
To perform experiments for real recorded signals, we used speech, 
car noise. or music as the noises. Another set of speech was used as the 
signal s. Korean sentences were recordcd for the speech, and the car 
noise and music were obtained in NOISEX-92 CD-ROMs and a Korean 
popular song, respectively. Each signal was 10 s long with 16 kHz 
sampling rate. It is known that speech signal approximately follows a 
Laplacian distribution. Therefore, sign(.) was used as the score func- 
tion. Fig. 1 shows the filter h,* which was measured in a normal office 
room, and the number of taps of adaptive filter coefficients was 1024. 
Table 2 shows the SNRs of the two algorithms for the three different 
noises after convergence. Thc SNRs of the ICA-based approach were 
superior to those of the LMS algorithm. These results show that the 
ICA-based approach can remove dependent components through 
higher-order statistics for real recorded signals as well. 

I 

Signal 
Speech 
Spccch 
Speech 

O2 t I 

Noise Initial SNRs LMS algonthm approach 
Cui -3.0 21.0 26.8 
Speech -3.0 21.5 38.7 
Music -3.0 21.7 41.8 

0 

-0.2 I1 
100 200 3W 400 5W 600 700 800 900 1000 4.4 ' " " " " ' 

Fig. 1 Measirredjilrer in normal 08.. room 

Table 2: SNRs of  output signals for real recorded signals after 
convergence (dB) 

I I I I I ICA-based I 

Conclusion: A method for adaptive noise cancelling based on ICA i s  
proposed and the ICA-based learning rule has been derived. The 
method is compared with the LMS algorithm through experiments far 
several noise signals and mixing filters. By including higher-order 
statistics, the proposed ICA-based approach gives bctter perfor- 
mances than the conventional LMS algorithm 
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Classification of power disturbances using 
feature extraction in time-frequency plane 

J.Y. Lee, Y.J. Won, J.-M. Jeong and S.W. Nam 

An eficisnt featurc extraction in the time-frequency plane is proposed 
for BUtomatic classification of power diimrbances. For that purpose, 
singular value decomposition and piincipal component analysis are 
utilised. Finally, the performance o f  the proposed approach is tested 
using a maximum likelihood predicior classifier. 

Introduction: Power quality (PQ) has been of great concern recently, 
due to the increase in the number of loads sensitive to power 
disturbances, whereby a power disturbance Corresponds to any devia- 
tion from the nominal value of the input AC power characteristics 
[I-51. One ofthe main issues in PQ problems includes how to localise 
each disturbance event and recognise its respective type in the 
disturbance group more efficiently. Since power disturbances 
are finite energy transicnt or non-stationary signals, it may not be 
sufficient to analyse them in the time-domain or in the frequency- 
domain alone. To solve such problems, several signal processing 
approaches (e.g. [4, 51) have been reported for the detection and/or 
classification of power system disturbances, whcreby they may not 
provide good performance in a noisy environment. In this Letter, a new 
feature extraction approach, based on the joint time-frequency signal 
representation [6,7], is proposed for automatic classification of power 
disturbances, where the timc-frequency structure of each disturbance 
signal is cxploited as its distineuishing feature for the recoenition of - 
the respective types of power disturbances. Being the two-dimensional 
representation of a one-dimensional signal, the timc-frequency signal 
representation encodes in a redundant fashion the information o f  the 
one-dimensional signal [7]. Thus, for the effective use of joint time- 
frequency signal representations, it is of practical importance to apply 
a data compression procedure to the time-frequency representations. In 
this Letter, the discrete Wigner distribution (WD) is utilised as a 
bilinear (or quadratic) time-frequency representation, and effective 
data compression is accomplished by employing (i) singular value 
decomposition (SVD) of the discrete WD [7] and (ii) principal 
component analysis (PCA) [4]. This results in an efficient feature 
vector extraction for the classification ofpower system disturbanccs. In 
general, the tasks to be performed for the automatic classification of 
power disturbances include the following: (i) capturing each distur- 
bance event (i.e. detection) and (ii) sorting the captured disturbance 
into various power disturbance groups and identifying its type in the 
disturbance group (Le. recognition) [4, 51. Far the automatic detection 
of each power disturbancc event, the stop-and-go cell-average 
constant-false-alarm-rate (CA-CFAR) detector [3] is employed in 
this Letter. Then, along with the power level of each detected 
disturbance, the WD of each detected disturbance, its SVD, and 
PCA are utilised for efficient feature vector extraction. Finally, 10- 
class disturbance data, generated using the power system blockset [4], 
are tested to demonstrate the performance and applicability of the 
proposed approach, whereby a maximum likelihood predictor (MLP) 
neural network [XI is employed as a classifier. Also, simulation results 
obtained by applying the discrete wavelet transform (DWT)-based 
approach [4] are also provided for purpose of comparison. 

Detection ofpower dir1urhonre.s: In this Letter, the stop-and-go CA- 
CFAR detector [3], which is a modified version of the CA-CFAR 
detector for the use of power disturbance detection, is utilised to 



localise each transient power disturbance in additive noise. For 
example, consider a measured power system signal as in Fig. la ,  
where an impulse wavcshape fault waveform is included and thc pawcr 
system signal is represented with the maximum magnitude of the pure 
60 Hz sinusoidal signal part being set to one (Le. nomalised). Then, 
application of the stop-and-go CA-CFAR detector yields Fig. Ib.  

Feature extraction using SVD and PCA: Once each power distur- 
bance waveform is detected it is necessary to extract, from 
the detected disturbance waveform, properly chosen discriminant 
information (called a feature vector) for the efficient disturbance 
classification. In this Lencr, a new feature extraction approach, 
based on the joint time-frequency signal representation [6, 71, 
is presented. In particular, among bilinear joint time-frequency 
representations, the WD, which is optimal in many respects [6, 71, 
is utilised. When x(n )  is an N-point signal, its discrete WD, W,, is an 
N x N matrix the (n, m)th elcment of which is given by 

l 
a 
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Fig. 1 Feature erhodion using WD and SVD 
a Measured power system sisal 
b Detected impulse waveshape fault 
c Wiser dirwbution of (b) 
d U ,  V‘obtained from SVD of (e) 
e U,Viobtained from SVD of  (c) 

In (I) ,  (n, m ) ~  { O , .  .., N -  I]*.  However, since the discrete WD 
includes redundancy due to its hvo-dimensional representation of a ane- 
dimensional signal, an effective data compression procedure is required 
which can be effectively accomplished by means of (i) SVD of W, and 
(ii) PCA. More specifically, the SVD of W ,  results in the following 

optimum outer product expansion [7]: 

where (i, and V, are the N x 1 vectors corresponding to a singular value 
si (i  = I ,  2, . . . , w. For example, in case of the impulse waveshape fault 
disturbance as in Fig. Ih, its WD, U,Vc and U;V:are presented in 
Figs. IC-, respectively. Also, in the spectrum of singular values, most 
energy of each power disturbance is distributed to scv~ral major 
singular values (e.g. si, s2 for power distucbances). From this point of 
view, U ,  and V, vectors, corresponding to s,, and U2 and V, vectors, 
corresponding to s2. are chosen, along with the power level I of an 
N-point disturbance signal, to constitute a potential feature vector F of 
dimension 4N+ 1: 

F = [ I ,  UT, V:,  U r ,  Vr1‘ (3) 

In addition, so as to eliminate the redundancy among the elements of 
(3), Fisher’s criterion, which is one of the PCA techniques, is applied to 
(3) for farther data compression, where the degree of distinction of one 
class from other classes is utilised as the threshold for the appropriate 
number of feature elements [4]. 

Classrfmtion using MLP classifier: Each extracted fcature vector is 
applied as the input to an MLP, which is one of well-recognised neural 
network classifiers, to recognise the corresponding class type of it. 

Simulations: For the performance test of the proposed approach, 
1000 power signal data in additive Gaussian noise (i.e. with 10 
classes and 100 data per class; with 40 dB SNR; each data is 
128-point long) are generated using the power system blockset of 
Matlab. Also, an MLP with one hidden layer and 10 output neurons 
is utilised as a classifier, and 30 data per class (Le. total: 300 data) 
are uscd for training, while 70 data per class (i.e. total: 700 data) 
are applied for test. Under this condition, the extracted feature, 
obtained by analysing 300 training data (Le. 30 data per class), is of 
a 34 x 1 vector form, where the threshold in the Fisher’s criterion is 
set to 17.0. In this case, the data compression ratio is equal to 15:l 
(Le. reduction from 513 to 34). The simulation results (i.e. classi- 
fication rates), obtained by applying bath the DWT-based approach 
[4] and the proposed WD-based approach to the 700 test data, are 
prescnted in Table 1, where the proposed WD-bared approach yields 
better performance (Le. 98.0%) than the DWT-based approach 
(Le. 93.4%). 

Table 1: Simulation results 

I Method I DWT-based I WVD-based I 

rlr = ratio of I (comctly classificd number of data) to t (number of e s t  data) 

Conclusion: For the automatic classification of transient or non- 
stationary power disturbances, WD is utilised as a joint time- 
frequency representation, and SVD and PCA are employed for 
effective data compression. The simulation results, obtained using 
an MLP classifier, demonstrate that the systematic approach results in 
an efficient feature extraction (e.g. 15: I compression ratio), also 
leading to good classification performance. 
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High-speed division architecture for GR2") 

Chang Hoon Kim and Chun Pyo Hong 

A new division architecture for GF(2'") with standard basis represen- 
mtion is presented. The pmpased architecture is based on a modificd 
version of the binary extended greatest common divisor algonthm: it 
reduces computational delay time and hardware complexity 

lnrroductiun: The implementation of an elliptic curve public key 
cryptosystem requires division in GF(2"'). Although the division 
operation can easily be implemented using software, it would be 
too slow for time-critical applications. Thus many approaches and 
architectures have been proposed to realise it using hardware [I-31. 
Fermat's theorem or Euclid's greatest common divisor (GCD) algo- 
rithm or the solution of a set of linear equations can be used to 
compute division in GF(2"). Recent research results show Euclid's 
GCD algorithm is the best choice to compute division using hardware 
[I-31. As a result of our research, described in this Letter, we propose 
a high-speed and lowcomplexity division architecture for GF(2"') 
with standard basis representation (SBR). This architecture is based 
on a modified version of the binary method [4] that is a different 
representation of Euclid's GCD algorithm. 

New algorithm for division in GF(27:  Let A@) and B(x)  be two 
elements in GF(2m), G(x) be the primitive polynomial used to 
generate the field and P(x) be the result of the division [A(x)/B(x) 
MOD G(x)]. For each polynomial, the coefficients are binary digits 0 
and 1 : 

A(X) = a,_#-' + a m - 2 ~ - 2  + . . . + alx + a. 
B(x)  = b,_lx"-' + b, , - ,F2 + , . . + b,x + bo 

(1) 
C(x) = *" +g,,_,rm-' +gm-2xm-z + ' . ' +g,x +go 

P(x)=p,_lP- '  + p , _ 2 x " - 2 + . . . + p , X + p 0  

In 'previous research [4], the division result P(x) is obtained using the 
binary extended GCD algorithm. The algorithm is described as follows: 

Input: G(x), A@), B(x) 
Output: V has P(x) =A(x)/B(x) MOO G(x) 
Initialise: R=B(x), S=G=G(x), U=A(x), Y=O; 

1 while R#O do 
2 while ro= =0  then 
3 R=R/x, U = U / x M O D  G; 
4 
5 
6 end while 
7 i fS?R then 
8 
9 else 

10 
11 end if 
12 end while 

This algorithm is based on five simple facts described in (2-6): 

If both S and R are even, then GCD(S, R)  = xGCD(S/r, R/x) 

while so = = 0 do 
S=Slr, V= V / x  MOD G; 

(S, R)=(R+S, R), (R W = ( U +  R W; 

(S, R)=(S, R +s), (P Q = (P U+ V); 

(2) 

(4) 

( 5 )  

If S is odd and R is even, then CCD(S, R) = GCD(S, R l x )  (3) 
GCD(S, R) = FCD(R, S ~ R) 
GCD(S, R) = GCD(S, S - R) 

If both S and R are odd, then S - R is even (6) 

In (6) ,  since subtraction and addition are bit-wise exclusive-OR (XOR) 
operation in CF(Y) ,  (7) is satisfied 

S - R = R - S = S + R  (7) 

Although the algorithm described above is simple, it is difficult to 
redise with hardware since the number of iterations is not fixed. In 
addition, it requires pmcess of comparisons relative to R and S. We 
solve such problems without affecting basic functions of the binary 
extended GCD algorithm. The resulting algorithm is described as 
follows: 

Input: CIx), A(x), B(x) 
Output: V has PIX) =A(x)/B(r) MOD G(x) 
lnitialise, R=B(r), S=G=Glx), U=A(x), V = O  

couni = 0, state = 0; 
1 for i =  1 IO ?m do 
2 ifslate= = O  then 
3 count=count+ I; 
4 ifr,= =I then 
5 (R ,S )=(R+S ,R) , (U ,  M=(U+Po);  
6 state= 1; 
7 end i f  
8 else 
9 count = count - 1; 

10 i f r o =  = 1 then 
11 (R.s)=(R+S,s),(U, r3=(U+KV;  
12 end if 
13 if COUM= = 0  then 
14 state = 0 
15 endif  
16 end if 
17 R=R/x, U=U/xMOD G; 
18 endfar 

The differences between the two algorithms are summarised as follows: 

(i) In the first algorithm, since the initial value of S equals to G(x), it is 
always odd at first. In addition. depending on the value of R, we apply 
two different conditions to get CCD(S, R). If R is even, we apply (3). If 
R is odd, we first compute (S-R) ,  and then apply (4) or (5). In this 
case, the resulting value of S is always odd and we only need to check 
the value of R,  whether it is even or odd. Based on this result, steps 4, 5 
and 6 (see fist algorithm) can be removed. 
(ii)Inthefirstofthetwoalgorithmsdescnbedabove,slncethedegreeofS 
ismandthedegreeofR islessthanm,ifwereducethedcgreeofRorSby 
one for each iteration step, the algorithm will be terminated after Zm 
iterations. In addition, comparison is required as described in step 7 ofthe 
first algorithm. In the new algorithm, instead ofcomparing the value ofR 
and S, we use a different approach. As described in the second algorithm 
above, we prnvide new variables count andstole. Thevariable count is used 
foruackingthe difference afdegree betweenR andS, and thevariablestate 
is used for identifying which one has the larger degree between R and S. 

In the second algorithm, depending on the value ofstate and R, we apply 
fourdifferent conditions togetGCD(S,R). First, whenthevanablestateis 
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