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ABSTRACT
The recent development of NGS (Next Generation Sequenc-
ing) methods has greatly increased the amount of genome
data and created the need for high-performance computing
and high-performance storage systems. The key issue in
developing high-performance storage systems is building a
storage system that is optimized for NGS analysis pipeline.
In this paper, we implemented a tool to collect and analyze
I/O workload in NGS analysis pipeline. Using this tool, we
executed NGS analysis pipeline and analyzed the character-
istics of I/Os collected in the experiment.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement Techniques;
D.4.8 [Operating System]: Performance—Measurements

General Terms
Design, Measurement

Keywords
Bioinformatics, I/O Workload analysis

1. INTRODUCTION
The human genome consists of DNA sequences and con-

tains over three billion DNA base pairs. DNA sequences vary
by ethnicity groups and by individuals. Variations in DNA
sequences can be different types and sizes. The variations
may represent genetic characteristics or may indicate a cause
for genetic diseases. Genome analysis techniques analyze
genetic structural variations, which are variations in DNA
sequences. The types of variations include SNP (Single Nu-
cleotide Polymorphism), Indel (Insertion and deletion), and
CNV (Copy Number Variation).

A NGS analysis pipeline is a list of analytical steps and
tasks that need to be followed in genome analysis. These
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tasks include aligning sequences, identifying variations, an-
alyzing the structure, etc. and they are executed in order.

The Human Genome Project successfully produced the
first complete sequences of individual human genomes. This
brought heightened interest in the diagnosis and treatment
of diseases through genome research but the high cost associ-
ated with the existing genome analysis technique was an ob-
stacle. The recent development of Next Generation Sequenc-
ing (NGS) enables high-throughput sequencing at a lower
cost. With the existing, traditional sequencing technique, it
takes about 34 years and 300 million dollars to sequence a
human genome, consisting of three billion DNA base pairs.
NGS techniques improved the speed of sequencing by 200
times and cost only 350,000 dollars[13]. Recent advance-
ment in NGS techniques greatly increased the amount of
genome data and created the need for high-performance
computing and high-performance storage systems. Cloud-
based genomics tools, such as CloudBurst[11], [5], and Myr-
naCrossBow[4], are being researched as a solution. These
tools allow executing analysis in parallel in each cluster.
They use MapReduce[3] based distributed systems, such as
Hadoop[2].

Although developing a storage system optimized for NGS
analysis pipeline has become a very important issue, it is still
not being extensively researched. In this paper, we imple-
mented a tool to collect and analyze I/O workload of NGS
analysis pipeline. We executed genome pipeline, using this
tool, and characterized I/Os collected from the experiment.

In Section 2, the characteristics of each step of NGS anal-
ysis pipeline and the applications used in the steps are ex-
plained. The implementation of workload analysis tool is
described in Section 3. In Section 4, I/O workload col-
lected from an actual NGS analysis pipeline is analyzed. Our
conclusion and future research directions are summarized in
Section 5.

2. NGS ANALYSIS PIPELINE
NGS analysis pipeline[1, 8, 10] consists of tasks related

to identifying SNP information from genomic data and an-
alyzing variations in the DNA sequences to extract disease
related information. These tasks can be categorized into
DNA sequence alignment step and SNP calling step. There
are various applications that can be used in NGS analysis
pipeline; in this paper, we used BWA[6] in DNA sequence
alignment step and SAMtools[7] in SNP calling step.

• DNA sequence aligment step
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Figure 1: System Overview

This step consists of two sub steps: First is bwa aln
step, where we create index from the human reference
genome using BWT (Burrows-Wheeler Transform) al-
gorithm[6] and create SA (Suffix Array) information
from the index. Second is bwa sampe step, where we
use the SA information from the first step to coor-
dinate DNA sequence with the reference and convert
the information to SAM (Sequence Alignment/Map)
format[9]

• SNP calling step
This step consists of the following 7 steps. (i) sam-
tool view : SAM/BAM format data is extracted from
the sequencing results, (ii) samtool sort : the mapping
results in BAM format are aligned with the reference
sequence, (iii) samtool index : index is created to allow
fast look-up of data in SAM/BAM files, (iv) samtool
flagstat : statistical information is extracted from the
results of alignment, (v) samtool merge: BAM format
files are merged, (vi) samtool mpileup: from BAM for-
mat files, variations are produced in BCF (Binary Call
Format) files, and (vii) bcftools: the final output are
produced in VCF (Variant Call Format) files.

3. WORKLOAD ANALYSIS TOOL

3.1 Overview
In this paper, we developed a tool to analyze I/O work-

load of NGS analysis pipeline. This tool supports multi-
client environment and is not restricted to one specific file
system. Fig. 1 illustrates the structure of the workload anal-
ysis tool; it consists of iotrace module, a analysis server, and
WebGUI. iotrace module exists in each client as an agent
to support multi-client environment. It is implemented on
FUSE (Filesystem in Userspace)[12]. Traces of I/O requests
from each client’s NGS analysis pipeline are collected by io-
trace module at the file system level. They are transmitted
to the analysis server through TCP/IP. The analysis server
collects the I/O data received, then analyzes and saves the
data in the database. The workload information is man-
aged and monitored in the analysis server using WebGUI.
WebGUI provides real-time monitoring for various types
of I/O information. Upon completing workload analysis,
the system provides analysis results and statistical informa-
tion, including execution time for each step of NGS analysis
pipeline, various access patterns, IOPS, bandwidth, file ac-
cess frequency, the number of requests by request size, CPU

Figure 2: WebGUI

utilization, etc (Fig. 2).

3.2 Tracing Techniques to Collect I/O Data
There are a number of techniques available to collect I/O

workload tracing data. Adjusting the kernel’s system call to
collect the data is one way. I/O data at the system call level
can be collected by using strace, or at the block level by
using blktrace. Network traffic data can be collected using
tcpdump trace.

Adjusting the kernel’s system call to collect the data has
an advantage of not incurring additional overhead but it is
difficult to implement and is restricted to the kernel’s ver-
sion which means the system needs to be revised when the
kernel’s version changes. Using strace does not incur addi-
tional overhead and is easy to implement. However, it can
only collect workload data from one process and its child
processes which makes it difficult to use it for real-world
workloads. blktrace enables I/O data collection at the block
I/O level without additional overhead; however, this does
not fit our goal of collecting the data at the file system level.

In this paper, we implemented trace module using FUSE
file system. FUSE based trace module is implemented in-
dependent of the kernel and, therefore, is not affected by
changes in the kernel’s version. It can also be used inde-
pendent of the file system. However, having an additional
layer of FUSE module in the user space before the native
file system may decrease the system’s overall performance.

3.3 I/O Trace Module
I/O trace module is one of the most important aspects of

the workload analysis system. It exists in each client, where
the actual workloads are being executed, as an agent and is
implemented on FUSE. Fig. 3 shows the process of collect-
ing the trace data of I/O requests created by the workload
generator. First, I/O requests are created by the workload
generator, such as NGS analysis pipeline or Iozone. Then,
the I/O requests call native file system functions in FUSE
based file system functions through VFS and FUSE module.
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Figure 3: Flow Diagram

collector_open(const char *path ,  struct fuse_file_info *fi )
{

io_info_t io_info; 
…

fd = open(path, fi->flag);

…

io_capture(&io_info)

…

}

open (“/mnt/collector/tmp/testfile”, O_RDONLY )

IO Capture

Target Application

iotrace

EXT4,…

Figure 4: I/O Information Capture Function

Table 1: I/O Information Collection Structure

typedef struct io info io {
int op code; // operation code
int name len; // full path length
int count; // operation count
size t size; // request size
struct timeval latency; // latency time
int pid; // process ID
int fd; // file descriptor
struct timeval open start time; // open index
unsigned int client ip; // Client IP
struct list head offset head; // offset list head
struct timeval start time; // timestamp(start time)

}io info s t;

Upon completing the native file system functions, I/O data
collecting function gathers information such as I/Os’ execu-
tion time, request size, etc. (Fig. 4). The collected I/O data
is transmitted to the analysis server through TCP/IP.

3.4 Collected Workload Data
I/O data contains various file system call status, includ-

ing read, write, create, unlink, open, close, etc. The I/O
data collected for a specified time period is transmitted to a
analysis server. The server then saves the received workload
data in the database. All workload data is either transmit-
ted to the analysis server in real-time or saved in the local
client, where the workload is created, as a CSV (Comma
Separated Values) file as needed.
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Figure 5: Server Configuration

Table 2: Data Set

Count File size

Human reference genome 10 11GB
Human whole genom sequencing data 14 218GB

Table 1 is I/O data collection structure to gather file sys-
tem call data. op code determines the type of a system
call. The number of I/O requests collected is stored in
count variable. Request volume size is stored in size vari-
able. start time stores the time at which the request was
created. latency stores time it took for the I/O request to
be processed. To allow look-up of the open operation cor-
responding to the target read/write request, the timestamp
of open operation is recorded in the request’s record.

3.5 Multi-Client Support
Fig. 5 shows the configuration of the analysis server. Epoll

threads in the analysis server check the server’s TCP buffer
for any data received from the client through TCP/IP. If
there is data received, the tread brings the log information
of I/O workload and pushes it to its own queue. DB threads
check their queue for any assigned information. If there
is information assigned, the DB thread pops the log infor-
mation from the queue in the order received and saves it
in the database. This saving process is performed multi-
threaded which may cause problems with sequencing be-
tween the queues. Also, there exist dependencies among
workload data. To solve this problem, a dependency test is
performed before DB thread saves workload information to
the database. If an error occurs, the information is inserted
back in the middle of the queue.

4. EVALUATION

4.1 Experiment Setup
The human genome contains over three billion DNA base

pairs. When DNA sequencing is done with 10-40x coverage,
the number of DNA base pairs becomes 30 billion to 120
billion. In this experiment, we analyzed about 500 million
human genome sequence reads. We also included human
reference genome data in the analysis. The size of the data
set used in this experiment is shown in Table 2.

The test bed consists of one client, which executes NGS
analysis pipeline, one NFS storage server, and one analysis
server; all of which are connected with 10G network. All
the data used in the experiment and the files created during



the process are saved in the NFS server. The client and the
servers used in this experiment are Intel Xeon QuadCore
E5620 2.4Ghz x 2ea, with 32GB memory, and 32 GByte
SSD.

Table 3 shows NGS analysis pipeline configuration used
in this experiment. NGS analysis pipeline consists of two
main steps: NGS sequence mapping step and SNP calling
step. BWA and SAMtools applications are used in NGS
sequence mapping step and SNP calling step, respectively.
For the analysis, the following commands were executed in
the order listed: bwa aln, bwa sampe, samtools view | sort,
samtools index, samtools flagstat, samtools merge, samtools
index, samtools mpileup, and bcftools view. Most of these
commands produce output files which are used as inputs
for the next step. We categorized the commands into the
following five groups for our analysis: bwa aln, bwa sampe,
samtools sort, samtools merge, and samtools mpileup.

4.2 File operation summary
Table 4 is a summary of file operations and the informa-

tion on files created and deleted in each step of the pipeline
Overall, a total of 630 files, totaling 1031.7 GByte in size,
were created; 535 files, 91.4 GByte in size, were deleted;
and files were opened 4756 times. bwa sampe and sam-
tools mpileup steps created files totaling 320.0 GByte and
323.4 GByte in size, respectively. In bwa aln step, files were
opened 2979 times and 91 GByte was created, indicating
that this step produces small I/Os frequently.

4.3 Access Frequency
Fig. 6a, Fig. 6b, and Fig. 6c show the CDF of access fre-

quency. In Fig. 6d, Fig. 6e, and Fig. 6e, we sorted files
by their access frequency and showed the top 12 and 60
files. To review access frequency, we used the number of
files opened (Fig. 6a and Fig. 6d) and the number of I/O
requests (Fig. 6b, Fig. 6c, Fig. 6e, and Fig. 6f).

In read operations, we found that only a few files incurred
most of the read requests. Of all files, the top 5% (31 files)
constituted 99% of the total number of read requests. The
top 0.3% (2 files) accounted for 80% of all read requests. By
placing these 2 files in high performing SSD storage, we can
expect to improve storage performance and reduce energy
consumption.

In write operations, 9 files, the top 1.3% of all files, ac-
counted for 75% of the total number of write requests. Only
a small number of files produced most of the write requests,
same as in read operations.

4.4 Access Pattern
Fig 7 shows the number of I/O requests by size in each step

of NGS analysis pipeline. When one or more I/O requests
are created sequentially, the sum of the requests’ sizes are
shown on the x-axis. y-axis represents the number of times
each I/O request size occurred. In bwa aln step and bwa
sampe step, 96% and 83% of the total requests, respectively,
were over 1 MByte in size. In samtools sort step, write
requests over 1 MByte accounted for 97% of all write re-
quests; however, the number of read requests in 4 KByte, 128
KByte, and over 1 MByte were all close. In samtools merge
step, most write requests were over 1 MByte in size; read
requests were mostly 512 KByte or over 1 MByte. In sam-
tools mpileup step, most write requests were over 1 MByte
and most read requests were 512 KByte. Overall, 94% of all
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Table 3: NGS Analysis Pipeline Configuration

NGS sequence mapping SNP Calling
Application bwa samtools bcftools

Option aln sampe view | sort index flagstat merge index mpileup view
Input .fastq .sai, fastq .sam .bam .bam .bam .bam .merged .bam .bcf

Output .sai .sam .bam .bam.bai .flagstat .bam .bam.bai .bcf .vcf
Term bwa aln bwa sampe samtools sort samtools merge samtools mpileup

Table 4: # of File Operation and Write/Delete File Size

# of Files Created/Deleted/Opend Write size (GByte) Delete size (GByte)

bwa aln 14/0/2979 91.0 0
bwa sampe 7/0/1647 320.0 91.0

samtools sort 556/535/12 227.0 0
samtools merge 2/0/10 69.4 0

samtools mpileup 52/0/108 323.4 0
total 631/535/4756 1031.7 91.4
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Figure 8: Access Pattern During File Open

Table 5: Each File’s Access Pattern

Read Write R/W Pattern

bwa aln 18 12 2
bwa sampe 33 6 1

samtools sort 7 14 542
samtools merge 9 2 1

samtools mpileup 3 25 26
total 22 39 590

I/O requests were over 512 KByte in size.
Fig 8 displays the access pattern while files are open. If

a file reads or writes sequentially from the time it is opened
until it is closed, it is classified as ”sequential read/write”.
If the offset changes out of sequence while the file is open,
it is classified as ”random read/write”. In this experiment,
most read requests were random and most write requests
were sequential.

To analyze each file’s access pattern, we categorized files
into read-only, write-only, and read-and-write as shown in
Table 5. In bwa aln step, both read pattern and write pat-
tern existed equally. In bwa sampe step, 82% of all files were
read-only. In samtools sort step, 92% of all files were read-

and-write. In samtools merge step, there were 9 read-only
files, 2 write-only files, and 1 read-and-write file. In sam-
tools mpileup step, both write-only and read-and-write files
were equally observed. For the overall workload, many files
showed read-and-write pattern.

4.5 Bandwidth
Fig. 9 shows read/write bandwidth of NGS analysis pipeline

workloads. The five steps in NGS analysis pipeline are
marked by bold solid lines. In each step, the target ap-
plication is executed repeatedly; the repetitions are divided
by dotted lines. Each step displayed unique patterns. In bwa
aln step, bandwidth showed high peaks which were produced
by the top 2 files with the largest read request size. In bwa
sampe step, large amount of data was read and written con-
tinuously in short time periods throughout the process. In
samtools sort step, continuous read and write patterns were
repeated at intervals. In samtools merge step, continuous
write operations were displayed for the most of the period
with a peak in read bandwidth at the end of the step. In
samtools mpileup step, there were few read operations but
periodical peaks existed in write bandwidth, showing a write
intensive pattern. Most of write operations occurred during
bwa sampe and samtools mpileup steps.

Fig. 9c is the CDF of read/write bandwidth. Write re-
quests started in bwa aln step but most of them were ob-
served in bwa sampe and samtools mpileup steps which have
long execution time. Most of read requests were created in
bwa sampe step. Fig. 10 shows the CPU utilization for user,
system, and iowait. Fig. 9a and Fig. 9b exhibit similar pat-
terns to Fig. 10b and Fig. 10a, respectively. Fig. 10b shows
that in bwa aln and bwa sampe steps, the CPU was used
for a short period at a time and the usage was repeated
at short intervals. samtools mpileup step showed the most
CPU intensive pattern.

5. CONCLUSIONS
In this paper, we implemented a workload analysis tool for

NGS analysis pipeline. Using this tool, we collected and an-
alyzed I/O workload from NGS analysis pipeline and found
that each step in NGS analysis pipeline displays unique
I/O characteristics. Our experiment lasted 98 hours during
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which time, files totaling 1031.7 GByte in size were created
and 91.4 GByte were deleted.

Of 631 files created, the top 2 files (0.3% of the total num-
ber of files) accounted for 80% of the total access frequency.
The 2 files are both in human reference genome data set.
When we reviewed the access pattern by request size, we
found that most read requests were over 1 MByte in size
and most write requests were over 512 KByte. Most read
requests were random and most write requests were sequen-
tial.

Each step in NGS analysis pipeline exhibited a unique
bandwidth pattern. bwa aln step showed read intensive
pattern with periodical peaks in bandwidth. In bwa sampe
step, large amount of data was continuously read or writ-
ten in short time frames throughout the whole period. In
samtools sort step, continuous read and write patterns re-
peated periodically. samtools merge step showed continuous
write pattern for the most part with a short and intensive
read pattern at the end. Write requests were evenly spread
throughout the analysis pipeline, starting in bwa aln step.
Most read requests were produced in bwa sampe step. sam-
tools mpileup step showed a CPU intensive pattern.

For the future work, we plan to use currently available
distributed file system, such as Hadoop, to collect and an-
alyze the workload. Based on the information derived from
the workload analysis, we intend to develop a consulting al-
gorithm and system that can help us build a storage system
optimized for NGS analysis pipeline.
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