.

In the extents pointed by these three pointers, the first 32 KB of cluster of extents
are designated to contain (pointer, count) entries. There are 4,096 (pointer, count)
entries (|32 x 2'9/8]) in this region.

4 File as a collection of frames

Legacy general purpose file systems including Unix family file systems treat file
as a collection of blocks (or characters). This approach makes the underlying file
system small, simple and flexible. However, as we have more understanding on the
file system usage, we can incorporate more elaborate treatment in file system. This
approach has been far advanced in DBMS community where file is defined as a
collection of records (in case of relational database management systems). HERMES
is designed for embedded system for A/V application. We tailor the file system to
provide more specific interfaces for real-time multimedia applications.

Legacy file access semantic is (file descriptor, offset) pair and offset is byte distance
from the beginning of the file. Multimedia file can be thought as a collection of logical
data units, e.g. frames or audio samples. In case of MPEG compression standard,
frame has one of three types I-type, P-type or B-type [11]. In multimedia applica-
tions’ point of view, frame is a smallest unit which has meaningful information, e.g.
scene. In VCR operation, normal playback is a sole exception which may not require
the prior knowledge on each frame location. Multiple speed playback, reverse
playback, skip, scene editing, and etc. all require that the application randomly
accesses the arbitrary frame. Beginning of each frame is identified by special symbol
called “start code.” Without any index information, locating the arbitrary frame
real-time is practically infeasible due to its computational overhead involved in
pattern matching. In practice multimedia file is normally accompanied by index
information. While this approach resolves the problem, the underlying file system
still suffers from the limitation of viewing the file as a collection of physical units
(byte or block). Most of general purpose file systems is responsible for translating
the (file descriptor, file offset) to (device, device offset), but does not provide any
service to locate the logical units, e.g. frames. In database management systems, file
system exports elaborate interfaces so that the application can perform complex file
operations easily and efficiently. e.g. insert record, delete record, and search. We aim
at developing dedicated file system for multimedia application, and thus providing
more elaborate treatment for multimedia data. HERMES file system enables the
user to view file as a collection of logical units (e.g. frames in video file). It exports a
number of interfaces to handle the file in logical units. Application can access the file
with (file descriptor, frame index).

HERMES i-node bears frame index structure (Fig. 3b). There are two different
approaches in designing frame index. Index can contain either physical (device
offset) or logical (file offset) location of the respective data unit. If frame index
contains physical location of a frame, access to frame will be faster. In this approach,
block references and frame references both contain physical location. Redundancy
in physical location information makes the meta data update more time consuming.
Even worse, crash recovery procedure can be very complicated. If frame index

@ Springer

Multimed Tools Appl

soes_ soyts

i mode —|_Frame num | Frame offset | Extent
i uid Frame num | Frame offset
= [Frame num | Frame offset |
i_size o
° o
o Frame num_| Frame offset
4 bytes | i_frame_extent_pt[0] — 4 bytes 8 bytes
4 bytes | i_frame_extent_pt[1] Frame num_| Frame offset | Extent
4bytes | i_frame_extent_pt[2] }— [Framenum_| Frame offset | 4 bytes 8 bytes
Frame num | Frame offset —|_Frame num | Frame offset | Extent

g Frame num | Frame offset
Frame num | Frame offset
Frame num_| Frame offset

4 Data blocks

o]
]

Data block Frame num_| Frame offset
] [[— i_frame_extent_pt[0] I 4 bytes 8 bytes
Frame num _| Frame offset i_frame_extent_pt[1 —|_Frame num | Frame offset | Extent
Frame num | Frame offset i_frame_extent_pt[2] H Frame num | Frame offset
[} o Frame num | Frame offset
o ° o
Frame num | Frame offset i_frame_extent_pt[1024] o
Frame num | Frame offset
4 bytes 8 bytes

—>| Frame num | Frame offset | Extent
Frame num | Frame offset
| Frame num | Frame offset |

o
]

Frame num | Frame offset

Fig. 5 Logical index structure of HERMES file system

contains logical location (file offset), access to frame becomes less efficient and goes
through two phases: access to frame index information and deriving the physical
block location from frame offset. However, file system becomes less vulnerable to
error and crash recovery procedure is simpler. After careful deliberation, we decided
to take the latter approach. In HERMES, frame index contains the byte distance
from the beginning of the file. Figure 5 illustrates the structure of frame index in
HERMES file system. Each i-node reserves three four byte pointers for logical
indexing. The first two pointers point to an extent which contains frame number and
frame offset pairs. The third pointer is for indirect access. The third pointer points
to an extent whose first 16 KB contains pointers. There are logical 4,096 pointers
(116 x 2!%/4]) in this region. Each pointer points to a data block and each data block
contains pointers to extents. Let us assume that data block size and extent size be
4 KB and 1 MB, respectively. Then, single extent can cover 87,318 frames. There
are three extents and thus over 260,000 frames can be covered by direct reference.
260,000 frames corresponds to approximately 144 min. In the extent pointed by third
pointer, there exist four indirect pointers. It can cover 4,096 extents of frame pointers.
Given that single extent can hold 87,318 pointers to frame, it can cover more than
357 million frames which corresponds to 3,300 h of video with 30 frame/s frame
rate. HERMES file system exports addindex system call. It scans the multimedia file,
computes the frame size and initializes the logical index fields.

5 Free block allocation

Free block allocation algorithm is one of the original features of HERMES file
system. Since fragmentation brings critical performance degradation in sequential
workload, special care needs to be taken to avoid any disk fragmentation. Most
of the existing file system adopts some type of pre-allocation scheme to facilitate

@ Springer

Multimed Tools Appl

Pre-allocated Extent count
\ \

Start writing ‘ Extent #1 ‘ Extent #2 ‘ Extent #3 ‘ Extent #4 ‘ ‘ Extent #n

T

Starting block of pre-allocated Extents

Written data Pre-allocated Extent count

Writing data Extent#1 | Extent#2 | Extent#3 | Extent#4 |--- | Extent#n

Starting block of pre-allocated Extents

Written data Discard pre-allocated Extents
[I |

After writing Extent#1 | Extent#2 | Extent#3 | Extent#4 | --.| Extent#n

Fig. 6 Free block allocation and data placement

the contiguous block placement. In case of EXT2 file system, it reserves eight
consecutive blocks by default when it allocates a free block. We take more aggressive
preallocation scheme to place the extents in consecutive fashion.

We define a global variable preallocation-size to denote the size of preallocation.
HERMES i-node contains two fields: i-preallocation-count and i-preallocation-start.
This value is determined at file system format phase and the default value is sixty
four. Figure 6 illustrates the free block allocation and data placement scheme of
HERMES file system. HERMES file system first searches preallocation-size number
of consecutive free extents. If one exists, it reserves these extents. Otherwise, it
reserves the largest consecutive extents. I-preallocation-count denotes the number
of unused extents in the reserved chunk of extents. I-preallocation-start is a pointer
to extent to store a incoming data (Fig. 7).

When we write data to the extent, HERMES decreases i-preallocation-count
and i-preallocation-start pointer is updated to the next extent in the pre-allocated
extents. After consuming all reserved extents, HERMES file system again searches
for another chunk of consecutive extents. After file is closed, HERMES file system
frees remaining unused pre-allocated extents. The block placement mechanism of
HERMES file system helps to allocate data extents continuously. With this aggres-
sive free block allocation scheme, HERMES file system can reduce disk seek and
rotational latency and can guarantee timely transfer of the multimedia data blocks.

6 Journaling in HERMES

6.1 File system journaling

In most of modern operating system design, effort on exploiting disk bandwidth
of the underlying I/O subsystem adopts aggressive buffer cache management with

@ Springer

Multimed Tools Appl

Fig.7 Logic record A file operation
Update a buffer block

/ Journal_get_write_access
CALL

Log
record

CALL _—
Jouranl_dirty_metadata

Journal

V File

[
|

asynchronous I/O. However, this design approach increases the chance that the
contents in buffer cache and the contents in the storage are inconsistent and that file
system becomes more vulnerable to crash. This applies to both data and meta data.
File system provides file system check utility (e.g. fsck) to detect any inconsistencies
and to recover the file system. However, as disk size increases file system check oper-
ation takes prohibitively long (tens of minutes for hundreds of mega byte partition).
Average consumer electronics user cannot tolerate this duration. Inconsistency in
data affects only single file while inconsistency in meta-data can collapse the integrity
of entire file system partition. Journaling file systems addresses this problem by
writing out a special journal file, which keeps track of the transactions to the disk.
Updates to the disk are committed automatically. If power is suddenly interrupted, a
given set of updates will have either been fully committed to the file system, in which
case there is not a problem, and the file system can be used immediately, or will be
marked as not yet fully committed, in which case the file system driver can read the
journal and fix any inconsistencies. This approach is much quicker than scanning of
the entire hard disk, and guarantees that the structure of the file system is always
self-consistent, even if power is interrupted or the system crashes at random times.

6.2 Designing journaling scheme for HERMES

The journaling scheme is designed as a part of HERMES file system to eliminate
enormously long file system recovery times after an unexpected system crash. The
journaling scheme of HERMES file system is very similar to the journaling scheme
of EXT3 file system [23]. HERMES file system uses one i-node to store the journal
file, and when formatting HERMES file system, the journal file is created and the
size of the journal file is determined by the user. If it is not pre-determined, eight
extents are used for the journal file. The role of the journal file is to record the
new contents of file system metadata blocks. HERMES file system logs all structural
file system metadata changes. This includes super block, i-node table blocks, i-node
bitmap blocks, extent bitmap blocks, and directory extent blocks.

The journaling scheme of HERMES file system consists of three principles. The
first is log record. A journal metadata block contains the entire contents of a single
block of file system metadata which is updated. Logging a metadata block is basic
journaling principle, which is called a log record. We want to guarantee consistent

@ Springer

Multimed Tools Appl

Fig. 8 Atomic operation
Journal_start

A atomic operation
Update buffer blocks
. ™, Journal _get_write _access

~l
Journal_dirty_metadata

Buffer
Block

Journal_get_write_access
~
Journal_dirty_metadata

s _ g

Journal_stop Journal

File

metadata state after the event of a system crash. Consistent metadata state means
a sequence of metadata changes which results from any single file system request
made by an application, and contains all of the changed metadata resulting from
that request. All log records after one file system request are merged and updated
together. This principle is called atomic operation (Fig. 8). For example, the process
of creating a new file modifies several metadata structures: i-nodes, i-node bitmaps,
extent bitmaps, etc. All these updated metadata blocks are recorded in one atomic
operation.

It is quite possible that file operations which are operated near sequence update
same metadata blocks. Merging atomic operations lead to performance improve-
ment. We do not have to write separate copies of metadata blocks which are updated
frequently. Let us give an example. When we write a data to a file, the file will be
expanded and the same bitmap will be updated repeatedly. By default, HERMES file
system creates a new transaction every 5 s, and allows all atomic operations added to
this transaction. Transaction is flushed to disk periodically by a kernel thread, which
writes out to the journal file all metadata blocks which have been updated during one
period. After the event of a crash, HERMES file system is restored to a consistent
metadata state by replaying the journal file. Rather than examine all metadata by
fsck, HERMES file system inspects only those portions of the metadata that have
recently changed. Recovery is much faster and recovery time is not dependent on
partition size.

7 Performance experiment

We examine the performance behavior of HERMES file system via physical exper-
iment. HERMES file system is implemented on Linux operating system platform
(Table 1). We compare the performance of three different file systems: HERMES,
EXT2 and XFS(SGI) file system. We use three different benchmark programs:
Streaming Workload generator, IOZONE benchmark [7] and LMBENCH bench-

@ Springer

Multimed Tools Appl

Table 1 Disk profile

Capacity 9.1 GB
Interface Ultra 160 SCSI
Sector size 512 Byte
Rotational speed 7,200 RPM
Media transfer rate 248-400 Mb/s
Average seek time 6.8 ms

Track to track seek 0.6 ms

Full track seek 1.5 ms

mark [14]. To precisely capture the performance of storage subsystem, we flush the
buffer cache before each experiment. Modern disk drive adapts zoning technique to
exploit the linear bit density of the magnetic surface. This enhances the capacity of
the disk. However, I/O latency can significantly vary dependent upon the location
of the requested data block. For fair comparison, each file system partition starts
from the same sector. The experiment is performed on dual Pentium II1 (746 MHz
processor with 256 KB cache).

7.1 Streaming workload

We examine the I/O latencies of HERMES, EXT2 and XFS file system. Real-time
multimedia workload is characterized by its sequential access pattern and exhibits
higher degree of spatial locality. We examine two main metrics in this experiment:

16 Kbyte IO

[—o—mms|

/O Latency(msec)

32 Kbyte 11O

64 Kbyte 10

/0 Latency(msec)

——mmfs|
——ox2

1O Latency(msec)

5 0 1 B

0 % %
Numborof Soesions
a average (I/O size: 16 KByte)

1ot 16 Kbyte 10

[——mmfs

Variance of 10 Latencies(msec?)

5 10 15 20 25 30
Number of Sessions

b average (I/O size: 32 KByte)

10" 32 Kbyte 1O

Variance of /O Latencies(msec?)

5 10 3 40 45

5 20 25 a0
Number of Sessions

¢ average (I/O size: 64 KByte)

W 64 Kbyte IO

——mms|

P

Variance of O Latencies(msec?)

o 5 10 1 3 40 45

5 20 25
Number of Sessions

d Variance (I/O size: 16 KByte)

0 5 10 15 20 25
Number of Sessions.

e Variance (I/O size: 32 KByte)

15 20 25 30
Number of Sessions

f Variance (I/O size: 64 KByte)

Fig. 9 1/O Latency under varying number of sessions: small size contents (30 MB each)

@ Springer

Multimed Tools Appl

average and variance of I/O latency. We adjust the I/O size and number of sessions.
We generate forty MPEG-2 files. Each I/O session sequentially scans the file. Modern
disk drive adopts zoning technique to exploit linear bit density. When there exist a
number of file system partitions in a single disk, it is possible that the partition in the
outer side of the disk platter exhibit better I/O performance since it can store larger
number of data in a track. Special care has been taken to create the HERMES, EXT2
and XFS partition in the identical cylindrical position. We examine the I/O behavior
for small size contents for mobile streaming as well as large size contents for HDTV
quality local playback. In case of the experiment for small size contents, forty 30 MB
files are created in HERMES, EXT2, and XFS file system partitions, respectively. In
case of the experiment for large size contents, ten 6 GB files are created in HERMES,
EXT2, and XFS file system partitions.

Figures 9 and 10 illustrate the average and variance of I/O latency for small size
contents and large size contents. We measure the I/O latency under three different
I/O unit sizes: 16, 32, and 64 KB. X-axis is the number of concurrent sessions, and
Y-axis is I/O latency. It enables us to examine if a certain file system behaves better
under particular I/O unit size. We find the I/O latency increases with the I/O unit
size in sub-linear fashion. We presume that this is because a certain fraction of
I/O latency is from the operational overhead of the hard disk drive. As is shown,
I/O latency in HERMES file system is approximately 60% of 1/O latency in EXT2
file system in most I/O unit sizes. This performance benefit is result of harmony of
simple file structure, aggressive block placement, and separation of directory blocks
and file data blocks in HERMES file system. As the number of concurrent streams
increases, the overhead of reading the indirect block continues more dominant
fraction of the elapsed I/O time in the Linux file system. On the contrary, HERMES
file system minimizes the disk seek overhead by prohibiting the usage of multi-level
indirect reference and block placement mechanism. I/O latency in XFS file system is

16 KByte 110 32 KByte IO 64 KByte IO

/O Latency(msec)

/O Latency(msec)
1/O Latency(msec)

Number of Sessions Number of Sessions. Number of Sessions

a average (I/0 size: 16 KByte) b average (I/0 size: 32 KByte) C average (I/0 size: 64 KByte)

16 KByte /0 32 KByte IO 64 KByte IO
4000 8000 14000

5 o X2 7000

6000

jes(msech2)
jes(msech2)

10000
5000
8000
4000

6000
3000

e of I/O latenci
ince of I/0 latenci

£ 000 4000

S 1000 S 2000

0 0

Number of Sessions. Number of Sessions. Number of Sessions

d Variance(I/O size: 16 KByte) e Variance(I/O size: 32 KByte) f Variance(I/O size: 64 KByte)

Fig. 10 1/O latency under varying number of sessions: large contents (6 GB each)

@ Springer

Multimed Tools Appl

approximately similar to the latency in HERMES file system. In small size contents,
HERMES and XFS exhibit similar performance while EXT?2 exhibit slightly worse
performance. In large size contents, the performance between HEMES and XFS
becomes more clear. Aggressive preallocation scheme and large size I/O enables the
HERMES to outperform XFS when relatively large number of streams are on-going
with larger I/O unit.

The variance of I/O latency is important to maintain I/O latency more predictable.
We can observe that the variance of HERMES file system is approximately 30% of
EXT?2 file system. In EXT2 file system, complex i-node structure along with multi-
level data block organization and block group oriented placement strategy can make
the latency of data block vary widely. On the other hand, HERMES file system has
relatively flat structure and I/O latency remains relatively uniform. Variance of I/O in
XFS file system is similar to that of HERMES file system under small size contents.
With large size contents, the variance of I/O latency in HERMES becomes much
smaller than the one in XFS.

We can draw several conclusions from these results. As is shown, HERMES file
system is superior to EXT?2 file system. It can support A/V workload very efficiently.
Another interesting result is that HERMES file system reduces the variance of I/O
latency. It is the result of extent based structure, i-node structure of HERMES file
system by avoiding multi-level indirect reference in locating the data block, and
aggressive free block allocation strategy.

7.2 IOZONE benchmark test

The Iozone [7] benchmark tests how fast a file system can perform various file
manipulation operations. It includes the sequential read/write, re-read/write, random
read/write, reverse read, and etc. Sequential I/O tests reads and writes 2 GB file. We
use two different I/O sizes: 4 and 64 KB. We also examine the performance effect of
reading (or writing) the data blocks into buffer cache. Buffer cache is used to increase
the chance that subsequent I/O requests are serviced from the buffered data block.
We can save the memory traffic if we omit the process of copying the data blocks
from I/O device to buffer cache and copy the data blocks directly to user space.
There are pros and cons of neglecting buffer cache. HERMES file system is to be
used in A/V device, e.g. set-top box, PVR, camcoder and etc. In these environments,
application exhibits highly sequential workload characteristics. Therefore, it may not
be unreasonable to assume that the advantage of using buffer cache is marginal.
Memory traffic on system bus is another important issue. Copying the data blocks to

D EXT2 m XFS oHERMES o EXT2 m XFS o HERMES
40 40
317 324
8 30 287 28.7 28.8 27.1 2635 28.7 28.6 28.8 8 30 287 287 288 27.1 28.6] 25723.7235 2567 286
2 ©
@ P 19
2 20 8 20
2 =
a 2
S 10 S0
0
Read(Buffered I/0) Write(Buffered I/0) Read(Direct I/O) Write(Direct I/0) Read(Buffered I/0) Write(Buffered I/0) ~Read(Direct I/O) Write(Direct 1/0)
a 1/O size = 4 KByte b 1/O size = 64 KByte

Fig. 11 Result of IOZONE benchmark, file size: 2 GB
@ Springer

Multimed Tools Appl

Table 2 Summary of performance comparison: EXT2, XFS and HERMES

File system 1/0 latency Buffered I/0 Direct I/O

Average Variance Read Write Read Write
EXT2 Poor Poor Good Good Good Fair
XFS Good Good Good Good Fair Poor
HERMES Good Good Good Good Good Good

buffer cache increases the memory traffic compared with the case of bypassing it. This
certainly increases the burden on the system bus. In some situation, this overhead
has rather serious impact on overall system performance. Usually, embedded device
is equipped with very limited hardware resources and it is not uncommon that the
device does not even have DMA (direct memory access) controller or is equipped
with low-end DMA controller. In this case, CPU should take the burden of moving
the data blocks from I/O device to memory or between memory via iteratively
performing load/store instructions.

Figure 11 illustrate the results of the Iozone benchmark. In all these test,
HERMES exhibits superior performance. Performance of sequential buffered read
in HERMES exceeds slightly the performance in EXT2 and XFS. The result of
sequential Buffered write in HERMES is approximately 15% higher than in case
of EXT2 and XFS. Result of direct read operation is similar with the result of
buffered I/O. This is because both cases do not return until the DMA (direct memory
access) operation completes. In case of direct write test, HERMES exhibits superior
performance to using EXT2 and XFS. This phenomenon becomes more dominant
in smaller I/O size. Buffered write exhibits higher performance than direct write
operation. Table 2 presents the summary of comparisons of HERMES against two

IS
S
IS
S

3043 30.31 3032 3041 3035 30.32 3041 30.19 30.05 30.06 30.18 30.09 30.07 30.17

@
=]

Mbytes/sec
Mbytes/sec
)

S

=)

o

a Read(1 GByte file) b Read(2 GByte file)

501 46.61 1 29.83

a0t 2859 0gq7 3005 29.68

30.09 31.10 31.63 30.08

Mbytes/sec
@
3
Mbytes/sec
o
S

¢ Write(1 GByte file) d Write(2 GByte file)

Fig. 12 Result of LMBENCH (I/O size: 8 KB); a raw disk, b EXT2 (buffered 1/0), ¢ XFS (buffered
1/0),d HERMES (buffered I/0), e EXT2 (non-buffered I/O), f XFS (non-buffered 1/0), g HERMES
(non-buffered I/O)

@ Springer

Multimed Tools Appl

Fig. 13 Fast-forward 35
like operation HERMES EXT2 XFS
30 f
o 25 7
[
w
®
2 20 b .
=
£
© - -
3 15
©
=
©
m 10 + -
5F 4
0

popular file systems, EXT2 and XFS. As can be seen, HERMES yields very good
performance in all aspects of the given file system performance metrics.

7.3 LMBENCH benchmark

The results of the LMBENCH [14] test are encouraging. LMBENCH benchmark
consists of tools for system performance analysis. We use Imdd command which
copies a specified input file to a specified output file. It is mainly for measuring disk
and file system performance. We test read and write performance under different
file sizes (1 and 2 GB) with 8 KB I/O. These tests are performed with two different
I/O type: buffered I/O and direct I/O. We compare the I/O performance in following
environments: raw disk partition, HERMES, EXT2, and XFS. For HERMES, EXT2,
and XFS, we examine the performance of buffered I/O and non-buffered I/O.
Figure 12a and b illustrate the results of LMBENCH read test. The result of
HERMES file system is slightly better than EXT2 and XFS file system. We can
find that HERMES well exploits raw disk bandwidth. The results of write tests are

Fig. 14 Strided read 5000
in IOZONE

4000

3000

2000

Bandwidth(KByte/sec)

1000 [

4 8 16 32 64 128 256 512 1024 2048
Record size(KByte)

@ Springer

Multimed Tools Appl

Fig. 15 Access latency with 1200

and without logical index O W/ Logical Index
O W/O Logical Index
1000 r

800] —

600

400

Access Latency(msec)

200 +

1 2 3 4 5 6 7
Experiment Number

illustrated in Fig. 12c and d. In write test, HERMES file system exhibits dominant
performance against to EXT2 and XFS. HERMES file system exhibits nearly
30 MB/s write performance in non-buffered write. On the other hand, EXT2 and
XFS exhibits 23 and 7 MB/s write performance, respectively. It is found that meta
data update and logging operation for XFS significantly affects its write performance.
In case of buffered-write, the write performance can sometimes exceed the write
performance of the physical device. The efficiency of HERMES file system is the
result of smartly designed extent structure, aggressive block allocation and i-node
structure. Details will be discussed in Section 7.6.

7.4 Performance of VCR-like operation

VCR operation include multiple speed reverse and forward playback (Fig. 13). We
examine the performance of HERMES file system under VCR-like workload. We
use two different workloads. First, VCR-like operation is simulated via repetition of
read 1 MB and seek 5 MB operations. Second, we examine the performance under

Fig. 16 Access latency of 1 T T T P Srp—
; short seek ™1
ls(l)];irctaellrilr?dlg;g seek with long seek s
o K .
__ 08} - < < - ~ o K < A
9 4R T B T I I B
& = T N B < S
= > < x o % % % > < 5
e ot 4 <4 q S [< < b 0%
o 06 r b% R A] : by 2 ¥ < 4 A
& ol |k R << I I S S I
s ” S s q| & SR : SERE
g 04r s < 3 2 S u 3 ¢ s <
@ 5 < ¢ 2 ST N S i S
€ SEERCENE S <o S I e
IS < ' o < o i 5 < 5
e SIS ST <= T I N B O A
0.2 r % o > ¢ % o % S < S
S J oI R << T e I I i< 5
% %] * o i S 9 I
S| I I T o S SEE
0 S e I O O I S S I o e
0 2 4 6 8 10

experiment index

@ Springer

Multimed Tools Appl

Fig. 17 Effect of 14
buffered pointer blocks in Long Seek
indirect access
12
10
2
ié)’ 8
>
2
g 6
©
= Short Seek Buffered Long Seek
4
2 L 4
0

strided read test in IOZONE benchmark. Strided read test of IOZONE (Fig. 14)
repeats reading a record and forward the file offset by 200 KB. Strided operation is
also used to examine the performance of VCR-like operation. HERMES file system
outperforms EXT and XFS file system.

7.5 Effectiveness of logical index and journaling

There are two main reason to support the logical index structure in HERMES. It
can facilitates the fine grain access of the frame. In addition to that incorporating
the logical index in the file system makes the disk head movement more efficient.
Multimedia contents can be supplied with the index information. In this case, the
application needs to access the contents as well as the index file. This can give rise
to excessive seek overhead. We examine the effectiveness of the logical index of
HERMES. We use the commodity MPEG player called XINE [29]. It can play
MPEG-1 and MPEG-2 encoded files. The player has slide bar in the bottom part
of the player. It enables the user to randomly access the content. When the user
moves the slide bar, the player software estimates the respective offset in the file.
With the offset, it locates the closest frame and starts playback starting from that
frame. HERMES file system contains frame offsets in its meta data structure. We
modify the XINE player to use the frame index information in random access. We
measure the latency from the slide bar is set till the player starts to play from the
respective frame. This latency includes I/O latency to access the respective frame,
time to decode the respective frame, and time to render the decoded images on the
screen. This latency is actually much larger than the I/O latency itself. We repeat
the same experiment seven times. This is very practical indicator for effectiveness of
the logical index. Figure 15 illustrates the result of the experiment. The average
latency is 720 and 825 ms for with the logical index and without the logical
index. Logical index improves the access speed by 15% on the average. Latency
of accessing data block is subject to the number of intermediate pointer blocks.
In HERMES file system, upto 270,000 frames can be accessed directly and the
frames beyond that are accessed indirectly via intermedia pointer block. We examine
the latency of short and long distance frame seek. From the beginning of a file,

@ Springer

Multimed Tools Appl

Fig. 18 LMBENCH (file size: oRead m Write
2 GB, I/O unit size: 512 KB)

N
o

wW
o
T

26.7 26.8

Mbytes/sec
n
o

-
o
T

o

RAW EXT2 (Direct I/O) XFS (Direct /0) HERMES (Direct I/0)

we access the 100,000th frame (short distance seek) and 300,000th frame (long
distance seek) via logical index, respectively. We use the same method to measure
the latency as in Fig. 15. Figure 16 illustrates the result of the experiment. User
experiences approximately 10% longer latency in long distance seek. Once the
pointer block is read into buffer cache, the latency of long distance seek decreases
significantly. The latency of short distance seek and the long distance seek becomes
approximately the same. Figure 17 illustrates the result of the experiment. Initially,
short and long seek takes 3.3 and 11.2 ms, respectively. When we perform long
seek operation again to different data block with pointer block being the same,
then the latency of long seek drops to 3.3 ms. This is because the pointer block
is cached into memory. Therefore, the overhead of access the indirect block is
insignificant. HERMES journaling scheme successfully makes the file system robust
against unexpected system crash. After system crashes, HERMES uses journaling
information to examine the file system integrity and quickly recovers important
meta data.

7.6 Anatomy of disk behavior

The result of several benchmark tests show that HERMES file system has superior
performance to EXT2 and XFS file system. We examine why HERMES file system
works better. We first visualize the disk head movement in each file system and
perform trace driven simulation to closely examine the disk performance behavior.
We perform LMBENCH test (2 GB file and 512 KB 1/O) and extract I/O trace using
Trace Tool [3]. Each disk trace record contains read/write flag, device major number,
device minor number, number of requested sectors, requested sector number, and
time of request in 10 ms unit. With this information, we can visualize the disk
head movement. We feed the disk trace to Disksim [8] simulator and examine the
various disk behavior. In particular, Disksim generates disk seek time, disk rotational

Table 3 Number of I/O requests

Read (non-buffered 1/0) Write (non-buffered 1/0)
LMBENCH 4,096 4,096
EXT?2 (disk trace tool) 5,140 5,197
XFS (disk trace tool) 4,120 4,272
HERMES (disk trace tool) 4,098 4,103

@ Springer

Multimed Tools Appl

latency, disk positioning time and various system statistics. Each statistic consists of
the average value, the standard deviation, and the maximum value.

6 6
5x 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 5 x 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
4t 1 4t P
- - 1
8 3
€9 1 €
=} =1
z z
S S
S 2 1 kst
[Jo
(%] (%]
1t)
0 0 . .
1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001
Request Number Request Number
a EXT2(Read) b EXT2(Write)
6 6
5x 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 1Gx 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
41] 8
— / [
3 o 3
€3 g6
=] 3
z z
8 8
82r S 4 ‘
(%] (%]
1t 2 ‘
\
0 ' ' y ' ' y 0 : ' y ' y
1 501 1001 1501 2001 2501 3001 3501 4001 1 501 1001 1501 2001 2501 3001 3501 4001
Request Number Request Number
¢ XFS(Read) d XFS(Write)
6 6
5x 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 5 x 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
41 q 4t /
5 g
£ 3 1 £ 9] 1
=] 3
z z
S S
° 2 1 o 2r 1
L9 @
(%] (%]
1r 1 1r 1
1 501 1001 1501 2001 2501 3001 3501 4001 1 501 1001 1501 2001 2501 3001 3501 4001
Request Number Request Number
e HERMES(Read) f HERMES(Write)

Fig. 19 Disk head movement for non buffered I/O
@ Springer

Multimed Tools Appl

Figure 18 illustrates the result of LMBENCH benchmark of non-buffered I/0
test. LMBENCH generates total of 4,096 I/O requests. However, we can find that
more than 4096 requests are issued to disk (Table 3). This is due to meta data
update operations. We can find that file system with complex meta data structure,
e.g. EXT?2 file system, splits one request in user level to two or more requests in disk
I/O device. EXT?2 file system issued more than five thousand requests to disk I/O
device. HERMES file system, on the other hand, does not generate as many requests
as EXT?2 or XFS. This is because file system and meta data structure is simple and
therefore writing data block does not accompany as many meta data update as in the
case of XFS and HERMES.

Figure 19 illustrates disk head movement. X-axis denotes the request number and
Y-axis denotes the respective sector number. As can be seen, most of the sector
numbers linearly increase as I/O proceeds. However, in EXT2 file system, there
exists occasional glitches. These glitches are at the beginning of the disk or beginning
of the block group. EXT2 file system partitions the entire partition into group of
cylinders called block group. Metadata information within block group is kept at the
beginning of each block group. That is for the file meta data and file system meta data

Daverage Mstd.dev Omaximum Daverage ®std.dev Omaximum

9000 10
8000 or
7000 8r
6000 T
8 6y
S 5000t ®
2 £
2 4000t al
3000 al
2000 ol |
1000 t 1t 1
: 0
EXT2 XFS HERMES EXT2 XFS HERMES
a Seek distance b Seek time
\ Daverage Mstd.dev O maximum \ Daverage M std.dev Omaximum
9 : : : 16 - - -
8t 14l —
7r 1ol
6k
10+
3 5f
g g8
3 47 =
6t
3l
2t 4
10 2r
0
EXT2 XFS HERMES EXT2 XFS HERMES
¢ Rotational latency d Positioning time

Fig. 20 Disk performance analysis: non-buffered read

@ Springer

Multimed Tools Appl

[Daverage mstd.dev Omaximum [Daverage mstd.dev Omaximum |

9000 12

8000} —

70001

60001
3
2 5000f ®
£ £
2 t =
2 4000

30001

20001

10001

- 0
EXT2 XFS HERMES EXT2 XFS HERMES
a Seek distance b Disk Seek time
\ Daverage W std.dev Omaximum \ Daverage M std.dev O maximum

9 ‘ ‘ ‘ 20 ‘ ‘ ‘

8f] []] 18} —

7t 161

14+
6h
12r

35t 8
g s
Saf z

al

ol

4t

ol L]

EXT2 XFS HERMES EXT2 XFS HERMES
¢ Disk Rotational latency d Disk Positioning time

Fig. 21 Disk performance analysis: non-buffered write

update. This is why position of meta data increases with the I/O requests. In XFS, it
occasionally accesses the beginning of the partition as well as the end of the partition.

This detailed examination shows that the file system organization and file organi-
zation of HERMES are effectively designed to reduce the disk overhead. Figures 20
and 21 illustrates various statistics from Disksim simulator for read and write test.
As is shown, HERMES file system yields the most efficient disk head movement
overhead. In all statistics, HERMES file system is superior to EXT2 and XFS
file system.

8 Conclusion

Embedded systems such as PVR, set-top box, HDTV put unique demand on I/O
subsystem design. The underlying software, particularly file system, needs to be
elaborately designed so that it can meet tight constraints of consumer electronics
platform: performance, price, reliability, and etc. In this work, we develop state-of-
art file system elaborately tailored for embedded environment of A/V workload.

@ Springer

Multimed Tools Appl

There are two design objectives in our file system: performance and logical level
abstraction. For performance optimization, we use extent based allocation, single
level file structure with block index augmentation scheme and aggressive free block
allocation. HERMES enables the user to view file as a collection of semantic units
(frame or audio samples). Frame reference structures are elaborately designed so
that it can encompass sufficient number of frames. HERMES file system exports a
number of interfaces for frame level file treatments.

Via extensive physical experiment, we verify that HERMES file system suc-
cessfully addresses a number of issues. HERMES file system exhibits very good
scalability. To efficiently support several sequential I/O sessions, we carefully design
the file system organization, free block allocation algorithm, data block placement
strategy and file organization and placement. Performance experiment shows that
that HERMES file system becomes more efficient as the number of sessions in-
creases. HERMES file system bears relatively more predictable I/0O latency. Skewed
tree like file structure in legacy Unix family file system negatively affects the variance
in I/O latency. We develop single level tree structure with pointer augmentation
scheme. Experimental results confirm that HERMES file system yields much more
predictable I/O behavior than other file systems. We closely examine the disk head
movement behavior in HERMES file system. This is to analyze the meta data, file
data, journaling data access patterns. This microscopic analysis and trace driven
simulation reveals that the good performance of HERMES file system is originated
from its efficient file system organization and layout. The result of performance
experiments indicate that HERMES file system prototype successfully meet the file
system constraints for high volume and high bandwidth multimedia application.

Acknowledgements In addition to authors, there a number of people who have made significant
contribution in making HERMES file system into existence. Authors would like to thank Hyungkyu
Jang and Jaemin Ryu for their dedicated work for HERMES file system. This work was supported
by grant No. R08-2003-000-11104-0 from the Basic Research Program of the Korea Science &
Engineering Foundation, SDR Research Center at Hanyang University and SRCCS at Seoul
National University.

References

1. Ahn B-S, Sohn S-H, Kim C-Y, Cha G-I, Back Y-C, Jung S-I, Kim M-J (2004) Implementation
and evaluation of extns multimedia file system. In: Proceedings of ACM multimedia conference,
New York, NY, USA, pp 588-595 (Oct)
2. Bolosky W1J, Fitzgerald RP, Douceur JR (1997) Distributed schedule management in the tiger
video fileserver. ACM SIGOPS Operat Syst Rev, 31
3. Brigham Young University Performance Evaluation Laboratory. Dtb: Linux disk trace buffer.
Auvailable: http:/traces.byu.edu/new/Tools/
4. Chen M-S, Kandlur DD, Yu PS (1993) Optimization of the grouped sweeping scheduling (GSS)
with heterogeneous multimedia streams. In: ACM Multimedia ’93, pp 235-242
5. Chiueh T, Niranjan TH, Schloss GA (1997) Implemenation and evaluation of a multimedia file
system. In: Proceedings of international conference on multimedia computing and systems
6. Dimitrijevic Z, Rangaswami R (2003) Quality of service support for real-time storage systems.
In: Proceedings of international IPSI-2003 conference (October)

. File system benchmark tool. Available: http://www.iozone.org

. Ganger GR, Worthington BL, Patt YN (1998) The disksim simulation environment. Techni-
cal report CSE-TR-358-98, Dept. of Electrical Engineering and Computer Science, Univ. of
Michigan (February)

o 3

@ Springer

http://traces.byu.edu/new/Tools/
http://www.iozone.org

Multimed Tools Appl

10.
11.

12.

13.

14.
15.
16.

17.

18.

19.

20.

21.
22.

23.
24.

25.
26.
27.
28.

29.
. Zimmermann R, Fu K (2003) Comprehensive statistical admission control for streaming media

. Gemmell D, Vin H, Kandlur D, Rangan P, Rowe L (1995) Multimedia storage servers: a tutorial.

Computer 28(5):40-49 (May)

Haskin RL (1998) Tiger shark-a scalable file system for multimedia. IBM J Res Dev 42:185-197
Jeon J, Won Y, Ahn S (2001) Performance analysis of non-stationary model for empirical VBR
process. In: IEEE Globecom, pp 2435-2439

Kim T, Won Y, Koh K (2005) Apollon: file system support for qos augmented i/o. In: Proceedings
of pacific rim conference on multimedia (PCM ’05) also in lecture note in computer science series
from Springer, Jeju, Korea (Dec)

Lee W, Su D, Wijesekera D, Srivastava J, Kenchammana-Hosekote D, Foresti M (1997) Exper-
imental evaluation of pfs continuous media file system. In: Proceedings of CIKM, Las Vegas,
Nevada, USA, pp 246-253

McVoy L, Staelin C (1996) Lmbench: portable tools for performance analysis. In: Proceedings of
USENIX 1996 annual technical conference, San Diego, California (Jan)

Mokbel MF, Aref WG, Elbassioni K, Kamel 1 (2004) Scalable multimedia disk scheduling.
In: Proceedings of the 20th international conference on data engineering, pp 498-509 (March)
Ozden B, Biliris A, Rastogi R, Silberschatz A (1994) A low-cost storage server for movie on
demand databases. In Proc. of VLDB 94

Park J, Won Y, Srivastava J (2001) SMART: yet another file system for multimedia streaming.
In: Proceedings of international conference on distributed multimedia systems, Taipei, Taiwan
(Sep)

Rangan P, Vin H, Ramanathan S (1992) Designing an on-demand multimedia service. IEEE
Commun Mag 30(7):56-65 (July)

Rompogiannakis Y, Nerjes G, Muth P, Paterakis M, Triantafillou P, Weikum G (1998) Disk
scheduling for mixed-media workloads in a multimedia server. In: Proceedings of ACM
multimedia ’98, Bristol, UK, pp 297-302

Shenoy PJ, Goyal P, Rao SS, Vin HM (1998) Symphony: an integrated multimedia file
system. In: Proceedings of SPIE/ACM conference on multimedia computing and networking
(MMCN’98), San Jose, CA, USA, pp 124-138 (Jan)

Shenoy PJ, Vin HM (1998) Cello: disk scheduling framework for next generation operating
system. In: Proceedings of ACM SIGMETRICS, Madison, WI, USA, pp 44-55

Sweeney A (1996) Scalability in the xfs file system. In: Proceedings of USENIX annual technical
conference, San Diego, CA, USA (Jan)

Tweedie S (1998) Journaling the linux ext2fs filesystem. In: LinuxExpo 98

Wang C, Goebel V, Plagemann T (1999) Techniques to increase disk access locality in the
minorca multimedia file system. In: Proceedings of the 7" ACM multimedia

Wijayaratne R, Reddy ALN (2001) System support for providing integrated services from
networked multimedia storage servers. Presented at ACM multimedia

Won Y, Park J, Ma S (2002) Hermes: file system support for multimedia streaming in internet
home appliance. Lect Notes Comput Sci 2510:484-500 (Oct)

Won Y, Ryu YS (2000) Handling sporadic tasks in multimedia file system. In: Proc. of ACM
multimedia conference *00, Los Angelses, CA, USA

Won Y, Srivastava J (2000) SMDP: minimizing buffer requirements for continuous media
servers. Multimedia Syst 8(2):105-117

xine player. http://xinehq.de

servers. In: Proceedings of 11" ACM multimedia conference, Berkeley, CA, USA, pp 75-85

@ Springer

http://xinehq.de

Multimed Tools Appl

Youjip Won received the B.S. and the M.S. degree in Computer Science from Department of
Computer Science and Statistics, Seoul National University, Korea in 1990 and 1992, respectively and
Ph.D in Computer Science from the University of Minnesota, Minneapolis in 1997. After graduation,
he worked for Server Architecture Lab, Intel as Server Performance Analyst till 1999. Since 1999, he
has been on board of faculty members in Dept. of Electrical and Computer Engineering, Hanyang
University, Seoul, Korea, where he is now Associate Professor. His research interests include
Operating System, Computer Networks, Multimedia, Performance Analysis.

Doohan Kim received the B.S. degree in Electronics Engineering from KyungWon University in
2002. and M.S. degree in Dept. of Electrical and Computer Engineering from Hanyang University in
2004. He is currently working for Samsung Electronics GSM Mobile Telecommunication Business
as a development engineer. His research interests include Operating System, Embedded System and
Computer Architecture.

@ Springer

Multimed Tools Appl

Jinyoun Park received the B.S. degree in Electronics Engineering from Hanyang University in 2000.
and M.S. degree in Dept. of Electrical and Computer Engineering from Hanyang University in 2002.
He is currently working for LG Electronics Digital Media Lab as a embedded system engineer. His
research interests include embedded system and wireless network.

Sichang Lee received the B.E. degree in Computer Engineering from Department of Electronic
Computer Engineering, Dankook University, Korea in 2003 and the M.S. degree in Computer
Science from Department of Electronic Computer Engineering, Hanyang University, Korea in
2006. He is currently working for Network R & D Center, Tellion, Seoul, Korea, where he is now
junior engineer. His research interests include Computer Architecture, Operating System, Computer
Networks.

@ Springer

	HERMES: embedded file system design for A/V application
	Abstract
	Introduction
	Motivation
	Related works

	Synopsis: Unix file system
	Structure of i-node in Unix file system
	Partition layout in Unix file system

	HERMES file system structure
	File system organization
	File organization

	File as a collection of frames
	Free block allocation
	Journaling in HERMES
	File system journaling
	Designing journaling scheme for HERMES

	Performance experiment
	Streaming workload
	IOZONE benchmark test
	LMBENCH benchmark
	Performance of VCR-like operation
	Effectiveness of logical index and journaling
	Anatomy of disk behavior

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

