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Abstract—In this work, we focus on optimizing the deduplication system by adjusting the pertinent factors in fingerprint lookup and

chunking, the factors which we identify as the key ingredients of efficient deduplication. For efficient fingerprint lookup, we propose

fingerprint management scheme called LRU-based Index Partitioning. For efficient chunking, we propose Incremental Modulo-K(INC-K)

algorithm which is optimized Rabin’s algorithm where we significantly reduce the number of arithmetic operations exploiting the algebraic

nature of modulo arithmetic. LRU-based Index Partitioning uses the notion of tablet and enforces access locality of the fingerprint lookup

in storing fingerprints. We maintain tablets with LRU manner to exploit temporal locality of the fingerprint lookup. To preserve access

correlation across the tablets, we apply prefetching in maintaining tablet list. We propose Context-aware chunking to maximize chunking

speed and deduplication ratio. We develop prototype backup system and performed comprehensive analysis on various factors and their

relationship: average chunk size, chunking speed, deduplication ratio, tablet management algorithms, and overall backup speed. By

increasing the average chunk size from 4 KB to 10 KB, chunking time increases by 34.3 percent, deduplication ratio decreases by

0.66 percent and the overall backup speed increases by 50 percent (from 51.4 MB/sec to 77.8 MB/sec).

Index Terms—Deduplication, chunking, backup, index partitioning, fingerprint lookup.
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1 INTRODUCTION

1.1 Motivation

THE recent introduction of digital TV, digital camcorders,
and other communication technologies has rapidly

accelerated the amount of data being maintained in digital
form. In 2007, for the first time ever, the total volume of
digital contents exceeded the global storage capacity, and it
is estimated that by 2011 only half of the digital information
will be stored [1]. Further, the volume of automatically
generated information exceeds the volume of human
generated digital information [1]. Compounding the pro-
blem of storage space, digitized information has a more
fundamental problem: it is more vulnerable to error
compared to the information in legacy media, e.g., paper,
book, and film. When data is stored in a computer storage
system, a single storage error or power failure can put a
large amount of information in danger. To protect against
such problems, a number of technologies to strengthen the
availability and reliability of digital data have been used,
including mirroring, replication, and adding parity infor-
mation. In the application layer, the administrator replicates
the data onto additional copies called “backups” so that that
the original information can be restored in case of data loss.

Due to the exponential growth in the volume of digital
data, the backup operation is no longer routine. Further,
exploiting commonalities in a file or among a set of files when
storing and transmitting contents is no longer an option. By
properly removing information redundancy in a file system,
the amount of information to manage is effectively reduced,

significantly reducing the time and space requirement of
managing information, e.g., backups. Fig. 1 schematically
illustrates the effect of data deduplication.

The deduplication module partitions a file into chunks,
generates the respective summary information, which we call
a fingerprint, and looks up Fingerprint Table to determine if
the respective chunk already exists. If it does not exist, the
fingerprint value is inserted into Fingerprint Table. Chunk-
ing and fingerprint management is the key technical
constituents which governs the overall deduplication per-
formance. There are a number of ways for chunking, e.g.,
variable size chunking, fixed size chunking, or mixture of
both. There are a number of ways to managing fingerprints.
Legacy index structure, e.g., B+tree, and hashing does not fit
for deduplication workload. A sequence of fingerprints
generated from a single file(or from a set of files) does not
yield any spatial locality in Fingerprint Table. On the same
token, a sequence of fingerprint lookup operations can result
in a random read on Fingerprint Table, and therefore each
fingerprint lookup can result in disk access. Given that most
of the deduplication operation needs to be performed online,
it is critical that fingerprint lookup and insert is performed
with minimal disk access.

In this work, we identify two key technical ingredients in
the deduplication backup system, chunking and fingerprint
lookup and develop novel mechanisms to address each of
these issues. The contribution of our work is three folds.
First, we develop a novel chunking method called context-
aware chunking. In context-aware chunking, we exploit the
algebraic nature of the modulo arithmetic and develop the
Incremental Modulo-K algorithm, which significantly reduces
the computational overhead of signature generation. We
adaptively apply a fixed size or variable size chunking
subject to the file type.

Second, we develop an efficient fingerprint management
scheme called LRU-based index partitioning. We partition a
fingerprint table into smaller sized tables called tablets which
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is a few MB. When inserting a sequence of fingerprints to a
tablet than to a large size table, we place a sequence of
fingerprint values onto the disk in a clustered manner. With
the index partitioning, we can enforce the spatial locality of
the fingerprint lookup sequence via confining the search
range into a relatively smaller file. The fingerprint lookup
overhead, however, can linearly increase with the number of
tablets. To minimize the overhead of the scanning tablets,
we maintain the access history of the tablets as the LRU list
and we prefetch the next tablet.

Third, by physical experiment, we study the performance
relationship between the chunking and fingerprint lookup
overheads. While numerous preceding works have focused
on developing novel chunking algorithms and fingerprint
lookup techniques, few works have paid attention to the
relationship between the two. Chunking a file in larger
granularity makes the chunking process more time con-
suming but makes the fingerprint lookup faster. It is very
important to identify the appropriate set of tuning knobs
and to properly orchestrate the chunking process and the
fingerprint lookup in order to improve the overall dedupli-
cation performance. We put particular effort in performing
physical experiment in comprehensive manner and in its
analysis. We develop prototype backup system and perform
extensive experiment to analyze the performance behavior
of the given technique. We use six different average chunk
sizes, eight chunking algorithms, four fingerprint manage-
ment algorithms, and three different data sets. We examine
the relationships among the average chunk size, chunking
speed, deduplication ratio, backup speed under different
combinations of above mentioned factors.

There are a number of important lessons in this study.
LRU-based index partitioning exhibits very good scalability
and can fully exploit the disk bandwidth. Fixed-size
chunking works well with regard to both the backup
bandwidth and the degree of redundancy detection. This is
because large files, which constitute the dominant fraction
of the data volume, are multimedia files. These files are
either identical or entirely different. On the other hand,
small text files, e.g., source codes, have many commonalities

across different versions of the operating system source
code tree. However, these files are usually small and
detecting commonalities in them may not justify the efforts
of variable-size chunking. Chunking the file(s) in finer
granularity enabled us to more quickly generate variable-
size chunks and to find more commonalities among them.
However, we also found that chunking significantly
increases the fingerprint lookup overhead. By increasing
the target pattern size from 11 bits to 13 bits, the
deduplication detection rate decreased by two percent and
the chunking performance decreased from approximately
150 MB/sec to 100 MB/sec with files being in memory.
However, the overall deduplication speed increased from
51 MB/sec to 77 MB/sec.

1.2 Related Works

There largely exist three approaches for reducing the size of
information: delta encoding, duplication elimination, and
compression. Each of these techniques is used independently
or in a combined manner to improve the space efficiency and
network bandwidth utilization. Delta encoding stores only
the differences between sequential data. It is a common and
efficient method to reduce data redundancy when changes
are small. It is used in many applications including source
control [2] and backup [3]. Kalkarni et al. [4] proposed
redundancy elimination at block level (REBL), which is a
combination of block suppression, delta encoding, and
compression.

Backup applications also exploit information redun-
dancy to reduce the amount of information to be backed
up [5], [6], [7]. In a distributed file system, the deduplication
technique has been used to reduce the network traffic
involved in synchronizing file system contents between a
client and a server [8]. In a SAN file system, when different
files share an identical piece of information, each file
harbors the pointer to the shared data chunk instead of
maintaining redundant information [9]. Detecting informa-
tion redundancy is widely used when locating the docu-
ment source for a multisource download application [10].
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The web environment is an important area for duplication
detection and elimination. These applications compute the
fingerprints of the contents in the proxy server and
eliminate the retrieval of the same data [11], [12].

Won et al. found that chunking is one of the major
overheads for the deduplication process [13], [6]. There are
a two basic approaches in partitioning a file: variable-size
chunking and fixed-size chunking. A number of preceding
works have adopted fixed-size chunking for backup
applications [14] and large-scale file systems [9]. The
variable-size chunking algorithm is widely used in various
application domains of duplication elimination such as
backups, file systems, and data transfers [12], [15], [10], [8],
[16], [7]. Policroniades et al. examined the effectiveness of
variable-size chunking and fixed-size chunking using
website data, different data profiles in academic data,
source codes, compressed data, and packed files [17]. A few
works proposed to apply variable size chunking and fixed
size chunking based upon the characteristics of the file. Liu
et al. proposed ADMAD scheme [18] which applies
different file chunking methods based upon the metadata
of individual files. Context-Aware chunking proposed in
our work shares the basic idea with Liu’s work. However,
we only use file extension rather than all file metadata to
reduce the overhead of accessing file metadata. Meister
et al. exploited the file characteristics, e.g., compressed file,
email archive, etc., in chunking a file [19] and analyzed the
deduplication efficiency under various chunking schemes.
While they show that delta encoding yield the best
deduplication ratio in desktop applications, e.g., MS Office,
Zip, compared to variable size and fixed size chunking, they
did not address the issue of excessive fingerprint generation
in delta encoding. Mandagere et al. examine the effect of
different chunking methods (fixed size chunking, variable
size chunking) and different chunk size settings over
deduplication performance metrics: fold factor, reconstruc-
tion overhead, and CPU utilization [20]. They did not
examine effect of chunk size over entire backup speed, on
which we perform comprehensive study. Similar with
Meister’s work [19], the reduction on redundancy detection
rate is marginal, from 34.9 to 33.2 percent when chunk size
increase from 8 to 16 KB. Instead of deduplicating files at
chunk granularity, Bolosky et al. proposed a method to
detect duplicate data using file granularity [21]. Deep Store
is designed to adaptively accommodate different types of
chunking mechanisms [22].

There are a number of aspects to expedite the fingerprint
lookup. The first issue is to introduce main memory filter.
To avoid disk I/O when looking up the index, a main
memory filter called the Bloom filter [23] has been
introduced in various applications including backups [7],
distributed file systems [24], and web proxies [11]. The
important question yet to be answered is the relationship
between the false positive rate and the overall lookup
performance. Mitzenmacher [11] made the interesting
observation that minimizing the false positive rate of the
Bloom filter did not necessarily yield the optimal perfor-
mance of the web proxy lookup. Rather, sacrificing the false
positive rate and making the bit vector of the Bloom filter
more compressive actually improves the fingerprint lookup

overhead. The second aspect is to reduce the number of

fingerprints used in comparison. Lillibriged et al. proposed

to use sampling to reduce the number of fingerprints. It can

reduce the memory requirement and the degradation in

deduplication ratio is reasonable [25]. They constructed a

sparse index that contained sample chunks and mapped the

chunks to their reference segments. Bobbarjung et al.

proposed hierarchical way of maintaining chunks and the

respective redundancy checking algorithm, fingerdiff [26].

They proposed to make chunk size smaller, e.g., 1 KB, and

maintain a set of chunks as a single unit. They aimed at

improving the deduplication ratio by using small chunk

and reducing the number of comparisons by maintaining a

group of chunks as a single unit. This approach does not

work when there is a significant change in chunk size, i.e.,

removal or insertion of data. To reduce the number of

comparison, Aronovich et al. proposed to maintain sum-

mary information in larger unit, e.g., 10 MB, and dedupli-

cate the data based upon its similarity with the existing data

[27]. To reduce the overhead of fingerprint lookup,

Hamilton et al. maintain fingerprints in hierarchical

manner. They maintain tree of fingerprints where a parent

node’s fingerprint is the hash value of the fingerprints of the

child nodes [28]. Bhagawat et al. exploit the file similarity

instead of locality in deduplication [29]. Their work

manifests itself when backing up a set of small files arriving

from different hosts. Third approach is to reduce the disk

overhead in fingerprint lookup. The key ingredient is to

enforce access locality in storing fingerprints at the storage.

Zhu et al. [7] proposed a technique called SISL, where they

simply append the incoming fingerprints at the end of

existing table. Spyglass, a file metadata search system,

proposed hierarchical partitioning of name space organiza-

tion for performance and scalability [30]. Spyglass exploits

namespace locality to improve performance since the files

that satisfy a query are often clustered in only a portion of

the namespace.
Since a number of files share same piece of information,

loss of a chunk may result in loss of multiple files. A

number of works addressed the reliability issue in

deduplication. To enhance reliability of deduplicated data,

Liu et al. proposed to form a set of variable size chunks into

fixed size objects and to append ECC [31]. Bhagawat et al.

proposed to apply different levels of replication for each

chunk [32]. They proposed to determine replication level

based upon the amount of information loss when the

respective chunk becomes unavailable.
Recently, Efstathopoulos et al. dealt with the issue of

chunk garbage collection. They proposed a mechanism

called grouped mark-and-Sweep [33].
The rest of this paper is organized as follows: Section 2

describes the organization of PRUNE. Section 3 describes
the fingerprint lookup mechanism of PRUNE including
index partitioning and the relationship between the false
positive rate and the overall deduplication performance.
Section 4 describes context-aware chunking. Section 5
presents the result of our experimental study, and Section 6
concludes the paper.
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2 SYSTEM OVERVIEW

2.1 System Organization

PRUNE(Prompt Redundancy Elimination) is designed for
distributed environment where backups are located at a
remote site.1 We use the terms “client” and “server” for the
location of the original data to be backed up and the
location of the backup files, respectively. Deduplication
consists of three components: chunking, fingerprint gen-
eration, and detection of redundancy.

There are four modules on the client side: Chunking
Module, Fingerprint Generator, Fingerprint Manager, and
Backup Generator. Chunking Module partitions a file into a
number of fragments called chunks. For each chunk, PRUNE
generates summary information to expedite the process of
chunk comparison. Fingerprint Generator generates finger-
print for each chunk. Cryptographic hash function, e.g.,
SHA-1 [34], MD5 [35], or SHA-256 [34] can be used to
generate the fingerprint. PRUNE currently uses SHA-1 as in
[13]. It generates 160 bit fingerprint for each chunk.
Fingerprint Manager is responsible for the “insert,” “delete,”
and “search” of the fingerprints in Fingerprint Table. The
efficient management of Fingerprint Table is one of the key
factors of success in the deduplication system. In this work,
we develop LRU-based index partitioning scheme in order
to manage Fingerprint Table. We will delve into details of
this in Section 3. Backup Generator is responsible to
assemble a sequence of chunk information along with the
appropriate metadata and to create backup object called
Backup Stream. Backup Generator transfers backup data in
header-data streaming fashion described in Fig. 4a.

There are four modules on the server side: Backup
Stream Parser, Fingerprint Manager, Chunk Manager, and
Restore Module. In the server, the Backup Stream Parser
receives incoming byte stream and assembles them into the
object called Backup History. Fingerprint Manager at the
server is responsible for inserting a fingerprint to fingerprint
database or finding the location of the chunk with a given
fingerprint. The Chunk Manager at the backup server
receives Chunk Data from the Backup Stream Parser and
stores it in Chunk Repository. Chunk Manager returns the
location of the chunk to the Fingerprint Manager. Finger-
print Manager maintains the chunk location for each

fingerprint. The Restore Module in the server is responsible

for constructing the Restore Stream(Fig. 4c) based upon the

Backup History. Fig. 2 illustrates the overall system

organization of PRUNE.

2.2 Chunking Module

Chunking is the operation of scanning a file and partition-

ing it into pieces. Each file piece is called a chunk and is a

unit of redundancy detection. There are two types of

chunking: fixed-size chunking and variable-size chunking.

For fixed-size chunking, a file is partitioned into fixed size

units, e.g., 8 KB blocks. Fixed-size chunking is conceptually

simple and fast. However, this method has an important

drawback: when a small amount of data is inserted into a

file or deleted from a file, an entirely different set of chunks

is generated from the updated file. To effectively address

this problem, variable-size chunking, which is also known

as content-based chunking, has been proposed [8].
For variable-size chunking, the chunking boundary is

determined based on the content of Chunk Data, not on the

offset from the beginning of the file. The Basic Sliding

Window algorithm slides the window from the beginning

of a file, one byte at a time (Fig. 3). A window is a byte

stream of a given length. We generate a signature for the

window and determine if it matches the predefined pattern

called the “target pattern.” If the signature matches the

target pattern, the end position of a window is set at the end

of the chunk. Otherwise, the window is shifted by one byte

and the signature is generated again. Partitioning the file

based on its content is a very CPU-demanding process [13].

Efficient chunking is one of the key ingredients that governs

the overall deduplication performance.
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1. PRUNE at its very inception stage has been published at Won et al.

[13]. PRUNE has gone through complete overhauling since then.



Let us provide an example. We assume that the average
chunk size was 8 KB. For a 10 MB file, there will then be
1,280 chunks. When the minimum chunk size is set to 2 KB,
creating an 8 KB chunk implies that there exist approxi-
mately six thousand signature computations and compar-
isons. With an 8 KB average chunk size, the ratio between
the number of chunks and the total number of signature
operations (computations and comparisons) is 1:6,000.
Henceforth, the number of signature computations is at
least three orders of magnitudes larger than generating
summary information of a chunk.

2.3 Fingerprint Generator

Fingerprint Generator generates the summary information
for each chunk. We call is a fingerprint. To expedite the
comparison, we examine the fingerprints of the chunks,
instead of performing a byte-level comparison between two
chunks. Some existing works [9], [8] state that the
probability of a SHA-1 collision is much smaller than the
hardware failure rate, and therefore we do not need to
consider deduplication failure. Henson [36], however,
stated that this probability should be used with discretion
primarily because backup file lasts orders of magnitude
longer than the hardware. Fingerprint Generator creates
fingerprint for a chunk and passes the fingerprint to
Fingerprint Manager.

2.4 Fingerprint Manager

Fingerprint Manager at the client and Fingerprint Manager
at the server are responsible for detecting redundancy and
for locating the respective chunk in Chunk Repository,
respectively. Fingerprint Manager at the client is respon-
sible for lookup and insert of the fingerprint to the existing
set of fingerprints. In PRUNE, we maintain fingerprints as
the collection of small fingerprint table called tablets.
Fingerprint Manager maintains an array of pointers whose
entry points to the individual tablets.

In the client, when a fingerprint is passed to Fingerprint
Manager, it searches the list of tablets to see if a given
fingerprint is redundant.

We use commodity DBMS(Berkeley DB [37]) for lookup
and insert for each tablet. One table in the list is designated
as current. If the fingerprint is new, it is inserted at the
current tablet. If current table reaches predefined maximum
tablet size, new tablet is created and the newly created
tablet is set as “current.”

In our system, Fingerprint Tables reside in both the client
and the server. Fingerprint Table in the client contains only
fingerprint values and is primarily used for duplicate
detection. The server side Fingerprint Table is primarily

used to locate the respective chunk data. The server side
Fingerprint Table carries the fingerprint, the size of the
chunk data, the reference count of the chunk that denotes
the number of shared files, and the location of the chunk
data that is represented by <file id, offset> of Chunk
Repository, which is harbored by the server and consists
of a number of chunk archives.

In the server, Fingerprint Manager examines fingerprint
table and identifies the location of a given chunk based
upon fingerprint.

2.5 Data structures

There are three important backup objects in PRUNE:
Backup Stream, Backup History, and Restore Stream.
Figures in Fig. 4 illustrate the organization of these data
structures. Backup Stream is a sequence of bytes generated
at the client. Backup Stream is generated by Backup
Generator at the client and sent to server. Backup Stream
consists of the Backup Header and a set of file information
(Fig. 4a). Backup Header consists of Prune version and
Backup requested time. The file information is composed of
File Header and the array of chunk information. Each chunk
information consists of Chunk Header, and Chunk Data. If a
certain chunk is redundant, Chunk Data field is empty.
Fingerprint of a chunk is stored at Chunk Header field.
Chunk Type field of Chunk Data can be in one of three
states: original, compressed, or redundant. When Chunking
Module is informed that the given chunk is nonredundant,
Chunking Module passes the chunk to Backup Generator.
When a user starts backup session, the user specifies
whether chunks are to be compressed or not. If compression
option is specified, Chunking Module compresses each
chunk data before passing it to Backup Generator. When
Chunking Module is informed that a given chunk is
redundant, Chunking Module passes only chunk metadata
to Backup Generator. Backup Generator sets the value of
Chunk type field when it creates Backup Stream. When a
chunk is compressed, the original size and the size of the
compressed chunk are different. Chunk Header carries
fields for both of these sizes. Table 1 illustrates the details of
Backup Header, File Header, and Chunk Header.

Backup server receives incoming packets, reassembles
the packets into the object called Backup History. Fig. 4b
illustrates the organization of Backup History. The structure
of the Backup History is precisely identical to the Backup
Stream except that Backup History does not have Chunk
Data. When Chunk Data arrives at the server, Chunk
Manager stores them at Chunk Repository. When an
incoming Chunk Header is marked as redundant, server
side Fingerprint Manager examines the fingerprint database
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Fig. 4. Data structure of PRUNE. (a) Backup Stream, (b) Backup History, (c) Restore Stream.



and returns the location of the respective chunk. Chunk
Header of the Backup History is set to the location of the
respective chunk.

Restore Stream is reconstructed based upon the Backup
History. Restore Stream is created via replacing all Chunk
Header in Backup History object with actual chunk. If
chunk is stored at Chunk Repository in compressed form, it
is first uncompressed and then put into Restore Stream.
Restore Stream is built after referencing Backup History and
consolidating one or more Chunk Data into integrated files.
Usually Restore Stream is passed to the client and is used to
restore files and directories. Fig. 4c illustrates the structure
of the Restore Stream. Restore Stream has similar data
structure with TAR.

3 LRU-BASED INDEX PARTITIONING

3.1 Filter-Based Fingerprint Lookup

Detecting redundancy consists mainly of two tasks: chunking
and fingerprint lookup. Chunking is a very CPU-demanding
process. Fingerprint lookup is a key technical ingredient for
efficient deduplication. Let us provide an example. Assume
that the data size is 30 TB and that the average chunk size is
8 KB. There are then approximately 3.75 billion chunks. If we
use a 160 bit SHA-1 fingerprint (20 B), the total number of
fingerprints corresponds to 75 GB excluding any managerial
overhead (such as a pointer, the fill factor of the database
table, and an additional index table). Updating and searching
the 75 GB table is a nontrivial operation especially when it
needs to be performed online.

We use a Bloom filter to determine whether or not a
given fingerprint exists in Fingerprint Table (Fig. 5). To
estimate whether an element is in a set, many preceding
works [38], [7], [24], [39] have used the memory-based filter
developed by Bloom [23]. Consulting the Bloom filter does
not entail disk traffic. It is a very effective method to reduce
disk traffic for index lookup. It is particularly effective when
most of the lookups result in positive results. A Bloom filter
consists of k hashing functions, h1; . . . ; hk, and the bit array
M of size m bits. With input x, the Bloom filter sets
M½hi½x�� ¼ 1 for i ¼ 1; . . . ; k. For a given input x, if
M½hi½x�� ¼¼ 1 for i ¼ 1; . . . ; k, x is already determined as

positive, i.e., already exists. The Bloom filter resides in the
main memory and consulting it does not cause any disk
traffic. One concern of using the Bloom filter is the false
positive ratio. It is possible that even though the Bloom
filter identifies a fingerprint as existent, the fingerprint may
not actually exist in Fingerprint Table. Reducing the false
positive rate is an important issue in using the Bloom filter
because a false positive triggers the search function of
Fingerprint Table, which accesses the disk.

The false positive rate can be formulated as follows: let
m, k, and n be the bit array size, the number of hash
functions, and the number of fingerprints, respectively.
Assume that the hash value is uniformly distributed over
½0 . . .m� 1� and hash functions h1; . . . ; hk are independent.
The probability that bit i is still 0 after inserting one
fingerprint corresponds to ð1� 1

MÞ
k, and the probability that

bit i is still 0 after inserting n fingerprints corresponds to
ð1� 1

MÞ
kn. Therefore, when a new fingerprint arrives, the

probability that its hash values refer to bits that are a priori
set to 1 corresponds to ð1� ð1� 1

MÞ
knÞk, where n is the

number of inserted elements. Given the number of
fingerprints n, the false positive rate is subject to the
number of hash functions k and the size of the Bloom filter
m. The false positive rate is formulated as

1� 1� 1

m

� �kn !k

� ð1� e�kn=mÞk: ð1Þ

As the Bloom filter size increases, the false positive ratio
decreases. If the focus is placed on minimizing the false
positive rate, the number of hash functions, k, which
minimizes the false positive rate via differentiating it with k
is obtained using a simple calculation, k ¼ ðln 2Þm=n �
0:7 m=n, with n and m being the number of inserted
elements and the bit vector size, respectively. Further
interested readers are referred to Horowitz et al. [40].

3.2 Tablet-Based Index Partitioning

Legacy search structures, e.g., the hash-based index and Bþ

tree-based index, place the entry based on the “key value,”
not on the order in which the key values are inserted. This is
because the value of adjacent fingerprints in the fingerprint
lookup sequence will be uniformly distributed. With legacy
search structure, e.g., B+ tree, or hash table, it is not likely
that adjacent fingerprints in the lookup sequence are stored
in clustered manner. Legacy index structures leaves much
to be desired to properly exploit the workload characteristic
of fingerprint lookup in deduplicate backup. The most
brute-force way of preserving the access locality is to use
append-only file structure in storing fingerprint. However,
append-only file structure has OðnÞ search time complexity
and it cannot be used in practice.

MIN ET AL.: EFFICIENT DEDUPLICATION TECHNIQUES FOR MODERN BACKUP OPERATION 829

TABLE 1
Header Organization

Fingerprint Table

fingerprint

fingerprint

fingerprint

……..

Find it

Redundancy found!

Positive

False Positive
fingerprint

fingerprint

Bloom Filter

Insert

Does it exist?

Fig. 5. Bloom filter for searching the fingerprint table.



To effectively exploit the workload characteristics of
fingerprint lookup, we develop an LRU-based index partition-
ing scheme. The basic idea is to form a fingerprint table with
a number of smaller size “tablets.” Fig. 6 illustrates two
types of the fingerprint table structures: single large table
and collection of small tablets. The physical distance
between the fingerprints in a table(or in a tablet) is governed
by the size of a table(or a tablet). For a single large table,
fingerprints in the table may be far apart in the storage. With
tablet-based approach, the physical distance between the
fingerprints in a tablet is shorter. Via storing a sequence of
fingerprints using tablets instead of single large table, we
can store adjacent fingerprints in the incoming fingerprint
lookup sequence within the relatively smaller region. Using
the concept of tablet, we impose spatial locality in storing the
fingerprints. The size of a tablet is small enough so that it can
be loaded into the main memory. Determining the size of the
tablet is of important concern. As we use smaller size tablets,
the fingerprint lookups within a tablet will lie within a
smaller region of the storage. However, there will be more
number of tablets to examine.

Fig. 7 illustrates Fingerprint Table with a single large index
tree and Fingerprint Table with multiple tablets, respectively.
In Fig. 7, ten chunks are generated and are labeled from A to J
in the order in which they are created. The number in each
chunk denotes the fingerprint value of the respective chunk.
When Fingerprint Table consists of a single large table (Fig. 7),
the total seek distance to lookup the fingerprints of chunks A
through F corresponds to 20. Next, we use the tablets with the
maximum number of entries of three. There are four such
tablets, each of which has a B+tree-based structure. A new
tablet is created as fingerprints are inserted. When a set of
fingerprints is maintained with four tablets, the total seek
distance to determine the fingerprints for chunks A through F
corresponds to eight blocks. The total seek distance is
reduced when a set of fingerprints is managed with tablets.
This is because the fingerprints can be clustered based on
their lookup sequence.

3.3 LRU-Based Tablet Management

To reduce the number of tablets examined, we maintain the
list of tablets in an LRU (least recently used) manner. When
the fingerprint is found at a certain tablet, PRUNE moves
the respective tablet to the head of linked list. We call it

LRU-based tablet management because least recently used
tablet will be located at the tail of the list. In this manner, we
maintain temporal locality on fingerprint search. If the
fingerprint of the next lookup resides at the same tablet as
its preceding one, PRUNE can examine only one tablet to
determine whether the fingerprint is redundant or not.

Fig. 8 illustrates three different fingerprint management
schemes. Fig. 8a shows that a set of tablets are maintained
simply as a linked list. It is termed as “Linear.” The search
always starts from the head of the linked list. Fig. 8b
illustrates LRU-based tablet management. In Fig. 8b, the
recently hit tablet is moved to the head of the list. When
tablet 3 is hit, it is moved to the head of the list. To preserve
this access correlation across the tablets, we enhance LRU-
based management with prefetching (Fig. 8c). It is likely
that the fingerprints in the adjacent tablets are accessed in
consecutive manner. When a tablet is moved to the head of
the list, we also move the successor tablet in the linked list
together. We call this prefetching. When tablet 3 is hit,
tablet 3 and tablet 4(successor of tablet 3) are moved to the
head of the list. When prefetched table is “hit,” same rule
applies. It is moved to the head of the list along with its
successor.

4 CONTEXT-AWARE CHUNKING

4.1 Chunk Size Model

When designing the deduplication backup system, the most
fundamental task of the initial phase is to establish the size
of the target pattern of the variable-size chunking. The target
pattern size governs the average chunk size and the amount
of fingerprints to manage. The average chunk size governs
the size of Fingerprint Table. With smaller chunks, it is
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easier to identify commonalities among files and to
eliminate redundancy. However, as chunk size decreases,
Fingerprint Table size becomes larger and the fingerprint
lookup overhead increases.

We develop an analytic model that allows for accurate
computation of the expected chunk size for a given target
pattern size.

Most existing works assume that the average chunk size is
determined based on the geometric distribution, i.e., with an
n bit target pattern, and the average chunk size is assumed to
be 2n. In the sliding window protocol [8], most implementa-
tions establish the lower and upper bounds of the chunk size
to avoid excessive chunking and indefinite chunk growth,
respectively. With the minimum and maximum chunk size
being 2 KB and 64 KB, respectively, the geometric distribu-
tion tends to underestimate the average chunk size. Let Smin
and Smax denote the lower and upper bounds of the chunk
size, respectively. Let p be the probability that the signature
matches the target pattern. If the target pattern consists of
n bits, then, p ¼ ð12Þ

n. The average chunk size E½S� can be
computed as in (2). Let N be Smax � Smin.

E½S� ¼ Smin þ
XN
i¼1

i
1

2n

� �
1� 1

2n

� �i�1

þN 1�
XN
i¼1

1

2n

� �
1� 1

2n

� �i�1
 !

¼ Smin þ 2n 1� 1� 1

2n

� �N !
:

ð2Þ

For a 13-bit target pattern, the average chunk sizes
obtained from (2) and from the geometric distribution
corresponds to 10 KB and 8 KB, respectively. Fig. 9 plots the
average chunk size based on (2). We use two minimum
chunk sizes, 1 and 2 KB and the maximum chunk sizes, 32,
48, and 64 KB. The X and Y axes of Fig. 9 denote the target
pattern size and average chunk size, respectively. As can be
seen, the average chunk size was not sensitive to the
minimum chunk sizes of 1 KB or 2 KB.

We chunk a set of files with varying target pattern size
and examine the accuracy of the chunk size model devel-
oped in this work. The lower and upper bounds of the chunk

size are set to 2 KB and 64 KB, respectively. Table 2 illustrates
the quantile statistics of the chunk size distribution, the mean
chunk size obtained from our analytical model, EðSÞ and
mean chunk size obtained from geometric model, EðgeoÞ.
The sample means were approximately 4 KB, 6 KB, and
10 KB for the 11 bit, 12 bit, and 13 bit target pattern size,
respectively. Our model precisely estimates the average
chunk size within the one percent error.

4.2 Incremental Modulo-K

In variable-size chunking, we generate the signature for the
byte sequence in a given window and determine if the
signature matches a given target pattern. Most existing
works [39], [41], [42], [43], [8] have used Rabin’s algorithm
for generating a signature. Rabin’s signature generation
algorithm for the byte sequence b1; . . . ; b� is defined as

Rfðb1; b2; . . . ; b�Þ ¼ ðb1p
��1 þ b2p

��2 þ � � � þ b�Þ mod M;

where � and M are irreducible polynomials. For a given
byte string b1; . . . ; bN , we obtain the signature for the
substrings fb1; . . . ; b�g; fb2; . . . ; b�þ1g; fb3; . . . ; b�þ2g; . . . . The
main advantage of Rabin’s algorithm over other hashing
functions, e.g., SHA-1, SHA-2, and MD-5, is its ability to
compute the signature in an incremental fashion. For each
substring, the signature value can be incrementally
obtained from the previous value, using

Rfðbi; . . . ; biþ��1Þ ¼
ðRfðbi�1; . . . ; biþ��2Þ � bi�1 p

��1Þpþ biþ��1

� �
mod M:

ð3Þ

Rabin’s algorithm is very efficient. However, since there
exists an excessive number of signature computations, it is
mandatory to make the signature computations more
efficient.

We exploit the algebraic nature of the modulo arithmetic
and improve the chunking overhead. The following are
three basic properties of the modulo arithmetic:

1. ðaþ bÞ mod M ¼ðða mod MÞ þ ðb mod MÞÞ mod M,
2. ða� bÞ mod M ¼ðða mod MÞ � ðb mod MÞÞ mod M,

and
3. a mod M ¼ a if a < m.

In (3), modulo M is computationally expensive and
important to effectively optimize. Usually, M is chosen as
a prime number and M is set at 231 � 1 in our system.
Also, p and � in (3) correspond to the base and window
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Fig. 9. Average chunk size under varying lower and upper bound of the
chunk size.

TABLE 2
Chunk Size: Quantile Statistics of Sample Distribution, Mean

from Chunk Size Model and Mean from Geometric Model



sizes of Fig. 3, respectively. We set the window size � to 48
as in [8] and p corresponds to 28. Rabin’s algorithm in (3)
deals with a 48-byte string. In our system, a 48-byte string
is represented as an array of six integers of unsigned

long long (8 bytes). There are two tasks we want to
achieve: 1) reduce the number of modulo operations and
2) replace the modulo operation with cheaper operations,
e.g., SHIFT and XOR. For the N mod M operation with N
and M being 64 bits (unsigned long long) and 32 bits
(unsigned long), respectively, there are thirty-two XOR

operations. We reduce the overhead of the modulo
operation by exploiting its algebraic nature. Let us
represent N with the bit string N ¼ p63 . . . p0. We partition
this 64-bit pattern (p63 . . . p0) into three parts: P2 ¼ p63p62,
P1 ¼ p61 . . . p31, and P0 ¼ p30 . . . p0. Then, the original bit
string N can be represented as N ¼ P2 � 262 þ p1 � 231 þ
P0. Given 231 mod ð231 � 1Þ ¼ 1, N mod M now can be
computed as in

N mod M ¼ ðP2 þ P1 þ P0Þ mod M; where M ¼ 231 � 1:

ð4Þ

Equation (4) uses two additions and one or two XOR’s.
For generating signature for 48 Byte string, Rabin’s
algorithm uses 32 XOR’s whereas INC-K algorithm uses
4 ADD’ and two XOR’s. We significantly decrease the
computational overhead of the generating signature.

4.3 Context-Aware Chunking

Variable-size chunking is less effective when dealing with
multimedia content, compressed files, or encrypted content.
In these type of files, minor modification on the original file
entirely changes the final form. For these files, it is likely that
two files are either identical or entirely different. Therefore,
applying computationally expensive variable-size chunking
to compressed and encrypted file may not be worth its effort.
For text files, documents, source codes, etc., only a small
portion of the data gets updated. Exploiting this property,
context-aware chunking uses two knobs to tune a chunking
file. The first knob deals with the chunking method. Context-
aware chunking applies either to variable-size or fixed-size
chunking based on certain criteria. The notion of context-
aware chunking proposed in this work shares the basic idea
with the preceding works [18], [19], [20].

We categorized the files into two sets: IM (immutable)
andM (mutable). We apply simple static rule in categoriz-
ing the files. We examine the extension of a file and
determine the category. Multimedia contents, e.g., f�:avi;
�:wmv; �:mkv; �:mp3; �:mp4; �:jpg; �:pngg, and compressed
files, e.g., f�:tar:gz; �:tgz; �:zip; �:rar; �:lzh; �:alz; �:bzipg, are
categorized as immutable. Files with other extensions are
categorized as mutable. There can be an exception to this
rule. It is possible that video file may be updated due to
video editing operation. Also, Linux source code may be
immutable since people rarely edit the Operating System
source code. Further elaborate data and user behavior study
is required to determine whether a given file is immutable
or not. We plan to address this issue in separate context.

The second knob in context-aware chunking deals with
compression. One of the prime objectives of deduplication is
to reduce the data volume to save either storage space or

network bandwidth. Compressing a chunk is a viable option
to reduce the data volume. For multimedia data types, e.g.,
video clips, photographs, and mp3 music, compressing a
chunk may not bring significant reduction to the data
volume. PRUNE allows the system administrator to choose
these options in a flexible manner. Fig. 10 schematically
illustrates the context-aware chunking mechanism.

5 EXPERIMENT

5.1 Experiment Setup

We develop a prototype backup system and examine the
performances of the techniques developed in this work. We
perform comprehensive analysis on various aspects of
deduplication backup:

1. Performance of Incremental Modulo-K algorithm,
2. chunk Size versus Deduplication Ratio,
3. effect of Tablet Size over Backup Speed,
4. performance of Different Chunking Algorithms,
5. effect of Locality in Backup Speed, and
6. effect of Context Aware Chunking.

We use 27 different tablet sizes, four different tablet
management schemes, eight different chunking methods,
and three different target bit pattern sizes. Data set used in
each experiment is chosen to effectively achieve the
objective of the respective experiment.

Our experiment is performed on AMD Phenom (Quad-
Core 2.2 GHz) with 2 GB of RAM. We maintain fingerprints
and chunks in separate storage devices. Fingerprints are
stored on one hard disk drive (WD Raptor, 10,000 RPM,
74 GB). Chunks and data files are stored on a disk array with
two disks (Seagate Barracuda, 7,200 RPM, 1 TB each). The
maximum bandwidth of this disk array was 140 MB/sec.

5.2 Performance of Incremental Modulo-K

This experiment focuses on evaluating the algebraic
efficiency of two algorithms: Rabin’s algorithm and INC-K.
We use two data sets and measure the speed of chunking
under six target pattern sizes. To manifest the algorithmic
efficiencies of two algorithms, we load the files in main
memory. Table 3 summarizes the data sets used in the
experiment. First data set consists of a single 700 MB
multimedia file. Second data set consists of 23,810 files.
Total size is 253 MB. Mean and median of file size is 11.2 KB
and 4.2 KB, respectively.

Our chunking mechanism skips the minimum size of
chunk before it starts signature computation. For the multi-
media file, the minimum size chunks are rarely generated,
and the number of signature computations was proportional
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to the size of the files. For the Linux kernel source, most of the

source code files are less than a few kilobytes, and the

number of files governs the number of computations. This is

the main reason why the single large multimedia data set

tends to perform more signature computations.
Fig. 11 illustrates the result. X-axis and Y -axis denote the

target pattern size and chunking speed. With 10 bit target
pattern, chunking speed for Linux Source code corresponds
to 250 MB/sec and 227 MB/sec for INC-K and Rabin’s
algorithm, respectively. With 14 bit target pattern, chunking
speed for Linux Source code corresponds to 102 MB/sec
and 97 MB/sec for INC-K and Rabin’s algorithm, respec-
tively. This is because the number of signature computation
is linearly proportional to the chunk size and chunking
speed is inversely proportional to the number of signature
computation.

Three important results should be noted. First, the

chunking speed with Linux source data set is higher than

the chunking speed with large multimedia data set. For

10 bits, we obtained 250 MB/sec for the performance of Linux

source data set whereas 238 MB/sec is observed in single

large file chunking. Second, the Incremental Modulo-K

algorithm is faster than Rabin’s fingerprint algorithm by

10-15 percent for both data sets. Third, the signature

generation speed became significantly slower as we in-

creased the size of the target pattern. For 10 bits, we were able

to obtain 250 MB/sec and 238 MB/sec for the Linux kernel

source and the multimedia data set, respectively. For 12 bits,

the signature generation speed becomes 122 MB/sec for both

data sets. Be reminded that the entire file is in the memory.

The larger target pattern results in larger chunks, and

therefore will reduce the fingerprint lookup overhead.

However, as can be seen in Fig. 11, it negatively affects the

chunking speed.

5.3 Average Chunk Size versus Redundancy
Detection Rate

We examine the degree of duplication detection for 11-bit,
12-bit, and 13-bit target patterns. With 11 bit, 12 bit and 13 bit
target pattern, average chunk size corresponds to 4.0 KB,
6.0 KB and 10.1 KB, respectively. We use the data sets shown
in Table 4. We run ten rounds of backup and examine the
deduplication ratio and the number of chunks for each
round. At the first round, PRUNE performs deduplicated
backup for 10 GB of data. Then, new 10 GB of data are added
and PRUNE is run again. We repeat this process until the
total data volume reaches 100 GB.

Fig. 12 illustrates the numbers of chunks generated and
the fractions of duplicated chunks subject to the varying
target pattern size. Fig. 12a illustrates the number of newly
created chunks for each round of backup. The number of
chunks generated by variable size chunking increases by a
factor of 2.5 when we use the 11-bit target pattern instead of
the 13-bit pattern. For each X value, there are three bars each
of which denotes the number of chunks for the respective
target pattern size. We can observe that the number of
chunks decreases inversely proportional to the chunk size.
Let us examine the deduplication ratio under varying target
pattern sizes. Fig. 12b illustrates the results. Y -axis denotes
deduplication ratio. As can be seen, the difference in
deduplication ratios, with respect to target pattern sizes,
are not significant and practically negligible. From 11 to
13 bits, the duplication detection rate decreases by only
0.66 percent. Using 11 bit pattern instead of 13 bit pattern,
the number of fingerprints increases by a factor of 2.5 and
deduplication ratio improves by 0.66 percent. We find that
with 11 bit pattern size, chunking speed decreases by
33.9 percent (Fig. 11). However, overall deduplication speed
becomes faster as we use larger target pattern size (Fig. 14).
The 0.66 percent improvement in deduplication ratio does
not offset the 2.5x increase in the number of fingerprints and
subsequent increase management overhead.

5.4 Tablet Size versus Backup Speed

We examine the backup speed under varying tablet sizes
through physical experiment. Figures in Fig. 13 illustrate
the backup speed and fingerprint lookup latency under
varying tablet sizes. We use the 100 GB data set in Table 4.
In this experiment, backup speed reaches the peak when
tablet size is 1.5 MB. Backup speed becomes slower when
tablet size is bigger than 1.5 MB. The trend becomes clearer
in the second backup round (Fig. 13a).

In our experiment, the second backup is slower than
the first one under most tablet sizes. This is because in the
first backup, fingerprint database(table or collection of
tablets) is initially empty and fingerprint lookup overhead
is not significant. In the second backup, PRUNE examines
the tablets which harbor the fingerprints inserted during
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the first backup. Fingerprint lookup overhead becomes

more significant and as a result, backup becomes slower in

the second round.
Fig. 13b illustrates the relationship between lookup

latency and tablet size. “Lookup latency” denotes the average

latency of looking up one fingerprint. In the first backup,

lookup latency gets longer with the tablet size. Most of the

fingerprints generated at the first backup are nonredundant

and cause insert operation. In the second backup, lookup

latency is more sensitive to tablet size and quickly increases

as tablet becomes larger. Since the sequence of incoming

fingerprints, i.e., SHA-1 hash value, does not exhibit any

spatial locality when it is stored at the table, consecutive

fingerprint lookups can yield completely random read on a

table(or a tablet). As tablet becomes larger, random read

operation on a tablet entails more significant disk head
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movement. With 1.5 MB size tablet, fingerprint lookup
latency is 90 usec and 78 usec in the first backup and the
second backup, respectively. With 13.5 MB size tablet, lookup
latency corresponds to 119 usec and 251 usec, respectively.
These experiments(Figs. 13a and 13b) illustrate the impor-
tance of properly clustering the fingerprints.

We observe sinusoidal pattern on backup speed in
Figs. 13a and 13b. It takes approximately 40 hours to run
single set of experiments and we repeat same set of
experiments multiple times. This sinusoidal trend persists
across different sets of experiments. Detailed analysis of
the graph requires in depth examination on internal
behavior, e.g., buffer cache replacement, and swap page
management, of Operating System and DBMS. We do not
delve into details since it is beyond the scope of this
paper. Based on the result of this experiment, rest of the
experiments uses tablet size of 1.5 MB.

We finally measure the backup speed under varying
target pattern size.

5.5 Fingerprint Management Methods

We compare the performance of the four different finger-
print management schemes: single index, index partitioning
with simple linked list (Linear), LRU-based index partition-
ing, and LRU-based index partitioning with prefetching.
In “Single” method, all fingerprints are managed as one

database table. In “Linear,” fingerprints are managed as the
linked list of tablets. “LRU” and “Prefetch” maintain the
tablet list with LRU and LRU with prefetching, respectively.
We perform backup on the same data set (100 GB Data set in
Table 4) twice. To effectively examine the lookup efficien-
cies of the algorithms, we need to avoid the insert operation
in the second backup. For this reason, we use the identical
data set in the first and the second backup. We use 27
different tablet sizes and measure the fingerprint lookup
latencies at the first backup and the second backup.

Fig. 15 illustrates the result. “Single” yields the worst
performance. Backup speed is 2.8 MB/sec and 3.3 MB/sec
for initial backup and second backup, respectively. In the
initial backup, Fingerprint Table is initially empty and all
fingerprint lookup results in “insert” operation. Backup
speed is slower in the initial backup than in the second
backup when we use “single.” This is because the single
index scheme has a B+tree structure which has significant
tree reorganization overhead.

In “Linear,” the speed of the initial and the second backup
correspond to 76.9 MB/sec and 42.9 MB/sec, respectively. In
“Linear,” the speed of backup decreases significantly in the
second backup. Each of the tablets are relatively small, and
therefore the overhead of inserting an entry to a tablet is
much smaller than the overhead of inserting an entry to large
size table. With tablet based approach, we were able to
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Fig. 14. Target pattern size versus backup speed. Fig. 15. Performance of tablet management methods.



achieve fast backup speed, 76.9 MB/sec in the initial backup.
The second backup yields slightly different result. In the
second round backup, each fingerprint lookup examines a
number of fingerprint tablets (all tablets in worst case) and
backup speed becomes much slower. In our experiment, the
speed of second backup (42.9 MB/sec) is 60 percent of the
speed of the initial backup (76.9 MB/sec).

Enhancing the index partitioning with LRU effectively
resolved the speed decrease problem in the second backup.
With LRU, the speed of the initial backup is the same as the
speed of the initial backup with “Linear.” However, LRU
manifests itself in the second backup. In LRU, speed of the
second backup yields 79.3 MB/sec which is on par with
the speed of the first round backup, 80.3 MB/sec. We
confirmed that LRU-based index partitioning effectively
incorporates the access locality of the fingerprint lookup
in managing tablets. We go one step further and add
prefetching mechanism in LRU-based index partitioning.
This is to reorganize the tablet list properly incorporating
the access correlation across the tablets. According to our
experiment, the effect of “prefetching” is not significant.

Let us compare the backup speeds of four fingerprint
management schemes. The speed of the initial backups
correspond to 2.8 MB/sec, 76.9 MB/sec, 80.3 MB/sec, and
81.7 MB/sec for “Single,” “Linear,” “LRU,” and “LRU with
prefetching,” respectively. “Single” yields the worst per-
formance while the rest of the three yield similar
performance. The speed of the second backup correspond
to 3.3 MB/sec, 42.9 MB/sec, 79.3 MB/sec, and 80 MB/sec,
respectively. In managing fingerprints with tablets, we
increase the backup speed by 14 times from 3.3 to 42.9 MB/
sec. With tablet, we successfully clustered the fingerprints
incorporating the order they are looked up. Via introducing
LRU based tablet management scheme, we further increase
the backup speed by 84.8 percent from 42.9 MB/sec with
“Linear” to 79.3 MB/sec in “LRU.” With pretching, backup
speed increases by 0.8 percent from “LRU” method.

5.6 Effectiveness of Enforcing Locality

We measure how many tablets are accessed in each
fingerprint lookup and analyze the relationship between
the backup speed and the average number of tablet accesses
per fingerprint lookup. We perform deduplication on the
data sets in Table 4. There are ten backup operations. At
each round, we add approximately 10 GB of new data. The
dashed and dotted lines in Fig. 16 illustrate the deduplica-
tion bandwidth of the single index and LRU-based index
partitioning schemes, respectively. When there are a small
number of fingerprints in Fingerprint Table, the use of the
single index or the index partitioning scheme does not
make much difference. However, as the total number of
fingerprints increases, the performance difference between
the two becomes significant. The single index scheme does
not scale well. With index partitioning, the backup
performance does not decrease significantly as Fingerprint
Table size increases. In the first backup, both the single
index-based approach and the index partitioning approach
yield a 80 MB/sec backup speed. In the tenth backup
section, the total file size for the backup reaches 100 GB.
With LRU-based index partitioning, the backup speed
reaches 79 MB/sec. However, with the single index
approach, the backup speed decreases to 4 MB/sec due to
the excessive fingerprint lookup overhead.

We observe in Fig. 16 that for LRU-based index partition-
ing, the deduplication performance varies widely for each
round. The total file size of the backups in the second round
and in the fourth round are 20 GB and 40 GB, respectively. The
backup speed decreases from 80 MB/sec at the second round
to 53 MB/sec at the fourth round (40 GB). At the fifth round,
the backup speed again increases to 79 MB/sec. In the sixth
and seventh round, the backup speed decreases to 41 MB/sec
and 39 MB/sec, respectively.

The bar graph in Fig. 16 explains this phenomenon. The
figure indicates the number of tablets accessed for a single
fingerprint lookup. In the first and second backups, the
tablet access rate is one, i.e., PRUNE accesses one tablet for
one fingerprint lookup. For sixth and seventh backup, tablet
access rates are 5 and 9, respectively. For these rounds, the
backup speeds are among the slowest, 41 MB/sec and
39 MB/sec, respectively. This is approximately 50 percent
backup speed of the first and the second backup. In the
backup rounds of 1,2,5,9, and 10, backup speeds are the
highest with approximately 80 MB/sec. For these sessions,
tablet access rate is the lowest, 1. On the other hand, in
backup session 7, backup speed is the slowest (39 MB/sec)
and tablet access rate is 9 which is the second highest value.
Backup session 3 exhibits contradictory behavior. Tablet
access rate is 14 for backup session 3, but the backup speed
is still reasonable, 63 MB/sec. We carefully conjecture that
this is because there is only 30 GB of data in the third
backup session and most of the tablets can be fully loaded
onto the main memory. The tablet access does not incur
disk accesses, and therefore the backup speed does not
decrease significantly even though tablet access rate is high.
Correlation Coefficient2 between the tablet size and the
number of tablet accesses per lookup corresponds to �0:62.
The overall backup speed is governed by the number of
tablets accessed in a single fingerprint lookup. There is
strong negative correlation between the number of tablet
accesses per fingerprint lookup and the backup speed.

5.7 Effect of Context Aware Chunking

We examine the effect of different chunking algorithms in
overall deduplication efficiency. different chunking algo-
rithms. The efficiency of the deduplication is measured in
two aspects: backup speed and the size of resulting
deduplicated backup. There are four chunking algorithms:
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fixed size chunking, variable size chunking, context-aware
chunking and no-chunking. Nochunking corresponds to
legacy tar command. Each of these chunking algorithms has
two bifurcations: plain and compressed. Combined alto-
gether, we compare total eight chunking methods: Fixed
Size Chunking(F), Variable size chunking(V), Content-
Aware Chunking(CA), No Chunking(TAR), Fixed Size
Chunking with compression(F-zip), Variable size chunking
with compression(V-zip), Content-Aware Chunking with
compression(CA-zip), and No Chunking with compres-
sion(TAR-zip).

For the comprehensive study, we use three data sets with
different characteristics: 1) source code of Linux Operating
System, 2) multimedia files and 3) mixture of multimedia
files and source codes. We summarized the characteristics
of the data sets in Table 5.

5.7.1 Linux Sources

The first data set is Linux kernel sources from 2.6.0 to 2.6.25.
The total size is 5.1 GB. Files are usually small with average
size of 11 KB. There are 475,997 files. Given that average
chunk size is 10 KB, a single file is partitioned into two
chunks on the average. Fig. 17 illustrates the results of
experiment. As can be seen in Fig. 17a, fixed-size chunking

yields the best backup speed, among eight chunking
methods. However, it only yields 36.7 MB/sec. This is only
26 percent of the sequential IO bandwidth. All four
chunking methods which do not have compression option
yield similar backup speed from 34 to 36 MB/sec. Fixed-
size chunking and variable-size chunking works at
36.7 MB/sec and 34.2 MB/sec, respectively. Fixed-size
chunking is 7.6 percent faster than variable-size chunking.
Context-aware chunking applies variable-size chunking to a
text file which is classified as mutable, so the performance
of context-aware chunking is close to the performance of
variable-size chunking for the Linux source set. TAR option,
i.e., no chunking, yields 34.5 MB/sec. When we add a
compression phase to each chunking method, the chunking
speed is reduced to 17.5 MB/sec for all three chunking
schemes. By adding a compression phase, the backup
bandwidth decreases by 50 percent.

TAR generates a 5.4 GB backup and the size of the final
result increases by 5.8 percent (Fig. 17d). This is because
TAR adds metadata at the beginning. Fixed-size chunking
and variable-size chunking reduce the data from 5.1 GB to
2.2 GB and 1.8 GB, respectively. 57 percent and 65 percent of
the storage requirement are eliminated for fixed-size
chunking and variable-size chunking, respectively. Because
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TABLE 5
Data Set for Comparison of Different Chunking Methods

Fig. 17. Performance of different chunking methods: bandwidth versus data volume (F: fixed-size chunking, V: variable-size chunking, CA: context-
aware chunking). (a) Linux source:backup bandwidth. (b) Multimedia: backup bandwidth. (c) Mixed data: backup bandwidth. (d) Linux source:
backup capacity. (e) Multimedia: backup capacity. (f) Mixed data: backup capacity.



files in Linux source are classified as mutable, context-
aware chunking scheme reduces 65 percent of the storage
requirement which is almost identical to variable-size
chunking scheme. Via compression, 84 percent, 88 percent,
and 88 percent of the storage requirement are eliminated for
fixed-size chunking, variable-size chunking, and context-
aware chunking, respectively.

When we backup a set of small files, the overhead of
accessing file metadata, i.e., open(), close(), is dominant in
overall backup operation. Also, since a file consists of few
number of chunks, the overhead of chunking, i.e., the
overhead of generating signature, is insignificant. When we
backup small files, backup speed does not vary significantly
subject to the chunking schemes. Via deduplication, how-
ever, we can significantly reduce the storage requirement.
Compression is not a viable option since backup speed
decreases to half when we compress the chunks. Use of
dedicated compression hardware can be a resolution to this.
Although context-aware chunking does not yields neither the
fastest backup speed nor the smallest storage requirement,
the backup speed of context-aware chunking is almost
identical to the variable chunking scheme which shows the
best performance in backup speed and the efficiency of
deduplication is also nearly same as variable chunking.

5.7.2 Multimedia Files

There are a total of 29 files and the average file size is 345 MB.
The total file size sums up to 9.54 GB. Each file contains
video data encoded by DivX codec. In multimedia files, the
overall backup speed varies widely subject to the chunking
method. TAR yields 131.1 MB/sec. Fixed-size chunking and
variable-size chunking yield 103 and 72.2 MB/sec, respec-
tively (Fig. 17b). Since we statically classify multimedia data
as immutable, context-aware chunking applies fixed-size
chunking. The backup speed difference between the fixed-
size chunking and variable-size chunking comes from the
overhead of generating signature for each byte position in
the variable-size chunking. When the data set consists of
small files (Linux sources), the overhead of open/close, i.e.,
accessing and manipulating file metadata, constitutes
dominant portion of overall chunking performance, and
the overhead of generating signature is insignificant.
However, with multimedia files which tends to be large,
the overhead of open/close is insignificant. Instead, the
overhead of signature generation constitutes dominant
portion of overall chunking performance. With compres-
sion, the overall backup speed decreases significantly. The
backup speeds of fixed-size chunking scheme and variable-
size chunking scheme decrease from 103 to 22.4 MB/sec and
from 72.2 to 20.2 MB/sec, respectively.

Fig. 17e illustrates the result of the backup size in
multimedia data set. The total backup sizes from the four
chunking schemes are almost identical to the original data set
size. There are no deduplication performance gain in multi-
media data set. Compression does not reduce the backup size
for neither fixed size chunking nor variable size chunking.

5.7.3 Mixed Set

We use a mixture of different type files: multimedia, photo,
document, and source files. In this set, there were 477,872
files with an average file size of 83 KB. In this data set, TAR
yields the best backup speed (96.9 MB/sec). However, TAR

does not reduce the data volume (Fig. 17f). Among the
chunking methods, fixed-size chunking and context-aware
chunking yield good performances: 79.6 MB/sec and
79 MB/sec (Fig. 17c), respectively. With respect to capacity,
variable-size chunking and context-aware chunking reduce
the data volume by 11.6 percent and 11.5 percent where
fixed-size chunking reduce 10 percent. Adding a compres-
sion phase, fixed-size chunking speed and variable-size
chunking speed decrease from 79.6 to 23.1 MB/sec and 79 to
19.6 MB/sec, respectively. The chunking speeds decrease by
29 percent and 25 percent for fixed-size chunking and
variable-size chunking, respectively. By using compression,
the data volume decreases by five percent, four percent, and
3.4 percent for fixed-size chunking, variable-size chunking,
and context-aware chunking, respectively. The backup
speed of context-aware chunking yields as high as that of
fixed size chunking. For the deduplication ratio, context-
aware chunking reduces the storage requirement by 12 per-
cent which is similar to variable-size chunking. Given the
experiment results for three data sets, context-aware chunk-
ing yields the best efficiency on both backup speed and
capacity.

6 CONCLUSIONS

In this work, we not only propose an LRU-based index
partitioning and Context-Aware chunking mechanism to
address the performance of deduplication backup, but we
also put a great deal of effort into understanding the
relationship between chunking overhead, fingerprint look-
up overhead, and overall backup speed.

According to our experiment, fixed-size chunking works
well with regard to both the backup bandwidth and the
degree of redundancy detection. This is because large files,
which constitute the dominant fraction of the data volume,
are multimedia files. These files are either identical or
entirely different. On the other hand, small text files, e.g.,
source codes, have many commonalities across different
versions of the operating system source code tree. How-
ever, these files are usually small and detecting common-
alities in them may not justify the efforts of variable-size
chunking. Chunking the file(s) in finer granularity enabled
us to more quickly generate variable-size chunks and to
find more commonalities among them. However, we also
found that finer grain chunking significantly increases the
fingerprint management overhead. By increasing the target
pattern size from 11 to 13 bits, the deduplication detection
rate decreased by two percent and the chunking perfor-
mance decreased approximately from 150 to 100 MB/sec
with files being in memory. However, the overall backup
speed increased from 51 to 77 MB/sec. This experimental
result delivers a very important implication: for the
deduplication speed, we put more emphasis on reducing
the fingerprint lookup overhead than in finding more
commonalities.

For deduplication backup, a number of factors exist to
optimize the performance: the false positive rate of the Bloom
filter, the deduplication ratio, the chunking speed, the
fingerprint lookup speed, etc. For optimizing deduplication
performance, particular care needs to be taken to orchestrate
the various factors involved in the entire deduplication
process. Inappropriate optimization may result in an un-
acceptable penalty to the overall backup performance. This is
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extremely important as maintaining a history of data is
usually an irrevocable process once it has begun.
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Pâris, “Providing High Reliability in a Minimum Redundancy
Archival Storage System,” Proc. 14th IEEE Int’l Symp. Modeling,
Analysis, and Simulation of Computer and Telecomm. Systems
(MASCOTS ’06), 2006.

[33] P. Efstathopoulos and F. Guo, “Rethinking Deduplication Scal-
ability,” HotStorage ’10, Second Workshop Hot Topics in Storage and
File Systems, June 2010.

[34] J. Burrows and D.O.C.W. DC, “Secure Hash Standard,” Federal
Information Processing Standards Publication, Apr. 1995.

[35] R. Rivest, “The MD5 Message Digest Algorithm, RFC 1321,”
Internet Activities Board, 1992.

[36] V. Henson, “An Analysis of Compare-by-Hash,” Proc. Conf. Hot
Topics in Operating Systems (HOTOS ’03), 2003.

[37] “Berkeley db,” http://www.oracle.com/technology/products/
berkeley db/db/index.html, 2011.

[38] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Math., vol. 1, no. 4, pp. 485-509, 2004.

[39] N. Jain, M. Dahlin, and R. Tewari, “Taper: Tiered Approach for
Eliminating Redundancy in Replica Synchronization,” Proc.
FAST ’05: Fourth Conf. USENIX File and Storage Technologies,
pp. 21-21, 2005.

[40] E. Horowitz, S. Sahni, and D. Mehta, Fundamentals of Data
Structures in C++. Computer Science Press, 1995.

[41] A.Z. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Math., vol. 1, no. 4, pp. 485-509,
2003.

[42] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A
Scalable Wide-Area Web Cache Sharing Protocol,” IEEE/ACM
Trans. Networking (TON), vol. 8, no. 3, pp. 281-293, June 2000.

[43] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword
Searching,” Lecture Notes in Computer Science, pp. 21-40, Springer,
2003.

MIN ET AL.: EFFICIENT DEDUPLICATION TECHNIQUES FOR MODERN BACKUP OPERATION 839



Jaehong Min received the BS and MS degrees
in computer science from Hanyang University,
Seoul, Korea, in 2008 and 2010, respectively.
He is interested in file systems and operating
systems. After graduation, he has been working
as software engineer at MacroImpact Co., and is
mainly working on developing deduplication
based backup software.

Daeyoung Yoon received the BS degree in
electric engineering from Korea University in
2005. He worked for LG Electronics as a
software engineer. He is currently working
toward the MS degree in the Department of
Computer Science, Hanyang University, Seoul,
Korea. His research interests include deduplica-
tion systems for managing massive data.

Youjip Won received the BS and MS degrees in
computer science from the Seoul National Uni-
versity, Korea, in 1990 and 1992, respectively.
He received the PhD degree in computer science
from the University of Minnesota, Minneapolis, in
1997. After receiving the PhD degree, he joined
Intel as a server performance analyst. Since
1999, he has been with the Department of
Computer Science, Hanyang University, Seoul,
Korea, as a professor. His research interests

include operating systems, file and storage subsystems, multimedia
networking, and network traffic modeling and analysis.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

840 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 6, JUNE 2011


