
IO characteristics of modern smartphone platform:
Android vs. Tizen

Myungsik Kim, Hu-Ung Lee, and Youjip Won
Department of Computer Science Engineering, Hanyang University, Seoul, Korea.

{mskim77, oihtoto, yjwon}@hanyang.ac.kr

Abstract—In this work, we examine the IO characteristics of
two smartphone platforms: Android and Tizen. We compare
how the two platforms differ in using the filesystem, using the
database, and accessing the storage. We collected the IOs from
select seven different apps that are commonly available on both
platforms. By analyzing the collected the IOs on both platforms,
a dominant fraction of writes are 4 KB synchronous. On Android
and Tizen, respectively, 65% and 45% of all write IO counts 4
KB; 47% and 75% of all writes accesses are SQLite related files
such as database, rollback journal, WAL (Write Ahead Log), and
etc.; 81% and 86% of all IOs are random accesses; and 90% and
52% of all writes counts are synchronous IO mode. According
to our IO analysis, Android IO stack is more sophisticated
then Tizen one: (i) disables atime updates, (ii) adopts journal
asynchronous commit, and (iii) adopts fdatasync() in SQLite.

Index Terms—Android, Tizen, Mobile Platform, Smartphone,
IO Workload Characterization

I. INTRODUCTION

Storage IO is arguably the major performance bottleneck
in smartphones [1]. It is found that Android apps generate an
excessive amount of synchronous IOs most of which are from
EXT4 journal writes [2]. In Android, misaligned interaction
between SQLite rollback journal and EXT4 journaling layer
creates excessive writes to filesystem journal [3]. Improper
handling of platform IO requests can worsen the essential
properties in mobile devices: it can decrease the devices’
overall performance, can shorten NAND flash cell lifetime in
eMMC, and can decrease energy efficiency which is essential
in mobile devices that have limited battery power.

This study is motivated by the needs to compare the effi-
ciencies of the IO stacks in the open source based smartphone
platforms: Android and Tizen. While the IO characteristics
of Android are relatively well known [1], [3], little is known
about the details of Tizen platform [4]. We focus our effort
in characterizing the IO behaviors of emerging platform by
comparing one of the most widely used smartphone platforms
currently available. We investigate IO characteristics of Tizen
and Android and identify areas for improvement by comparing
the two platforms.

To perform empirical study on the IO characteristics of two
platforms, we establish seven categories for apps. From these
seven app categories, we select fourteen workloads. For fair
comparison, we select built-in basic application categories that
are available on both platforms such as contacts, calendar,

web browser, etc. We collect IOs while performing selected
workloads and analyze the characteristics of the collected IOs.

In terms of IO size, 4 KB is the dominant, accounting
for 65% and 45% of total IO count on Android and Tizen,
respectively. The proportion of 4 KB IOs is 20% higher on
Android than on Tizen. In terms of IO block type, metadata
and journal account for 37.3% and 57% of the total IO size
on Android and Tizen, respectively. Tizen has higher fraction
of journal and metadata than Android has. In terms of file
type, SQLite related files are common on both platforms. On
Android and Tizen, SQLite related files account for 54% and
40% of all IO volume, respectively. Random write is dominant:
81% and 86% of all accesses are random in Android and Tizen,
respectively. On both Android and Tizen, 78% of all IOs are
sequential in terms of volume. On Tizen, 90% of all IOs are
synchronous writes; Android shows less synchronous writes
with 51.8%. We observe that Android use more buffered writes
than Tizen.

The IO behavior of the two platforms are different due
to their database structures and journaling options. The rea-
sons for such write amplification are: (i) redundant data
updates from platform components, (ii) unorganized database
structure, and (iii) duplicated journaling by SQLite DB and
EXT4 filesystem known as ‘journaling of journal’ anomaly
[2], [3]. We observed that Android uses additional IO stack
optimization options for filesystem and SQLite. Examples of
the optimization options include EXT4 filesystem’s noatime
and journal async commit option. In addition, Android further
reduces the number of IOs by using WAL journaling mode
and fdatasync() for SQLite. On the other hand, Tizen
does not use those IO stack optimization options. Tizen uses
the default EXT4 mounting options and PERSIST rollback
journal mode is used for SQLite. Adopting Android’s tuning
options on Tizen may improve its IO performance.

II. BACKGROUND

A. Platform Architecture

Android and Tizen platforms are software stacks built on
top of Linux kernel. The mobile platforms include various
middleware components which consist of proven open-source
solutions, such as WebKit, SQLite, SSL, libc, GStreamer, etc.
Both platform frameworks are loaded with core applications,
such as web browser, email, address book, image viewer, etc.
They also provide an API to app developers.978-1-4799-5344-8/15/$31.00 c©2015 IEEE

TABLE I: Specifications on Tizen and Android Smartphones

Platform Android Tizen
Model Name Galaxy S3 RD-PQ

Processor Samsung Exynos 4412
CORE Quad-core 1.4GHz Cortex-A9
RAM 1 GB Mobile DDR2

Display 4.8 inch HD AMOLED (1280x720)
Sensors Gyro, Proximity, Compass, Barometer
Storage eMMC 32 GB eMMC 16 GB
Kernel Linux 3.0.31 Linux 3.0.15

Platform Android 4.1.2 Tizen 2.2.1
SQLite 3.7.14 3.7.13

There is a difference in their application frameworks: An-
droid uses specific Java runtime engine, Dalvik VM, for
their application framework, whereas Tizen does not use a
virtual machine. Instead, Tizen provides broader range of
mobile app packaging technology. Tizen includes web-based
framework and web SDK for web app which uses HTML5
[5], CSS, and Java script [6]. There is a tradeoffs between
the two strategies. A virtual machine can provide enhanced
system safety and security, but it may yield a larger runtime
processing overheads. Web app has more flexibility based on
inter-operable Web standard [7].

Tizen adopts device profile concept [8] which enables the
platform to be used across multiple devices. Tizen is allows ad-
ditional hardware components to be easily integrated. Through
the cross-device platform concept, newer Tizen targets not
only mobile devices but also in-vehicle infotainment (IVI)
devices, smart cameras [9], wearable devices [10], and other
consumer electronic devices. Android and Tizen have Webkit-
based Chromium browser as their default browser [7]. Webkit
is an open source web layout engine that is responsible for
rendering web contents onto a screen. Android uses Webkit
[11] and Tizen uses Webkit2 [12], [13]).

Tizen follows kernel mainline policy which is governed by
the Linux Foundation. In contrast, Android patches the main-
line Linux kernel especially to improve embedded devices.
For example, Android has its own Inter-process communica-
tion option (Binder, Lightweight RPC to minimize memory
copying overhead by referencing shared memory in kernel),
memory management subsystem (Ashmem to less data has
to be transferred), C library (bioniC, lightweight than glibc),
debugging tools (logcat, Android Debug Bridge), etc.

B. IO Stack

In both Android and Tizen platforms, SQLite is the way
of managing the data in persistent manner. The SQLite uses
fsync() to make the result of database transaction persistent
[2], [3]. The performance of SQLite transaction relies heavily
on the fsync() transaction. fsync() writes dirty file
blocks to the respective location and then journals the respec-
tive metadata. Both Android and Tizen use EXT4 filesystem as

(a) Android Platform Architecture [14], [15]

(b) Tizen Platform Architecture [16]

Fig. 1: Platform Comparison between Android and Tizen

their default filesystem. They use “Ordered Mode” journaling
where only the metadata is journaled.

Different Android smartphone models adopts different block
IO scheduler: Deadline (Google Nexus 5), BFQ (Budget Fair
Queuing, Google Nexus One), and CFQ (Samsung Galaxy
Nexus, Samsung Nexus S) [17]. Tizen platform offers three IO
scheduling options: CFQ, Deadline, and Noop. Both Android
and Tizen devices in this study use CFQ (Completely Fair
Queuing) IO scheduler as the default option.

III. DATA STUDY

A. Device

For this study, we use Tizen reference smartphone, RD-
PQ, and Android smartphone, Galaxy S3. Table I summarizes
specifications of the two systems. The two hardware platforms
are identical. We use Galaxy S3 even though there are newer
Android devices available because the two platforms share the
same hardware platform. Tizen reference smartphone, RD-
PQ, runs Linux Kernel 3.0. Tizen adopts traditional Linux
kernel directory structure such as /var or /opt. Android
uses modified Linux directory structure with added /system
and /data directories. The program resources are generally
located in /usr/bin in mainstream kernel, but in Android,
they are in /system/bin. Both devices are initialized with
stock OS image downloaded from the manufacturer’s web site.
While Android platform enjoys a plethora of prepackaged
apps, Tizen phone yet comes with only limited number of
apps. For this study, we install additional 38 apps to our Tizen
device which includes in SDK package.

B. Filesystem and Storage

Metadata update overhead constitutes a significant portion
of IO traffic in Android based smartphones [2]. EXT4 inode
has atime field. It is updated every time when the file is
accessed. The updates in the atime make the inode dirty
and makes it subject to filesystem journaling. EXT4 provides
noatime option. When noatime is set, atime field is not
updated when a file is in read operation. In default, Android
platform deliberately disables the atime updates to reduce
the IO traffic. In Tizen based smartphone in this study, atime
field is updated every time when a file is accessed.

In order for EXT4 journal to function correctly, the order
between the journal descriptor blocks and the journal commit
block [18] needs to be preserved. EXT4 filesystem provides
an option for asynchronous journal commit. In asynchronous
journal commit option enabled, the fsync() call returns
without waiting for the write completion of journal commit
block. The journal commit block contains checksum field
which is obtained from the journal descriptor block and the
commit block itself to determine whether the commit block has
been properly recorded, preserving the order between journal
descriptor blocks and journal commit block. Android platform
uses journal asynchronous commit option. Tizen does not use
this option. According to previous study [19], with journal
asynchronous commit option, the fsync() performance in-
creases by up to 7%.

TABLE II: Comparison of EXT4 Filesystem Mount Option

Android EXT4 mount option
/system rw,noatime,barrier=1
/cache nosuid,nodev,noatime,barrier=1,journal async commit
/data relatime,barrier=1
Tizen EXT4 mount option
/opt relatime,user xattr,barrier=1
/var relatime,user xattr,barrier=1
/opt/usr relatime,user xattr,barrier=1

C. Workloads

We select seven app categories from Android and Tizen. Se-
lected categories are contacts, web browser (visiting 3 different
web sites), mail, camera (with video recorder), multimedia
(playing music and video), gallery, web streaming (playing a
video clip on youtube), and HTML5 (benchmark site). We
like to understand the IO behaviors of these apps in the
practical settings. For this reason, instead of using benchmark,
we perform human-based experiment. From seven categories,
we select total of fourteen applications in this study. For each
of fourteen usage scenarios, the user runs the app for one
minute. Mobile devices use Dynamic Voltage and Frequency
Scaling to minimize the power consumption. As the CPU clock
cycle may affects the IO performance, we fix the operating
frequency to the maximum level. We use MOST (Mobile
Storage Analyzer) [2], [20] to collect IOs. The experiment is
repeated three times to warrant correctness of the study. Table
III summarizes the workloads and user application scenarios
for tracing IOs.

In this study, we collect IOs and analyze six IO attributes:
IO sizes, IO type (read or write), spatial locality (random
vs. sequential), filesystem block type (data block, metadata
block, journal block), and synchronization mode (buffered vs.
synchronous IO). We categorize IOs in the filesystem perspec-
tive into three blocks types: data block, metadata blocks (e.g.,
inodes, bitmaps, directories, group descriptors), and journal
block (EXT4 journal). We categorize the files into six types by
file extension name: executables (.apk (Android application
package), .odex (Optimized Dalvik Executable), .tpk (Ti-
zen native package), .wgt (Tizen web app package), .exe,
.so), SQLite database table (.db), SQLite temporary files
(.db-journal, .db-wal, .db-shm, .db-mjx), multi-
media (mp4, .jpg, .mp3, .png, .jpeg, .png, .3gp), re-
source (.dat, .xml, .js, .cache, .info, .dat, .tmp),
and others including directory entry.

IV. PRIMITIVE IO

A. IO Size

On both platforms, 4 KByte IOs are dominant. In Android
and Tizen, 4 KByte IOs accounts for 65% and 45% of all write
count, respectively. The fraction of 4 KByte IOs is higher on
Android platform than on Tizen. We categorize IOs into five
groups based on their size (≤4 KB, ≤ 16 KB, ≤ 64 KB,
≤ 256 KB, and more than 256 KB.) and identify the fraction
of each group. Fig. 2 illustrates the result. Fig. 2(a) and Fig.
2(b) show the IO size distribution with respect to IO counts
for Android and Tizen, respectively.

Android shows particularly high number of write IOs while
executing web application compared to other workloads. The
IOs from web application are generated by storing caching
data. On Tizen, mail workload generates the highest number of
IO writes with 1,667 in Fig. 2(b). The reason for this excessive
number of IOs is the write requests from the database. On
both platforms, media contents are saved using a small number
of large size buffered writes. Multimedia contents are stored
through a buffered write with large IO extents. In Camcorder
(Cc) and Camera (C) scenarios, 512 KB write IOs constitute
about 80% and 60% of the total incurred sector size in Android
and Tizen, respectively.

B. Block Type

We analyze the IO access patterns in terms of filesystem
block types. We categorized the IOs into three block types;
metadata, journal, and data. Fig.3 illustrates the result. In
Android and Tizen, metadata IO and journal IO combined to-
gether accounts for 45% and 66% of the total write IO counts,
respectively. Filesystem journaling and metadata updates are
managerial operations.

Tizen creates more IO overheads than Android does. In
performing an identical tasks, Tizen apps yields much than
Android does. The 80% of writes are metadata and journal
writes on Tizen when executing gallery app workload, com-
pared to 47% on Android. The amount of metadata and journal
writes depends on the synchronous write requests from an
application. We observe that Tizen does not employ options

TABLE III: Scenarios

Category Workload Scenario
Contacts contact1(Cn1), contact2(Cn2) Add a name and a phone number in the address book.

Web google(Br1), daum(Br2), naver(Br3) Access web sites and portal news service using web browser
Mail mail(Ml) Check e-mail on mail app, write e-mails, and send e-mails.

Camera camera(C), camcorder(Cc) Taking a picture and Recording a video.
Multimedia media(Me), music(Mus), gallery(Gal) Play videos, play music files, view pictures.

Web streaming youtube(You) Play videos on YouTube using web browser
HTML5 fishbowl(Fsb), game(Gam) Access two HTML5 benchmark sites.

 0

 20

 40

 60

 80

 100

R

Cn1

W R

Cn2

W R

Br1

W R

Br2

W R

Br3

W R

Ml

W R

C

W R

Cc

W R

Me

W R

Mus

W R

Gal

W R

You

W R

Fsb

W R

Gam

W

8
7

1
5

2

4
5

3
3

4

6 3
6

0

2
0

6
7

9

5
6

7
4

7

6
2

3
8

7

9
0

2
1

5

1
1

3
2

0

1
5

8
0

1
3

8
1

8
5

1
1

9

1
4

0

4
0

2
6

9

3 1
1

6

2 9
3

%
 o

f
T

o
ta

l

<=4KB <=16KB <=64KB <=256KB >256KB

(a) IO Count: Android

 0

 20

 40

 60

 80

 100

R

Cn1

W R

Cn2

W R

Br1

W R

Br2

W R

Br3

W R

Ml

W R

C

W R

Cc

W R

Me

W R

Mus

W R

Gal

W R

You

W R

Fsb

W R

Gam

W

1
3

1
3

9
2

1
0

3
4

6
7

2
2

5
1

0

3
3

4

1
3

1
6

1
5

0
5

0
3

1
7

2
1

6
6

7

1
0

3
1

2
2

5

8
4

1
8

5

1
3

3
2

1
7

1
8

2
1

8
8

6
4

5

5
7

4

2
1

3
8

1

1
0

5
2

3
7

6
6

2
1

7

%
 o

f
T

o
ta

l

<=4KB <=16KB <=64KB <=256KB >256KB

(b) IO Count: Tizen

Fig. 2: IO Distribution

 0

 20

 40

 60

 80

 100

R

Cn1

W R

Cn2

W R

Br1

W R

Br2

W R

Br3

W R

Ml

W R

C

W R

Cc

W R

Me

W R

Mus

W R

Gal

W R

You

W R

Fsb

W R

Gam

W

8
7

1
5

2

4
5

3
3

4

6 3
6

0

2
0

6
7

9

5
6

7
4

7

6
2

3
8

7

9
0

2
1

5

1
1

3
2

0

1
5

8
0

1
3

8
1

8
5

1
1

9

1
4

0

4
0

2
6

9

3 1
1

6

2 9
3

%
 o

f
T

o
ta

l

Metadata Journal Data

(a) IO Count: Android

 0

 20

 40

 60

 80

 100

R

Cn1

W R

Cn2

W R

Br1

W R

Br2

W R

Br3

W R

Ml

W R

C

W R

Cc

W R

Me

W R

Mus

W R

Gal

W R

You

W R

Fsb

W R

Gam

W

1
3

1
3

2
1

1
0

3
3

8
5

2
2

4
0

4

3
3

4

1
0

6
2

1
5

0
3

9
9

1
7

2
1

3
2

1

1
0

3
9

9
4

8
4

1
4

3

1
3

3
1

7
1

1
8

2
1

4
8

6
4

5

4
5

8

2
1

3
0

2

1
0

5
1

8
8

6
6

1
7

4

%
 o

f
T

o
ta

l

Metadata Journal Data

(b) IO Count: Tizen

Fig. 3: Filesystem Block Type

that can potentially reduce a synchronous IOs such as SQLite
fdatasync option or WAL journaling mode. Due to all these
causes, in the gallery app of Tizen, journal writes and metadata
writes combined together account for 80% of entire writes.

C. File Type

We categorize the files into six groups depending on their
file extensions: executable, SQLite, SQLite-temp, multimedia,
resources, and others as mentioned in Section III-C. SQLite-
temp files are temporary files that SQLite generates in order
to implement atomic commit and rollback capabilities. These
temporary files have .db-journal or .db-wal extensions.
Fig. 4 illustrates file type distribution in filesystem layer by IO
count and sector count. On Android, SQLite writes account for
47% of the total IO counts, which are lower than the portions
on Tizen. On Tizen, SQLite and SQLite-temp, combined,
accounts for 75% of all IO counts (Fig. 4(b)). The portion
of the two file types is lower in terms of the total size than
the total IO count because most of SQLite IOs are 4 KB in
size (about 73% of all SQLite IOs are 4 KB). Particularly,
with camera workload, over 80% of all IOs are induced by

SQLite. In case of mail workload, most IOs are DB file
accesses on both platforms. In performing an identical tasks
Tizen Application generates much larger fraction of SQLite
related IO than Android application does.

D. Buffered vs. Synchronous Write

We categorize the IOs into synchronization mode (buffered
vs. synchronous IO). Fig. 5 shows that Tizen platform gener-
ates much larger fraction of synchronous writes than Android
platform does. In Android and Tizen, synchronous writes
accounts for 51.8% and 90.3% of the total writes IO counts,
respectively. Tizen do not use buffered IO sufficiently, it only
exist 9.7% of total write IO counts.

Synchronous write operation is a heavy operation. It blocks
the process until the requested data blocks reach the storage
device. For the performance’s sake, the application developers
use synchronous writes only when there is no other resort. Ac-
cording to this analysis, the Tizen IO stack leaves much room
for further improvement to reduce the fraction of synchronous
writes.

TABLE IV: IO Characterization Comparison Summary

IO Semantics Sub-Type Android Tizen
IO
Size

IO Size 4 KB 65% 45%
Block type Size Data> Journal >Meta Data> Journal >Meta

Block type Meta and Journal 45.1%(c) 37.3%(s) 66.4%(c) 57%(s)
File type SQLite and SQLite temp 47.6%(c) 40.2%(s) 75%(c)54%(s)

Sequentially Random Count / Sequential Size 81.4% / 78% 86% / 78%
Synchronous/Buffered IO Synchronous Write Count 51.8% 90.3%

 0

 20

 40

 60

 80

 100

R
Cn1

W R
Cn2

W R
Br1

W R
Br2

W R
Br3

W R
Ml

W R
C

W R
Cc

W R
Me

W R
Mus

W R
Gal

W R
You

W R
Fsb

W R
Gam

W

8
7

2
8

4
5

1
4

5

6 2
2

1

2
0

5
3

3

5
6

5
5

1

6
2

1
6

4

9
0

1
3

6

1
1

2
4

1

1
5

3
3

1
3

8
9

0

1
1

9
7

3

4
0

1
4

3

3 4
6

2 5
5

%
 o

f
T

o
ta

l

Executable
SQLite

SQLite-temp
Multimedia

Resource
Others

(a) IO Count: Android

 0

 20

 40

 60

 80

 100

R
Cn1

W R
Cn2

W R
Br1

W R
Br2

W R
Br3

W R
Ml

W R
C

W R
Cc

W R
Me

W R
Mus

W R
Gal

W R
You

W R
Fsb

W R
Gam

W

1
3

0
1

2
0

1
0

2
1

1
5

2
2

1
5

1

3
3

4
5

6
0

1
5

0
1

8
5

1
7

1
6

4
1

1
0

1
4

9
3

8
4

3
1

1
3

1
2

2

1
8

1
2

1

6
4

4
9

2

2
1

1
2

6

1
0

5
5

2

6
6

5
2

%
 o

f
T

o
ta

l

Executable
SQLite

SQLite-temp
Multimedia

Resource
Others

(b) IO Count: Tizen

Fig. 4: File Type Analysis

 0

 20

 40

 60

 80

 100

A
Cn1

T A
Cn2

T A
Br1

T A
Br2

T A
Br3

T A
Ml

T A
C

T A
Cc

T A
Me

T A
Mus

T A
Gal

T A
You

T A
Fsb

T A
Gam

T

1
5

2
3

9
2

3
3

2
4

6
7

3
6

0
5

1
0

6
7

9
1

3
1

6

7
4

7
5

0
3

3
8

7
1

6
6

7

2
1

4
1

2
2

5

3
1

6
1

8
5

8
0

2
1

7

1
8

5
1

8
8

1
4

0
5

7
4

2
6

7
3

8
1

1
1

5
2

3
7

9
3

2
1

7

%
 o

f
T

o
ta

l

Synchronous Buffered

Fig. 5: Process IO Distribution (A:Android, T:Tizen)

V. RELATED WORK

There have been researches on optimizing performance of
smartphones. Research areas include IO workload analysis and
optimization of mobile devices. Kim et al. [1] presented IO
characteristics of Android smartphones and pointed out that
storage IO behavior can affect the application performance.
Wi-Fi network speed can change the storage performance by
up to three times, depending on the choice of applications.
Ouarnoughi et al. analyzed the IO performance on embedded
DB which focused on flash memory filesystem [21]. Lee
et al. [2] showed that 70% of all writes are random on
the Android platform and that SQLite and EXT4 generate
excessive journaling IOs.

SQLite creates journal files that are used in case of data
crash and these journal files are journaled in the filesystem, in-
curring additional IOs. Decreasing this journaling IO overhead
in SQLite DB has been researched. Jeong et al. [3] analyzed
the journaling IO overhead of Android and also proposed to
optimize the IO stack by using fdatasync() mode, WAL
journal mode, polling based I/O, and alternative filesystem
(flash-friendly filesystem, F2FS [22]).

Other studies attempted to decrease IO overhead by pro-
cessing transactional atomicity in the storage’s flash translation
layer (FTL) [23] or converting the structure of SQLite’s index
tree from B-tree to LS-MVBT (Lazy Split Multi Version B-
Tree) [24]. LS-MVBT saves recovery information in the DB
file itself, not in a journal file, and uses the version infor-
mation in case of system failure. This eliminates unnecessary
synchronization IOs that are related to recovery.

There have been numerous research works on Android IO
[1]–[3] but only limited introduction research has been done
on emerging Tizen platform. The existing research on Tizen
IO [25] only points out that the platform presents the same
journaling problems as Android. To the best of our knowledge,
there are no comparative analysis for two competing platforms,
Android and Tizen, regarding IO characteristics. Our study
substantially different from the existing research in that we find
possibilities of the improvement and optimization by executing
platform comparison.

VI. DISCUSSION AND SUMMARY

In this work, we analyze the IO characteristics on Android
and Tizen platforms. Of the total number of IOs, 65% and
45% are 4 KB in size; 81.4% and 86% are random IOs;
and 51.8% and 90% are synchronous writes on Android and
Tizen, respectively. In both platforms, the amount of filesystem
data blocks written to the storage device is smaller than the
amount of filesystem journal blocks and filesystem metadata
blocks. The filesystem journal and metadata account for 57%
and 66.4% of the total writes on Android and Tizen, respec-
tively. SQLite related writes account for dominant fraction
of storage writes. On Android and Tizen, 54% and 75% of
IOs, respectively, are SQLite DB related. Although SQLite
is known to be lightweight, it generates excessive amount of

synchronous write IOs to update DB journal files and EXT4
journal. Table IV shows the summary of the IO characteristics
in two platforms.

Android IO stack, as it currently stands, is more mature
than Tizen IO stack. We confirmed that Tizen IO stack is
not mature than Android, through comparison of IO attributes.
On Tizen, only PERSIST mode is used for SQLite journaling.
fdatasync() calls for selectively synchronization represent
only 2% of the total number of fsync() calls in Tizen.
To achieve better IO on Tizen, Tizen should also reflect
the Android’s IO stack optimization points. The IO perfor-
mance of Tizen can be improved by replacing fsync() with
fdatasync(), optimizing EXT4 filesystem mounting op-
tions, and utilizing other SQLite journaling modes, including
WAL mode. From this comparative study, IO characteristics
identified in the findings can provide directions of improve-
ment IO stack of emerging mobile platforms.

VII. ACKNOWLEDGMENT

This work was sponsored by IT R&D program MKE/KEIT
(No.10041608, Embedded system Software for New-memory
based Smart Device). This research was supported by the
MSIP(Ministry of Science, ICT&Future Planning), Korea,
under the ITRC (Information Technology Research Center)
support program (IITP-2015- H8501-15-1006) supervised by
the IITP (Institute for Information&communications Technol-
ogy Promotion)

REFERENCES

[1] H. Kim, N. Agrawal, and C. Ungureanu, “Revisiting storage for
smartphones,” Trans. Storage, vol. 8, no. 4, pp. 14:1–14:25, Dec. 2012.
[Online]. Available: http://doi.acm.org/10.1145/2385603.2385607

[2] K. Lee and Y. Won, “Smart layers and dumb result: IO characterization
of an android-based smartphone,” in Proceedings of the Tenth ACM
International Conference on Embedded Software, ser. EMSOFT ’12.
New York, NY, USA: ACM, 2012, pp. 23–32. [Online]. Available:
http://doi.acm.org/10.1145/2380356.2380367

[3] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O stack optimization
for smartphones,” in Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, ser. USENIX ATC’13. Berkeley, CA,
USA: USENIX Association, 2013, pp. 309–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2535461.2535499

[4] J. Yap. (2013) Tizen OS needs differentiation, clear
roadmap. [Online]. Available: http://www.zdnet.com/article/
tizen-os-needs-differentiation-clear-roadmap/

[5] M. B. Hoy, “HTML5: a new standard for the Web,” Medical reference
services quarterly, vol. 30, no. 1, pp. 50–55, 2011.

[6] O. Gadyatskaya, F. Massacci, and Y. Zhauniarovich, “Security in the
firefox OS and tizen mobile platforms,” Computer, vol. 47, no. 6, pp.
57–63, June 2014.

[7] E. A. Hernandez, “War of the mobile browsers,” IEEE Pervasive
computing, vol. 8, no. 1, p. 0082, 2009.

[8] N. Willis. (2014) Tizen common and open hardware. [Online].
Available: http://lwn.net/Articles/617543/

[9] M. Brian. (2013) Samsung’s NX300M smart camera is its first to
run tizen OS. [Online]. Available: http://www.engadget.com/2013/11/
11/samsungs-nx300m-mirrorless-camera

[10] V. Prabhakaran, “Samsung announced tizen-based gear 2 and gear 2
neo,” 2014.

[11] J. J. Sánchez, “Webkit and blink: Open development powering
the HTML5 revolution,” in LinuxCon 2013. The Linux
Foundation, 2013. [Online]. Available: http://www.slideshare.net/igalia/
webkitblinklinuxcon2013

[12] J. Teixeira and T. Lin, “Collaboration in the open-source arena:
The webkit case,” in Proceedings of the 52Nd ACM Conference
on Computers and People Research, ser. SIGSIM-CPR ’14. New
York, NY, USA: ACM, 2014, pp. 121–129. [Online]. Available:
http://doi.acm.org/10.1145/2599990.2600009

[13] Y. Zhu and V. J. Reddi, “Webcore: Architectural support for mobileweb
browsing,” SIGARCH Comput. Archit. News, vol. 42, no. 3, pp.
541–552, Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/
2678373.2665749

[14] J. Liu and J. Yu, “Research on development of android applications,”
in Intelligent Networks and Intelligent Systems (ICINIS), 2011 4th
International Conference on, Nov 2011, pp. 69–72.

[15] M. Butler, “Android: Changing the mobile landscape,” Pervasive Com-
puting, IEEE, vol. 10, no. 1, pp. 4–7, Jan 2011.

[16] Tizen.org. (2014, Nov) Reference Device-PQ. https://wiki.tizen.org/wiki/
Reference Device-PQ.

[17] D. T. Nguyen, G. Zhou, X. Qi, G. Peng, J. Zhao, T. Nguyen, and
D. Le, “Storage-aware smartphone energy savings,” in Proceedings
of the 2013 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, ser. UbiComp ’13. New York, NY, USA:
ACM, 2013, pp. 677–686. [Online]. Available: http://doi.acm.org/10.
1145/2493432.2493505

[18] V. Chidambaram, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Optimistic Crash Consistency,” in Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP ’13), Farm-
ington, PA, November 2013.

[19] H. Kim and J. Kim, “Tuning the ext4 filesystem performance for
android-based smartphones,” in Frontiers in Computer Education, ser.
Advances in Intelligent and Soft Computing, S. Sambath and E. Zhu,
Eds. Springer Berlin Heidelberg, 2012, vol. 133, pp. 745–752.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-27552-4 98

[20] S. Jeong, K. Lee, J. Hwang, S. Lee, and Y. Won, “Androstep: Android
storage performance analysis tool.” in Software Engineering (Work-
shops)’13, 2013, pp. 327–340.

[21] H. Ouarnoughi, J. Boukhobza, P. Olivier, L. Plassart, and L. Bellatreche,
“Performance analysis and modeling of SQLite embedded databases on
flash file systems,” Design Automation for Embedded Systems, pp. 1–36,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10617-014-9149-2

[22] J. Kim. (2012) F2FS: introduce flash-friendly file system. http://lwn.net/
Articles/518718/.

[23] W. Kang, S. Lee, B. Moon, G. Oh, and C. Min, “X-FTL: Transactional
FTL for SQLite Databases,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’13.
New York, NY, USA: ACM, 2013, pp. 97–108. [Online]. Available:
http://doi.acm.org/10.1145/2463676.2465326

[24] W. Kim, B. Nam, D. Park, and Y. Won, “Resolving journaling
of journal anomaly in android I/O: Multi-version B-tree with
lazy split,” in Proceedings of the 12th USENIX Conference on
File and Storage Technologies, ser. FAST’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 273–285. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2591305.2591332

[25] M. Kim, S. Lee, and Y. Won, “IO workload characterization comparison
of Tizen based consumer electronics,” in Proceedings of IEEE Interna-
tional Symposium on Consumer Electronics, 2014, 2014, pp. 11 822–6.

