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In this work, we studied the energy consumption characteristics of various SSD design parameters. We
developed an accurate energy consumption model for SSDs that computes aggregate, as well as component-
specific, energy consumption of SSDs in sub-msec time scale. In our study, we used five different FTLs (page
mapping, DFTL, block mapping, and two different hybrid mappings) and four different channel configura-
tions (two, four, eight, and 16 channels) under seven different workloads (from large-scale enterprise systems
to small-scale desktop applications) in a combinatorial manner. For each combination of the aforementioned
parameters, we examined the energy consumption for individual hardware components of an SSD (micro-
controller, DRAM, NAND flash, and host interface). The following are some of our findings. First, DFTL is
the most energy-efficient address-mapping scheme among the five FTLs we tested due to its good write am-
plification and small DRAM footprint. Second, a significant fraction of energy is being consumed by idle flash
chips waiting for the completion of NAND operations in the other channels. FTL should be designed to fully
exploit the internal parallelism so that energy consumption by idle chips is minimized. Third, as a means
to increase the internal parallelism, increasing way parallelism (the number of flash chips in a channel) is
more effective than increasing channel parallelism in terms of peak energy consumption, performance, and
hardware complexity. Fourth, in designing high-performance and energy-efficient SSDs, channel switching
delay, way switching delay, and page write latency need to be incorporated in an integrated manner to
determine the optimal configuration of internal parallelism.
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1. INTRODUCTION

Due to the rapid advancement of flash memory technology (e.g., adoption of sub-20nm
process technology and multiple bits per cell), storage density of NAND flash-based
storage devices has improved significantly. This has led to the decrease in cost/GB and
subsequently accelerated the wider deployment of NAND flash-based storage devices.
In 2012, for the first time ever in the history of the semiconductor, the global sales
of NAND flash exceeded that of DRAM [IC-insights 2012]. The NAND flash-based
storage device positions itself as a mainline storage system not only in mobile devices
(e.g., smartphones and smart pads) but also in desktop PCs, notebooks, and enter-
prise servers [Narayanan et al. 2009; Intel 2012]. NAND flash-based storage devices
exhibit superior physical characteristics to HDDs in terms of noise, heat, and shock
resistance. From the performance point of view, it exhibits 20× improvement in ran-
dom IO performance and shorter I/O latency. A Solid-State Drive (SSD) positions itself
as a tier for hybrid storage systems for large-scale distributed systems [Grider 2011;
Strande et al. 2012] or as a storage system for checkpointing the memory snapshot of
a supercomputer [He et al. 2010; Ni et al. 2012].

Building an energy-efficient computer system is of critical concern in the high-
performance computing community [Frachtenberg et al. 2011; Pillai et al. 2012;
Tsirogiannis et al. 2010]. SSDs have been widely perceived as a means to deliver
energy-efficient computer systems, replacing HDD-based storage systems [Poess and
Nambiar 2010]. Recently, SSD vendors have adopted aggressive internal parallelism to
boost the I/O performance of SSDs. Most SSDs adopt eight channels, and each channel
has one or two flash packages. X25M from Intel [Intel 2009b], for example, can per-
form 20 page-write operations simultaneously. The energy consumption rate of modern
SSDs is much denser than that of legacy HDDs from the J/sec and J/cm3 point of view.
A single HDD can consume as much as 8W. On the other hand, the peak power con-
sumption of an SSD is subject to the number of flash dies, which can be programmed
in parallel and can be as high as 16W.

Therefore, it is critical that every design choice of a modern SSD is carefully examined
from the aspect of energy consumption. In this work, we dedicate our effort to under-
standing the energy consumption characteristics of various SSD components: address
mapping, garbage collection, internal parallelism, and page size. For our study, we
developed energy consumption models for SSD components: flash memory, microcon-
troller, interface, and main memory. Our model is not a full-fledged energy consumption
simulator, but the physical experiment shows that our simulator is within 8% error
from physical SSDs in terms of energy consumption. We implemented our energy con-
sumption model on top of an existing DiskSim-based SSD simulator [Agrawal et al.
2008].

The rest of the article is organized as follows: Section 2 describes the basics of NAND
flash, SSDs, and energy consumption. Section 3 explains the energy consumption model
for SSDs. Section 4 describes the organization of our simulator, Energysim. Section 5
contains the results of our case study, and Section 6 contains related work. Section 7
concludes the article.

2. MODERN SSDS AND ENERGY CONSUMPTION

2.1. SSD Organization

Figure 1 shows the overall architecture of an SSD. It consists of the SSD controller,
RAM (DRAM or SRAM), NAND, and the interfaces. The SSD controller manages I/O
operations and runs firmware (e.g., FTL, buffer manager, and garbage collector). DRAM
or SRAM is typically used as the internal device cache and has two purposes: data
buffering and map caching [Shim et al. 2010]. The interfaces refer to the host interface
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Fig. 1. SSD hardware diagram.

and flash interface. The host interface connects the SSD and the host system. The flash
interface connects the SSD controller and the NAND chips and transfers data between
the controller and the page register. The speed of the flash interface varies subject to
the specific NAND flash interface (e.g., ONFI [ONFI 2011] and toggle NAND).

SSDs organize flash memory packages in channels and ways. Each channel has its
own page register, which acts as a buffer between the NAND flash chip and NAND
flash controller. Flash pages in different channels can be accessed in parallel. The
accesses to flash pages that are in the same channel but in different flash packages are
interleaved, which means that a following operation needs to wait until the preceding
operation releases the page register.

The degree of parallelism is usually governed by the number of channels multiplied
by the number of ways (the number of flash packages in a channel). If a flash package
consists of multiple planes, the maximum degree of parallelism is obtained by (# of
channels) × (# of ways in a channel) × (# of planes in a way). One should determine an
optimal combination of the number of channels and the number of ways in achieving
a given degree of parallelism. One of the important factors that governs the optimal
configuration is peak current consumption. Figure 2 schematically illustrates the time
it took to write four pages and the level of current it consumed to complete the task
under two different SSD configurations. In the first configuration, the SSD writes
four pages to four channels, one page in each channel (Figure 2(a)). In the second
configuration, the SSD writes four pages to two channels, two pages in each channel

ACM Transactions on Storage, Vol. 11, No. 2, Article 8, Publication date: March 2015.



8:4 S. Cho et al.

Fig. 2. Channel and way timing diagrams and current consumption.

Table I. HDD and SSD Specifications

Model Capacity Read/Write # of Channel Released Year

Caviar1 80GB 150/94MB/s - 2005
X25M2 80GB 250/70MB/s 10 2008
MXP3 128GB 220/200MB/s 8 2009
Vertex 14 60GB 230/130MB/s 8 2009
OCTANE4 512GB 535/400MB/s 8 2011
8403 250GB 540/250MB/s 8 2012

1WD; 2Intel; 3Samsung; 4OCZ

(Figure 2(b)). Each of the two writes in a channel goes into different chips, exploiting
way parallelism. In the first configuration, since the channels can transfer data in
an independent manner, four pages in each of the four channels can be written in
parallel and the write operations of all NAND flashes are mostly overlapped. Channel
switch delay denotes the interval between the start times of two consecutive flash
pages when they are written on the two flash chips that are in the adjacent channels.
Way switch delay denotes the time interval between the start times of two consecutive
flash pages when they are written on two different flash pages that are attached to
the same channel. In multichannel and multiway SSDs, switching channels and ways
accompanies channel switch delay and way switch delay. There are a number of ways to
achieve the same degree of parallelism. For example, we can adopt either four-channel
one-way or two-channel two-way configurations to achieve a parallelism degree of 4.
Using a smaller number of channels ameliorates the stress caused by peak current,
that is, energy consumption, heat, channel interference, and so forth.

2.2. Energy Consumption of SSDs

We examined the current consumption behavior of one HDD and five commercially
available SSDs (Table I). Some SSDs exhibited higher peak current consumption than
the HDD. We used the current probe1(5V) and captured the current consumption. The
sampling interval was 100μsec. The graphs in Figure 3 show the averages of 10,000
samples. The energy consumption for every 100μsec time slot can be computed as

1Tektronix TCP202.
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Fig. 3. Current consumption of sequential write operation (voltage: 5V, sampling interval: 100μsec).

Fig. 4. Peak and average (active state) current.

(sampling interval) × (current) × (voltage). The workload is 4GB sequential write
operation. Figure 3 illustrates the time series of the current consumption. To easily
compare the performance and energy consumption, we used the same x- and y-scales
in all graphs. For the 3.5” HDD, the current consumption level stayed at 690mA when
active. The early SSD models consumed less energy than the hard disk drive did (Figure
3(c) and Figure 3(d)). The recently released SSDs (Figure 3(e) and Figure 3(f)) consumed
approximately 800mA when active. These two SSDs consumed 15% more current than
the HDD at its peak. The peak energy consumption is another important characteristic
of the storage device because the controller circuitry needs to be built to sustain the
peak current. Otherwise, the SSD controller may be subject to interference, ground
bounce, blackouts, and so forth. Figure 4 illustrates the average and peak energy
consumptions of the five SSDs and one HDD. We can see that the peak currents (mA)
of recently released SSDs are much higher than those of the legacy HDD.

3. MODELING THE ENERGY CONSUMPTION OF SSD COMPONENTS

We developed an energy consumption model for each component of an SSD: the SSD
controller, DRAM, NAND flash, and host interface. Individual components are assumed
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Table II. Variables of Equations

Name Description

Econ, Edr, E fl, Ebus The total energy consumption by the SSD controller, DRAM, NAND flash, and
bus

Econ
active, Edr

active, E fl
active Active-state energy consumption by the SSD controller, DRAM, and NAND

flash
Econ

idle, Edr
idle, E fl

idle Idle-state energy consumption by the SSD controller, DRAM, and NAND flash

Icon
active Active-state current consumption by the SSD controller

Icon
idle, Idr

idle, I f l
idle Idle-state current consumption by the SSD controller, DRAM, and NAND flash

Ibus Current consumption by bus

Ttotal The total simulation time

T con
idle , T dr

idle, T fl
idle The total idle time for the SSD controller, DRAM, and NAND flash

T bus The time spent in bus

V con, V dr, V fl, V bus2 Applied voltage in the SSD controller, DRAM, NAND flash, and bus

Edr
OP The energy consumption for processing one operation in DRAM

Idr
OP Current consumption for processing one operation in DRAM. The current

consumption is the same for read and write operations.

Ndr
OP The total number of operations in DRAM

T dr
OP The time to perform the operation in DRAM

E fl
read,E fl

write,E fl
erase The energy consumption by NAND flash for read, write, and erase operations

I f l
read,I f l

write,I f l
erase Current consumption by NAND flash for read, write, and erase operations

N fl
read,N fl

write,N fl
erase The number of read, write, and erase operations in NAND flash

T fl
read,T fl

write,T fl
erase The time spent for read, write, and erase operations in NAND flash

con: SSD controller; dr: DRAM; fl: NAND flash; bus: host Interface.

to be in one of the three states: active, idle, or power-off. Only NAND flash and host
interface can be in a power-off state. The active state of NAND flash is further divided
into read, write, and erase substates. Energy is computed via (average current for a
given state) × (duration) × (voltage).

3.1. SSD Controller

In this work, most of our efforts are focused on investigating the energy consumption
behavior of NAND flash devices under varying channel/way configurations and FTL
algorithms. Less attention has been paid to accurately modeling the energy consump-
tion of the rest of the components (e.g., SSD controller and DRAM). Detailed modeling
of these components is beyond the scope of this work. The SSD controller continues to
consume energy to maintain its internal components’ stand-by even in the idle state.
In the active state, the SSD controller is processing I/O requests from the host or is
performing internal I/O operations such as garbage collection. The SSD controller con-
sumes more energy in the active state than in the idle state, and the level of energy
consumption varies depending on the type of command executed. In the idle state,
the energy consumption of an SSD controller stays almost constant. The active-state
energy consumption varies widely subject to the amount of data transferred and to the
number of active channels and ways involved in the transfer. In our model, the SSD
controller is in an active state if one of the following three conditions is met: (1) the SSD

2We assigned separate variables for the voltages for DRAM, flash, and bus to represent the case where each
of these has different values.
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controller is processing an I/O command from the host, (2) the SSD controller is per-
forming garbage collection, or (3) the SSD controller is performing buffer management.
Otherwise, the SSD is assumed to be in an idle state.

Econ
active = (

Icon
active · V con) · (

Ttotal − T con
idle

)
(1)

Econ
idle = (

Icon
idle · V con) · T con

idle (2)

Econ = Econ
active + Econ

idle (3)

Equations (1), (2), and (3) represent the energy consumptions in the active state, in the
idle state, and in total, respectively. Econ

active is the amount of energy the SSD controller
consumes in the active state. Icon

active is the cumulative current consumed in the active
state, and V con is the voltage applied to the controller. The time spent in the active state
is obtained by subtracting the idle time, T con

idle , from the total simulation time, Ttotal. Econ
idle

is the energy consumed by the SSD controller in the idle state, and Icon
idle is the consumed

current in the idle state. The total energy consumed by the SSD controller is denoted
by Econ and is obtained by adding up the energy consumed in active and idle states.

3.2. DRAM

DRAM is in the active state when it is reading or writing. Otherwise, it is in the idle
state. We assume that the read and write operations consume the same amount of
current.

Edr
OP = (

Idr
OP · V dr) · T dr

OP (4)

Edr
active = Edr

OP · Ndr
OP (5)

Edr
idle = (

Idr
idle · V dr) · T dr

idle (6)

Edr = Edr
active + Edr

idle (7)

Equation (4) shows the amount of energy consumed for processing one operation in
DRAM. Idr

OP is the amount of current required for DRAM operation. V dr is the voltage
applied to DRAM, and T dr

OP is the time for DRAM to perform the operations. Equation (5)
is the total energy DRAM consumes in the active state. Ndr

OP is the total number of
operations. Equation (6) represents the energy DRAM consumes in the idle state.
T dr

idle = Ttotal − (Ndr
OP · T dr

OP) and corresponds to the total simulation time minus the
operation time. Since DRAM is kept powered on for preserving data until the SSD is
powered off, the idle time corresponds to the total simulation time minus the operation
time. Equation (7) is the total energy consumption by DRAM, which is the sum of the
energy consumption in the idle and active states.

3.3. NAND Flash

A single NAND chip normally consumes 20 to 30mA to perform read, program, or
erase operations [Grupp et al. 2009]. In the idle state, an SSD consumes energy for
precharging bit lines for NAND operations and for exchanging clock signals with the
flash controller in the SSD controller. The active state of NAND flash is divided into
three substates: read, write, or erase. According to the datasheet by an NAND flash
manufacturer [Samsung 2012], NAND flash consumes almost an identical amount of
energy regardless of the type of operation. However, according to Grupp et al. [2009],
this is not realistic, and different operations consume different amounts of energy. In
this article, we assume different current consumption levels for each NAND operation.

ACM Transactions on Storage, Vol. 11, No. 2, Article 8, Publication date: March 2015.
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Note that NAND flash is nonvolatile, and we can turn it off selectively if needed. The
energy consumption of a single NAND flash die can be computed as follows:

E fl
read = (

I f l
read · V fl) · T fl

read (8)

E fl
write = (

I f l
write · V fl) · T fl

write (9)

E fl
erase = (

I f l
erase · V fl) · T fl

erase (10)

E fl
active = E fl

read · N fl
read + E fl

write · N fl
write + E fl

erase · N fl
erase (11)

E fl
idle = (

I f l
idle · V fl) · T fl

idle (12)

E fl = E fl
active + E fl

idle. (13)
Equations (8), (9), and (10) represent the amount of energy consumed by NAND flash
for read, write, and erase operations, respectively. I f l

read, I f l
write, and I f l

erase are current
consumptions for read, write, and erase operations, respectively. T fl

read, T fl
write, and T fl

erase

are the time spent for read, write, and erase operations, respectively. V fl is the voltage
applied to the flash memory. We calculated the total energy consumption of operations
by adding up the energy consumption of each state. Equation (11) shows the energy
consumed by NAND flash in the active state, which is the sum of the energy consumed
by each type of operation. N fl

read, N fl
write, and N fl

erase are the number of read, write, and
erase operations, respectively. Equation (12) indicates the energy consumed by NAND
flash in the idle state. T fl

idle is the idle time of NAND flash and is given by Ttotal − (T fl
read ·

N fl
read + T fl

write · N fl
write + T fl

erase · N fl
erase). Because it is possible to power off NAND flash as

needed, we can subtract the power-off time from the total time. The proposed simulator
provides two types of energy consumption in the idle state: One is the energy consumed
in the idle state without any power-off state. The other is the energy consumed in the
idle state under the assumption that NAND flash is turned off when there is no I/O
request. Equation (13) is the total energy consumption by NAND flash, which is the
sum of the energy consumptions in active and idle states.

3.4. Host Interface

In SSDs, according to Grupp et al. [2009], the energy involved in data transfers is
approximately three times higher than that in the idle state in NAND flash. The
power used in data transfers is not negligible and should be considered in modeling
the SSD energy consumption. The energy used by a data bus is less than that of the
SSD controller, DRAM, or NAND flash in the active state. Energysim considers only
the energy consumed during data transfers, ignoring the energy consumed in the idle
state:

Ebus = (Ibus ∗ V bus) ∗ T bus (14)
Ibus and Vbus are the current and the voltage applied to the bus, respectively, and Top is
the time for data transfer through the bus.

4. SIMULATOR

4.1. Simulator Design

We modified the existing trace-driven simulator model for an SSD [Agrawal et al. 2008]
to study its energy consumption behavior. We modified this simulator to support mul-
tichannel and multiway configurations: the channel switch delay and way switch delay
can be adjusted via input parameters. We call the simulator Energysim.3 Figure 5

3The simulator is publicly available at https://github.com/ESOS-Lab/EnergySim/.
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Fig. 5. Simulator system overview.

illustrates the structure of our simulator. Energysim models the energy consumption
of the SSD controller, DRAM, NAND flash, and host interface based on the model de-
scribed in Section 3. It generates the aggregate energy consumption for a given period of
time as well as the energy consumption for every interval between the events. Also, En-
ergysim generates the energy consumption statistics for each type of NAND operations.

The existing DiskSim model for SSDs [Agrawal et al. 2008] has only page mapping
[Ban 1995]. We implemented DFTL [Gupta et al. 2009], block mapping [Ban 1999], and
BAST [Jesung et al. 2002]. DFTL uses page mapping with caching and demand paging
for mapping table management. In block mapping, consecutive sectors are relocated
to different flash blocks when some of the sectors are updated. In page mapping, each
updated sector can be relocated into any NAND flash pages. Our block mapping is based
on Kuo et al. [2008]. BAST (Block Associative Sector Translation) categorizes NAND
flash blocks into two categories: data block and log block. The data block and log block
are managed by block mapping and page mapping, respectively. An incoming write
request is first written to the log block. When there are no pages available in the log
block, the valid pages in the log block are consolidated with the pages in the data block
and the respective log block is erased. This process is called log block cleaning. For log
block cleaning, BAST employs full merge, switch merge, and replacement. Replacement
is an operation that erases victim log block and allocates a new free block. Among the
three types of log block cleaning operations, we found that the replacement operation
causes too many erase operations and negatively affects the performance. In this work,
we devised modified BAST, which does not perform the replacement operation: we
named this modified version BAST*. When the erase count of the victim block exceeds
the average erase count by 15% or more, the FTL switches the contents of the victim
block with those of a cold block. A cold block is a block that has not been erased for the
longest period of time [Gal and Toledo 2005].

In real SSDs, there exists a delay in switching channels or ways [Yoo et al. 2011].
The SSD simulator by Agrawal et al. does not incorporate this characteristic and thus
cannot accurately simulate the real-world behavior of an SSD. Our simulator models
the channel-switch and way-switch delays. The delay information is supplied as a
configuration parameter.

4.2. Simulator Validation

We validated the accuracy of our simulator against a commercially available SSD
model, Intel X25M. We used a current probe, Tektronix TCP202, and the oscilloscope,
Tektronix DPO 3012, to capture the current consumption behavior of X25M. The total
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Table III. Energysim Parameters [Intel 2009b] (NAND Flash Spec. Is from Intel [2009a])

Read/Write/Erase 50μs/500, 900μs/2.0ms
Register (1 byte) 20ns
Page Size 4KB
Pages per Block 128
Blocks per Plane 2,048
Planes per Package 2

NAND Energy Specifications
Read/Program/Erase 20mA
Idle 3mA
Voltage 3.3V

SSD Controller
Active/Idle 30mA/15mA
DRAM (512MB,page) Active/Idle 100mA/20mA
DRAM (8MB,other) Active/Idle 77mA/3mA

energy consumption is computed by multiplying the input voltage (5V), the total cur-
rent, and the execution time, that is, EDrive = VDrive ∗ IDrive ∗ T ime. In this experiment,
we turned off the DRAM cache4 of X25M to ensure the accuracy of measurement.
Table III illustrates the parameters used in Energysim. These values are obtained
from the SSD datasheet [Intel 2009b] and NAND flash datasheet [Intel 2009a]. In this
simulation, we used different sizes of DRAM for page mapping and DFTL to examine
the difference in energy consumption caused by page table accesses. In simulating
page mapping, our Energysim is configured with 512Mbyte DRAM with 100mA and
20mA current consumptions for active and idle states, respectively. In other mappings
(DFTL, Block, and BAST), our model is configured with 8Mbyte DRAM with 77mA
and 3mA current consumption for active and idle states, respectively.

We open() the raw device and wrote different sizes of data ranging from 4KByte to
160KByte in increments of 4KByte. Figure 6(a) and Figure 6(c) illustrate the current
consumptions of writing different sizes of blocks varying from 4KB to 160KB. We use
two graphs since the current consumption behavior radically changes when the I/O
size becomes larger than 80KByte. We can see in Figure 6(a) that current consumption
increases by 17mA steps as we increase the data size by 4KByte. This stepwise increase
continues until the I/O size reaches 80KByte. This is because X25M has a 10-channel
and two-way configuration, and with an 80-KByte write, 20 page write operations are
interleaved across the channels and across the ways, fully exploiting its internal par-
allelism. When FTL writes 80KByte, current consumption reaches the peak, 520mA.

As we can see in Figure 6(a) and Figure 6(c), as the data size increases, it takes
longer for X25M to reach its maximum current consumption level. For example, when
we write one page, it takes 30μsec for the SSD to reach its maximum current consump-
tion level. When we write two pages, it takes 60μsec for the SSD to reach its peak
current consumption. A possible explanation to this phenomenon is that the two pages
are written to different channels and it takes 30μsec to switch the channel. When
the I/O size exceeds 80KByte, it becomes a different situation. When we write 84KByte
(21 pages), the first page and the 21st page are written to the same die. Therefore, the
21st write request can only start after the first write completes. If the page program
(write) latency is shorter, that is, 500μsec, than the sum of all channel-switch and way-
switch delays, that is, 30μsec×20, the write requests will complete before the 21st write
operation starts. In this case, the total current consumption continues to decrease until

4SATA command 82h.
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Fig. 6. Comparison between Intel X25M and Energysim on current consumption behavior of write operations
(10 channels, two chips/channel, 4Gbyte/chip, � = 4KByte).

Table IV. Energy Consumption: Real Device Versus Simulated Device (in mJ)

Write IO Size X25-M (mJ) Simulated X25-M (mJ)
4K 1.3 1.2 (−6.0%)
40K 2.5 2.4 (−5.8%)
80K 4.0 3.7 (−8.1%)
120K 7.3 6.7 (−8.0%)
160K 8.6 8.2 (−4.5%)

the 21st write starts. We collected the block-level trace from this experiment using blk-
trace and obtained energy consumption behavior from our simulator with the collected
trace. Figure 6(b) and Figure 6(d) illustrate the result. Figure 6(c) illustrates current
consumption of writing 84KByte to 160KByte on the real SSD (X25M). We can see that
the simulator exhibits very similar current consumption patterns to the physical SSD
in all these cases. Table IV compares the aggregate energy consumptions of the real
SSD and the simulation model. The energy consumption of the Energysim-based SSD
has an 8% worst-case relative error.

5. CASE STUDIES

We investigated the energy consumption characteristics of SSDs under a variety of
options such as different address mapping, internal parallelism, and DRAM size. In
this study, we used five FTLs (page level, DFTL, block level, BAST, and BAST*) and
four different channel configurations (two, four, eight, and 16 channels). The latency of
NAND operations and their current consumptions are set as specified in NAND flash
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Table V. SSD Specifications (NAND Flash Spec. Is from Intel [b])

SSD model

Total Capacity 460GB (512GB)
Number of Channels 2, 4, 8, 16
Number of Packages 16
Pages per Block 64, 128, 256
Page Size 4KB

Serial Access 20ns
Flash Page Read/Write/Erase 50μs/900μs/2ms

Table VI. Workload Characteristics

Read Seq. Avg. Read Avg. Write
Workload (%) (%) Size (KB) Size (KB)
Financial1 [SPC 2009] 15.4 2.4 2.3 3.7
Financial2 [SPC 2009] 78.5 4.3 2.3 2.9
Homes [Koller and Rangaswami 2010] 21.7 45.6 16.7 4.0
MSNfs [Kavalanekar et al. 2008] 66.1 6.0 10.0 11.0
FileZilla [ESOSLab 2012] 0.1 62.4 10.4 436.9
Torrent [ESOSLab 2012] 34.3 8.6 14.7 36.9
GIMP [ESOSLab 2012] 48.7 17.9 136.2 15.1

memory datasheet [Intel 2009a], which are summarized in Table V. Overprovisioning
degree is set to 10%.

Queue depth is set to 32 in our simulator. We performed a set of experiments with
different queue depths from depth 1 to depth 64. According to our experiments, the
performance and the energy consumption are insensitive to the device queue depth,
and we only show the result with queue depth 32 due to the space limit.

5.1. Workload Summary

Table VI shows the seven workloads used in this study. Financial1 and Financial2
are the I/O traces generated by an OLTP program in financial systems [SPC 2009].
MSNfs is the I/O trace gathered in the MSN Storage back-end file server [Kavalanekar
et al. 2008]. The Homes workload is collected from the home directory in an NFS server,
which consists of several research group activities such as developing, testing, technical
writing, and plotting [Koller and Rangaswami 2010]. The remaining three workloads,
FileZilla, Torrent, and GIMP, are from in-house traces [ESOSLab 2012].

5.2. FTL and Energy Consumption

We examined the I/O latency of the five FTLs under the seven workloads (Figure 7(a)).
The page mapping yields the best performance in all workloads. DFTL exhibits 14%
longer latency than page mapping. Compared with page mapping, block mapping and
two hybrid mappings yield 2× or longer latencies. BAST shows the worst performance
due to the replacement merge overhead. The performance differences between FTLs
become more significant as the fraction of write operations increases. Figure 7(b) shows
the normalized energy consumption. In most workloads, except MSNfs, DFTL is more
energy efficient than page mapping. This is because DFTL has a smaller memory
footprint than page mapping does since it maintains a smaller subset of mapping table
in the memory. The page mapping maintains the whole mapping table in its memory.
With the MSNfs workload, DFTL suffers from frequent cache misses of the map table.
DFTL triggers a large number of NAND operations to synchronize the contents of map
cache and the address mapping table in the NAND flash.
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Fig. 7. Average response time and normalized energy consumption.

Fig. 8. Normalized average response time/total energy consumption.

To examine the energy efficiency of FTLs, we computed the (response time)/J for each
FTL and normalized it against page mapping. Figure 8 illustrates the result. DFTL is
the most energy-efficient FTL from the performance perspective.

We examined the energy consumption involved in accessing the mapping table in
page mapping and in DFTL. In page mapping, we assumed that the entire page table
is cached in DRAM. In DFTL, mapping table access occasionally triggers the NAND
flash operation due to cache miss. In DFTL, energy consumption caused by mapping
table access varies widely subject to its access locality. Figure 9 illustrates the result.
Financial1 and Financial2 workloads are highly skewed. In DFTL, the mapping table
lookup rarely triggers NAND operations since the hit ratio is quite high (specifically, the
hit ratios of the two workloads are 98.5% and 97.8%, respectively). For the mapping
table operation, DFTL consumes only one-quarter of the energy consumed by page
mapping. In the MSNfs workload, the mapping table hit ratio is 25.3% in DFTL, causing
frequent mapping table access operations on NAND flash. In this workload, DFTL
consumes 11× more energy than page mapping does in the mapping table operation.

In SSDs, performance is governed by the number of NAND operations involved in
servicing a given I/O request. The actual number of write operations caused by a write
request from the host (e.g., SATA) command varies widely subject to the mapping
algorithm, wear-leveling algorithm, garbage collection algorithm, and so forth. The
ratio of the number of pages written from the host to the actual number of pages
written in the flash storage is called the write amplification factor. The performance
and energy consumption vary subject to the actual number of write operations in
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Fig. 9. Effect of mapping table caching on energy consumption.

Fig. 10. Details of energy consumption by NAND operation (Fi: Financial, Ho: Homes, MSN: MSNfs, File:
FileZilla, To: Torrent, PA: page mapping, DF: DFTL, BL: block mapping, BA: BAST).

the storage device. We have observed that block mapping and two hybrid mappings
exhibit significantly longer I/O latencies than page mapping does. Block mapping,
BAST*, and BAST consume 9.2%, 7.9%, and 21.9% more energy, respectively, than
page mapping does. Sensitivity analysis shows that the accesses to the spare area
during the replacement block management in block mapping negatively affect both the
performance and the energy consumption; the effect is far graver in energy consumption
than in performance.

5.3. Energy Consumption Breakdown

In Figure 10, we show the breakdown of the total energy consumption by the NAND
flash operation type. The idle time energy consumption in the figure excludes the en-
ergy consumption when an SSD itself is in an idle state; that is, it only includes the
aggregated energy consumption of each idle flash chip when at least one flash chip
is executing a NAND operation. This is to accurately extract the amount of energy
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Table VII. Energy Consumption for Each NAND Operation (%)
(Workload: Financial1, Stripe Size: Page)

Read Write Erase Idle BUS
Page 3.3 65.8 0.3 29.8 0.9
DFTL 3.3 66.8 0.3 29.0 0.6
Block 5.4 54.7 0.7 38.6 0.6
BAST* 2.9 56.8 0.7 39.0 0.6
BAST 2.5 55.8 0.6 40.7 0.4

Table VIII. NAND Operation Counts and Energy Consumption (Page Mapping)

Page Page Idle Time Total
Read Write Energy Energy Ratio

(×1,000) (×1,000) Cons. Cons. (%)
MSN 1,959 1,175 31J 169J 18.6
FileZilla 1 1,296 287mJ 141J 0.2

needed to maintain idle flash chips in an idle state.5 A common observation through-
out all mapping schemes and workloads is that the energy consumption involved in
write operations and during idle time accounts for a dominant portion of the total
energy consumption. On average, each of them occupies 66% and 29% of the total
energy consumption, respectively. Even with the read-intensive workload, Financial2,
where 79% of the total I/O operations are read operations, write operations consume
about 40% of the total energy, on average, while read operations consume only 7% of
the total energy, on average. This is because a read operation consumes only about
1/18 of the energy compared to a write operation. Current consumptions and voltages
are the same for read, write, and erase operations. The duration of each operation is
different. Read and write operations take 50μsec and 900μsec, respectively. A write
operation consumes 18× more energy than a read operation does. While a single erase
operation consumes 2× more energy (132nJ) than a write operation, the aggregated
energy consumed by all erase operations occupies only 0.5% of the total energy con-
sumption due to the very small number of erase operations.

Table VII shows the energy consumed by each NAND operation as a percentage of
the total energy consumption. In page mapping and DFTL, write operations consume
a relatively larger fraction of energy. In block mapping and two hybrid mappings,
flash memories spend a relatively large fraction of energy in an idle state. This is
because the two schemes, page mapping and block mapping, have different degrees
of parallelism across flash chips. In multichannel/multiway SSDs, if the channels are
not fully utilized, some flash devices sit idle while the other flash devices are under
operation. We observed that the total energy consumption in the idle flash devices far
exceeds the energy consumption of a single page write operation. Therefore, in terms
of energy consumption, it is important to minimize the idle flash chips via maximizing
parallel operations among flash chips. In page mapping, sequential page writes can be
distributed across channels, whereas in block mapping, sequential pages are written
in the same block until the block becomes full. Hence, for small sequential writes (less
than a block), block mapping cannot fully exploit channel parallelism and places most
flash chips in an idle state.

Table VIII shows the number of individual flash operations, idle time energy con-
sumption (A), total energy consumption (B), and ratio of idle time energy consumption
to the total energy consumption (A/B). The MSNfs workload issues mainly small and

5Note that when an SSD is in an idle state, we can safely turn off the entire flash memory part in the SSD
to save energy.

ACM Transactions on Storage, Vol. 11, No. 2, Article 8, Publication date: March 2015.



8:16 S. Cho et al.

Fig. 11. Normalized mean response time in each channel/way architecture.

random write requests, while the FileZilla workload issues mainly large and sequential
write requests. The ratio of the idle time energy consumption to the total energy con-
sumption in each workload is about 18.6% and 0.2%, respectively. We can see the effect
of the idle time on the total energy consumption. MSNfs issues 2.5× more I/Os than
FileZilla, most of which are read operations. A single page write operation consumes
about 18× more energy than a single page read operation. MSNfs consumes only 19.5%
more energy than FileZilla in total, due to the high idle time energy consumption.

Based on the previous observations and analysis, we can identify an important SSD
design objective in terms of energy consumption. The FTL algorithm should carefully
be designed to increase the degree of parallel operations to minimize the idle time of
flash chips. Additionally, the SSD architecture should be designed to allow the flash
packages to be turned off when they are in an idle state.

5.4. The Internal Parallelism

To investigate the effect of the channel and way configuration on both the I/O response
time and the energy consumption, we measured the response time and energy con-
sumption under various channel/way architectures (from 2×8 to 16×1).6 We assumed
that physical pages are allocated in a channel-major round-robin fashion for write
requests.

Figure 11 shows the average response time in each channel/way configuration. The
response times are normalized to a 2 × 8 configuration (two channels and eight ways).
A common observation among all mapping schemes is that the response times in 4 ×
4, 8 × 2, and 16 × 1 configurations are almost the same in most workloads. This is very
interesting because the increased channel parallelism brings marginal improvement
to the I/O response time, contrary to common perception. We found the reason in the
dynamics of both the channel switching delay and way switching delay (the time for
the flash controller to transfer data from the SSD buffer to the page register in the
flash chip). When the number of channels becomes large enough, the aggregate channel
switch delay hides the way switching delay in each channel. In our experiment, the
channel switching and way switching delay are 30μsec and 82μsec [Yoo et al. 2011],
respectively.

Let us provide an example. We examined detailed latency in issuing a 32KB (eight
page × 4KB) write under different channel/way configurations. In a 2 × 8 configuration,
four pages are assigned to two channels, in a round-robin fashion. Since the latency to
issue two page write commands to two different channels is 60μsec (=2 × 30μsec), the
SSD controller needs to wait 22μsec (=82μsec –60μsec) until the first channel is ready
to accept a new command. Hence, to issue eight page write commands to two channels,
there occur six way switches (6 × 22μsec = 132μsec), in addition to the eight channel

6m by n denotes m-channel and n-way configuration.
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Fig. 12. Normalized energy consumption in each channel/way architecture.

switches (=240μsec). However, in a 4 × 4 configuration, the time to issue four page
write commands to four different channels is 120μsec (=4 × 30μsec), longer than the
way switching delay (82μsec). By the time the fourth page is issued to the channel 4,
the channel 1 will be ready to accept a new command. In this case, we can issue four
page write commands without any delay. The total delay in issuing eight page write
commands in a 4 × 4 configuration will be only 240μsec, shorter than the delay in a
2 × 8 configuration. When the number of channels is larger than four, the total delay
time is the same for 8 × 2, 16 × 1, and 4 × 4 configurations. Therefore, to determine the
channel/way configuration in an SSD, we need to properly incorporate the channel and
way switching delays to eliminate unnecessary delay caused by switching overhead.

Figure 12 shows the normalized average energy consumption under various channel/
way configurations. We normalized the average energy consumption against that of
the 2 × 8 configuration. While the average energy consumption slightly decreases as
the number of channels increases, the differences are negligible. The result of the
performance experiment includes not only the workloads with small-size I/Os but also
the workloads with large-size I/Os. For the FileZilla workload, the average size of write
operations is 437Kbyte. The average read size of the GIMP workload is 136Kbyte. The
channel/way configuration does not notably affect the energy consumption provided
that the number of flash chips is the same.

5.5. Effect of Channel/Way Switch Delay

We measured the performance and energy consumption of four different combinations
of the channel/way switch delay: 15/41, 30/82, 30/123, and 30/164μsec. Figure 13 and
Figure 14 illustrate the normalized energy consumption and normalized response time
under four different combinations of channel and way switch delays, respectively. In
these figures, there are seven groups of bars, and there are four bars in each group.
Each group denotes the experiment result for each of seven traces. In each group,
the results are normalized against the result of the longest channel and way switch
configuration (30/164μsec) in the group. As shown in Figure 13, energy consumption is
not sensitive to the changes in channel and way switch delay. However, the response
time is sensitive to the changes in channel and way switch delay.

5.6. Peak Energy Consumption

We examined the fraction of time the SSD controller consumes current at its maximum
level. The length of this period is equivalent to the time during which the maximum
number of flash chips is being programmed in parallel. We used four different channel
configurations under six workloads. The key technical issue in this experiment is the
effect of page write latency. We used four different channel configurations: 16 × 1, 8 × 2,
4 × 4, and 2 × 8. Existing works do not take into account the delay involved in switching
the channels and ways [Park et al. 2009a; Agrawal et al. 2008]. However, it is found
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Fig. 13. Normalized energy consumption (C: channel switch delay, W: way switch delay (μsec)).

Fig. 14. Normalized mean latency (C: channel switch delay, W: way switch delay (μsec)).

that the channel switch delay cannot be ignored in studying the effect of parallelism
[Yoo et al. 2013]. The most effective parallelism is governed not only by the number
of channels and ways but also by the page write latency. To fully exploit the channel
parallelism, the total time to interleave the write requests across the channels should
be longer than the delay of switching the NAND die in a channel (way switch delay).
Further, to fully exploit the hardware parallelism, the sum of latencies in switching
the channels and ways should be longer than the time spent on writing a single page.
For example, assume that a 64KByte write command has arrived from the host and the
SSD has four channels and four ways. With a 4KByte page size, the write command
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Fig. 15. Max current consumption time in page FTL (max current is 477mA in experiment parameter).

will be split into 16 NAND write requests. Assuming plain page mapping, these NAND
operations will be issued to each channel in round-robin fashion. The first and the fifth
write operations will be designated to the same channel, and so will the second and
the sixth operations. Given a 30msec channel switch delay [Yoo et al. 2011], the first
and the fifth write requests will be 120msec apart. If the way switch delay is shorter
than 120msec, the first channel will be ready to accept a new write command when
the fifth request arrives. Otherwise, the fifth write request has to wait until the NAND
controller is ready to write a page to a new block. The first and the 17th page writes
will go to the same die in a 4 × 4 configuration. The 17th write command cannot start
until the first write request completes. The internal parallelism should scale with the
page write latency and the equivalent page size.

Figure 15 illustrates the fraction of time during which the SSD consumes current at
its maximum level. We ran the experiment with two page write latencies, 500μsec and
900μsec. It is normalized to the 16-channel SSD. The channel switch delay and way
switch delay are set to 30μsec and 82μsec, respectively [Yoo et al. 2011]. As long as
the number of channels is larger than or equal to three, that is, � 86

30�, we can saturate
the channel. Therefore, four-, eight-, and 16-channel SSDs yield the same behavior in
both Figure 15(a) and Figure 15(b). With two-channel configuration, each channel is
underutilized due to the way switching delay. Therefore, the two-channel SSD spends a
smaller fraction of time at the maximum current consumption level than the others. Let
us examine the effect of page write latency; with larger page write latency (900μsec),
there are more outstanding concurrent write operations. Therefore, SSDs spend a
longer time at the maximum current consumption level (Figure 15(b)). On the other
hand, in a 2 × 8 configuration, the SSD rarely consumes the maximum current when
the page write latency is 500μsec (Figure 15(a)).

For internal parallelism of an SSD, there exist energy/performance tradeoffs. In-
creasing the internal parallelism improves the performance, but it also increases the
peak energy consumption. Yoo et al. [2011] suggested the notion of Power Budget, which
is the maximum tolerable peak energy consumption (or current consumption) for an
SSD. They propose that there should be an interface to inform the SSD of its Power
Budget and that the firmware of an SSD should be designed to dynamically adjust
the parallelism degree subject to its Power Budget. Several works have proposed dy-
namically throttling the transfer rate or parallelism degree of an SSD to regulate the
temperature of the SSD [Park et al. 2009b; Lee et al. 2013]. To properly design the
SSD internal parallelism, we need to incorporate the channel switch delay, way switch
delay, and page write latency.

Peak energy consumption is an important factor in designing the SSD controller
circuit. We examined the peak energy consumption behavior under different degrees
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Table IX. Page Program (Write) Latency

Page Size Write Latency (μsec)
2KB 200 [Samsung 2005]
4KB 900 [Intel 2009a]
8KB 1300 [Samsung 2012]
16KB 1600 [Micron 2013]

Fig. 16. Time series of current consumption with different page trite times: 500μsec versys 900μsec.

of parallelism: two-channel and 16-channel SSDs. We used two workloads: Financial1
and FileZilla. The Finanacial1 workload exhibits small random writes with high tem-
poral locality. Most of the I/O accesses are focused on the small region, and therefore,
the SSD cannot fully exploit its internal parallelism. The side benefit of this is that the
SSD rarely reaches its peak energy consumption. For the FileZilla workload, current
consumption of the SSD stays at its peak for most of the time. This is because the
SSD controller fully exploits its internal parallelism to sequentially write the files it
is downloading. In terms of aggregate energy consumption, as long as the degree of
internal parallelism remains the same, how to distribute the parallelism among the
channels and ways hardly matters; that is, a two-channel by eight-way configuration
and an eight-channel by two-way configuration yield the same aggregate energy con-
sumption. While SSDs with more channels spend a larger fraction of time at the peak
current level, we believe the difference is marginal.

In both workloads, the SSD with large-size pages (longer write latency) consumes
more energy. The difference in energy consumption becomes more visible in the random
workloads (Figure 16(a) and Figure 16(c)) than in the workloads with large sequen-
tial writes (Figure 16(b) and Figure 16(d)). Considering that NAND page size is ever
increasing these days and that an NAND device with a 16KByte page size is being
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manufactured, we would like to examine the effect of the NAND flash page size on the
energy consumption and performance when the filesystem block size is a fraction of the
NAND flash page size. Most of the modern filesystems use a 4KByte block size to align
it with the page frame size of the main memory. From an energy consumption perspec-
tive, it should be mandatory that the SSD controller implements subpage mapping.

Peak energy consumption does not change with respect to the channel/way combi-
nation. Peak energy consumption is governed by the maximum number of flash chips
that can be programmed in parallel. As long as the number of flash chips that can
be programmed in parallel remains the same, how they are arranged in channel/way
combination does not affect the peak energy consumption. However, the duration at
which the SSD consumes energy at its maximum level varies subject to the channel/way
configuration. Also, total energy consumption is governed by the total amount of read
and write operations and therefore is not subject to the channel/way configurations of
NAND flash memory.

6. RELATED WORK

Software components of an SSD include address mapping, garbage collection, and
wear leveling. Numerous works have been proposed in the area of address mapping
[Hu et al. 2010; Wei et al. 2011; Liu et al. 2012b; Chen et al. 2011b; Gupta et al.
2009], wear leveling [Chen et al. 2011a; Wu et al. 2011; Murugan and Du 2011; Shmidt
2002], and garbage collection [Liu et al. 2012a; Debnath et al. 2011]. These algorithms
can be executed either in the microcontroller of an SSD or in the CPU of the host
[Fusion-IO 2011]. A single NAND flash chip is not as fast as an HDD and can exhibit
an approximately 40MByte/sec write bandwidth [Strande et al. 2012]. To improve
the performance, modern SSDs, without any exception, arrange the NAND flash chip
using multiple channels and ways [Park et al. 2009a]. With multichannel and multiway
configuration, the SSD controller can perform multiple NAND operations concurrently,
which results in higher performance. Pages across the multiple channels can negatively
affect the overall SSD performance [Yoo et al. 2013]. There have been a number of
works on building an energy-efficient system with SSDs [Strande et al. 2012]. The
energy consumption aspect of HDDs has been under intense research for the last two
decades and has now reached sufficient maturity. These works propose to stop the
spindle and/or to shut down the circuitry of the hard disk controller. It has also been
proposed to reduce the rotational speed to save energy [Yada et al. 2000]. Bucy et al.
[2009] developed a DiskSim-based simulator to estimate the energy consumption of
HDDs for a given workload. Jung et al. [2012] developed NANDFlashSim for NAND
flash devices.

With SSD-based storage devices, a system can become more energy efficient than
with an HDD in terms of performance [Schall et al. 2010; Seo et al. 2008], that is,
higher IOPS/J, but it becomes denser in terms of energy consumption. Energy density
of an SSD, that is, J/in3, is orders of magnitude larger than that of an HDD, and
the peak energy consumption of an SSD is much higher than that of an HDD [Inoue
et al. 2011], which raises the heat dissipation issue. A number of works are dedicated
to regulating the peak energy consumption via throttling the data transfer rate or
limiting the number of flash memory chips programmed in parallel [Park et al. 2009b;
Lee et al. 2013]. Compared to HDDs, SSDs will make CPU spend less time waiting for
an I/O. This may escalate the peak energy consumption of a given system. Special care
needs to be taken to regulate the peak energy consumption of the entire system.

7. CONCLUSION

Researchers as well as practitioners do their best to get better performance out of
SSDs. This is achieved via increasing internal parallelism, adopting large-size buffers,
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increasing the areal density of the NAND flash cells, and so forth. As a result, mod-
ern SSDs exhibit spectacular performance compared to the legacy HDDs. SSDs are
more energy efficient than HDDs from a byte/J point of view. However, the aggre-
gate and peak energy consumptions of an SSD become much denser than those of an
HDD (measured in J/sec and J/cm3, respectively). We believe that the energy aspect
of an SSD design deserves more interest from the community. This work focuses on
the energy consumption behavior of an SSD under various design choices. We varied
the latency of NAND operations, the number of channels, and FTL algorithms and
examined the detailed energy consumption behavior of an SSD. We found that DFTL is
the most energy-efficient scheme due to its good write amplification behavior and the
small memory footprint. We found that aggregate energy consumption is not sensitive
to the channel/way configuration but is rather governed by the write volume. While a
single erase operation consumes more energy than a single write operation, the aggre-
gate energy consumption of all erase operations constitutes less than 1% of the total
energy consumed by NAND flash. Peak energy consumption is governed by internal
parallelism. When it is required to increase the internal parallelism, it is better to
increase way parallelism than channel parallelism from a peak current consumption
point of view. The result of this work provides an important guideline in designing
energy-efficient SSDs.
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