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ABSTRACT

A number of analytical models have been proposed to esti-
mate the write amplification of the Flash storage to obtain
the expected lifespan. This work is dedicated to examining
the practical implication of the four existing analytical mod-
els for estimating the write amplification: Coupon Collector,
Uniform Distribution, Expected Value and Markov model.
Since the models assume uniform random workload in full
utilization of an SSD to predict write amplification, they are
not applicable in predicting write amplification in general
workload. Moreover, the existing models have not been ver-
ified with the real SSD. In this work, we compare the write
amplification of the models with that of a real SSD. When
we use 0.147 as the overprovisioning factor of an SSD while
running uniform random workload, the write amplification
of Uniform Distribution, Expected Value, Markov model is
3.90, 4.08, and 4.08, respectively. However, write amplifi-
cation of the real SSD shows 1.19, which is very different
from that of the prediction models. Through experiment,
we found that write amplification is closely related to the
value of overprovisioning factor. To improve the accuracy
of existing prediction models, we update the overprovision-
ing factor to take account of the ratio of a hot file and the
utilization of the storage. We also find that by setting the
overprovisioning factor to 1.15, we can obtain write ampli-
fication of 1.2 which is close to the write amplification of
general workload in a real SSD.
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1. INTRODUCTIONS

The characteristics of SSDs such as low power and high
performance makes the device attractive for many I/O inten-
sive applications and workloads. However, the devices suffer
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from write amplification because of the intrinsic nature of
the Flash memory. Write amplification pulls down the per-
formance and reduces the life time of the devices. Thus, it is
important to analyze the write amplification of an SSD for
increasing its efficiency.

An append-only nature of the Flash-based storage entails
that update of a Flash page invalidates the existing one. To
accommodate the new updates, an SSD occasionally needs
to consolidate the valid blocks and resets one or more blocks.
A process to reclaim and consolidate such invalidated pages
is called garbage collection (GC) [4, 5]. In the process, the
garbage collection module first selects a block whose valid
pages are to be migrated to a new location and which is
to be erased. The selected block is a victim block. Select-
ing the best victim block is the crux of a successful garbage
collection. A number of victim selection policies have been
proposed, e.g. greedy [5], FIFO(LRU), d-choice[16], random.
To effectively utilize all the Flash blocks in the storage, it is
important that the number of erase/write (E/W) cycles are
evenly distributed over all Flash blocks in the storage. Flash
firmware levels the wear via selecting victims with smaller
E/W cycle in garbage collection, static wear-leveling [4,
15, 6] or via occasionally switching the pages in two blocks
whose difference in E/W cycle reaches a predefined thresh-
old, dynamic wear-leveling [4, 7].

The write amplification describes undesirable behavior of
an SSD caused by garbage collection and wear-leveling, which
generates more volume of writes than the volume requested
to the device. It is important to understand the effect of the
write amplification of an SSD because the undesirable pro-
gram operation performed on the SSD reduces the life time
of the SSD. This has been the motivation for a number of
works to model the write amplification of an SSD. In this
work, we analyze and compare four models that are based
on greedy garbage collection policy, then measure the accu-
racy of the models and compare them with the actual write
amplification of the real SSD. Finally, we point out the lim-
its of existing works and deduce implication, with which we
address future works on the field.

2. WRITE AMPLIFICATION

Let the number of pages in a block be N. In append-only
storage, the number of IOs issued to the storage from the
host and the actual number of IOs occurred in the storage
does not coincide because there is the garbage collection and
the wear-leveling operation in the Flash storage. The actual
number of IO operations can be higher than user IO re-
quests. We call it as Write Amplification, which, denoted by



| Name | Description |

A Write Amplification

N Given number of pages in a block
Ny, | Random variable representing the number of
N;p | valid/invalid pages in a victim block
Nup | Expectations of Nyp/ Nip
Nip

Dk Probability that the victim blocks has k valid

pages

T Total number of physical blocks in an SSD
U Number of available blocks to a user

p Overprovisioning factor

s Window size of windowed greedy GC

r Number of free blocks to trigger greedy GC
p* Probability that a single page is invalidated
=M Minimum state number for Markov model

Table 1: Variables

A, and define as the average number of actual page programs
for a single page program request from the host.

The number of the valid pages in a victim block is denoted
as Nyp, and the number of invalid pages in a victim block
is denoted as N;, = N — N,,. The garbage collection copies
N,p pages to a free block. The Flash storage becomes to have
N;p free pages. Now, we introduce existing mathematical
models on the write amplification in [11, 12, 3, 14, 9]. Write
amplification is described in Eq. (1), where N,,/N;, denotes
the additional number of programs performed in copying the
valid pages.

va + Nip _ N va
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Here, N,,/Ni, is referred to as the write amplification fac-
tor [11, 12], denoted by A;. Letting T" and U represent the
total number of available blocks in an SSD and the available
blocks visible from the host respectively, the overprovision-
ing factor, p, is defined as follows [3, 14]:

T-U

U

3. WRITE AMPLIFICATION ANALYSIS
MODELS

We examine four analytical models: Coupon Collector [11],
Uniform Distribution [3], Expected Value [14], and Markov [9]
model. These are named based upon how they estimate the
number of valid pages in the victim block.

Note that we use p to unify overprovisioning factor and
spare factor used in all four models. The summary of vari-
ables used in this paper are described in Table 1.

3.1 Coupon Collector Model

To describe and identify the work done by Hu et al. [11],
we named the work as Coupon Collector model. This model
uses windowed greedy garbage collection policy with window
size of s. The garbage collection process selects a victim
block that has the least number of valid pages within 0 ~
(s — 1) blocks in the occupied block queue.

The basic idea of Coupon Collector model is simple and
straight-forward. Let N,, and pi® be the number of valid

(2)
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pages in the victim block and the probability that it has k
valid pages, respectively. In Coupon Collector model, the ex-
pected number of valid pages, denoted by ]\75;, is represented
as N2& = S°N  kpi®. For short, the write amplification in
Coupon Collector model, denoted by A°“ can be computed
as in Eq. 3.

_ N

N - Ziv:o kpie

The key ingredient of Coupon Collector model is pj°. In
computing the probability that the victim block contains k
valid pages p, ., Coupon Collector model needs to enumer-
ate all combinations of the number of valid pages in the vic-
tim block and then find the cases where the largest number
of valid pages in the blocks is k. The computational com-
plexity to obtain A is combinatorially increases with the
number of pages in a block.

3.2 Uniform Distribution Model

Greedy Garbage Collection selects a block with the least
number of valid pages as the victim block. Agarwal et al. [3]
used Uniform Distribution to approximate the number of
valid pages in a block and exploit them in finding the write
amplification. We named the model proposed by Agarwal et
al. [3] as Uniform Distribution model.

Let fo;f be the number of valid pages in the victim block.
By definition, the number of valid pages in the other blocks
contain more than or equal to N;‘p’i number of valid pages.
Let Bi be the probability that there are k valid pages in the
other blocks given Nf,‘pd . In Uniform distribution model, they
assume that ﬁN#g = BN%H =---=fnN.

To find the probability of a valid page, it simply uses the
ratio of number of pages in use and the total number of
physical pages. It exploits the probability to find the distri-
bution of valid pages, then it approximates the distribution
with uniform distribution and predicts the write amplifica-
tion.
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As the Eq. (4) shows, the write amplification is solely de-
pendent on p, which exhibits the simplest form among the
four models but naturally it fails to captures the essence of
the behavior because valid pages in the real SSDs do not
follow uniform distribution.

3.3 Expected Value Model

Unlike the other models which are based on the valid pages
in a victim block of greedy garbage collection to find the
write amplification, the model proposed by Luojie et al. [14]
is based on the number of invalid pages in a victim block.
They use the invalid pages in a victim block as a random
variable and finds the average that is the expected value of
the random variable to predict the write amplification; thus,
we name the model as Expected Value model.

This model assumes that all the pages in a victim block is
independently invalidated with the probability of p*. Then,
the random variable N’ representing the number of in-
valid pages in the victim block is binomial distributed with
parameters N and p*. Then, its expectation Nf;’ satisfies
N;y = Np*. Hence, once we find p*, we can compute N,

(4)



We get Eq. (5) as the final equation for the write amplifica-
tion, where W() denotes Lambert W function [8].

—1—p
1= p—W((L=p)e7)

3.4 Markov Model

Desnoyers [9] further developed the earlier works and ana-
lyzed with various assumptions. Although it considers LRU
cleaning and non-uniform workload, we only describe uni-
form workload distribution case to compare with the other
models.

The model proposed by Desnoyers [9] predicts the write
amplification by representing the distribution of valid pages
in a block with Markov model. We used Markov model to
represent the work.

The state in the model is defined as the number of valid
pages in a block. It is assumed that the state i makes transi-
tion only to i —1 with probability of ﬁ Since this approach
uses greedy garbage collection, under the assumption that
z™ is the minimum value of the states of the blocks, the
victim block has state ™ — 1. Eq. (6) is the final equation
to get the write amplification.

Aey = (5)
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4. EXPERIMENTS
4.1 Experiment Setup

The environment used to compare the four models (Coupon
Collector, Uniform Distribution, Expected Value, and Markov
model) is described in Table 2. We first measure the write
amplification using the four models, then measure the time
complexity of running the model. We used MATLAB! run-
ning on Windows 7 64bit in Intel core i7-3820 machine with
24GB of main memory to compare the write amplification
and the time complexity of analytical models.

Environment Prediction Measurement
CPU Intel core i7-3820 | Intel core i5-2500k
Main memory 24GB 12GB
oS Windows 7 64bit | Ubuntu 14.04 64bit
Storage - Samsung 843TN

Table 2: Environments to Compare with Models and
with Real SSD

| Parameter | Specification |
Capacity 240 GByte
Overprovisioning Capacity 23.4 GByte
Page size(read/write unit) 8 KByte
Superblock size(erase unit) 256 MByte

Table 3: SSD Specification

We compare the write amplifications of the models with
the actual one of a Samsung 843TN SSD. The environment is

"Wersion: 7.11.0.584(R2010b)
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Figure 1: Write Amplification Prediction with Re-
spect to Overprovisioning Factor p

described in the right hand side of Table 2. We modified the
firmware of the device to measure the volume of requested
write operations and the actual volume of data programmed
on the device. We used the measurements of the real SSD
to calculate the write amplification. The specification of the
SSD used in this paper is described in Table 3. NAND Flash
memories of the SSD used in the paper are placed in multi-
channel and multi-way configuration. Unlike other SSDs, the
unit of erase operation is not a block, it operates on unit of
superblock which is a set blocks. The superblock is a set of
a block on each NAND Flash in all channels and ways. In
such configuration, channels and ways do not have any effect
on write amplification because it operates as if one-channel
one-way configuration.

4.2 Write Amplification

Fig. 1 illustrates the predicted write amplification with
respect to overprovisioning factor p of Coupon Collector,
Uniform Distribution, Expected Value, and Markov Model.
Fig. 1(a) and Fig. 1(b) shows the predicted write amplifica-
tion when the number of pages in a block N is 64 and 128,
respectively.

The result shows that the total number of pages in a block
is not too important in the write amplification. Uniform dis-
tribution and Expected Value model does not include N in
their final model and have the same write amplification. The
write amplification in Markov model increased slightly as IV
increased. Only the write amplification of Coupon Collector
model increased noticeably as N increased.

Table 4 shows the normalized predicted write amplifica-



N Coupon Uniform Expected | Markov
Collector | Distribution Value
64 94% 88% 100% 96%
128 105% 88% 100% 97%

Table 4: Normalized Prediction Difference against
Expected Value Model
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Figure 2: Time Complexity of Each Model

tion against Expected Value. It shows that Uniform distri-
bution is off by 12% and Coupon Collector model differs
by about 5 ~ 6%. Note the difference of Coupon Collector
model between the N = 64 and N = 128 case, it is 6% lower
when the total number of pages in a block is 64 and 5%
larger when it has 128 pages. The result of Markov model is
the closest to the result of Expected value model, it is about
3 ~ 4% lower.

4.3 Time Complexity

Figure 2 shows the time spent to complete the calculation
of the prediction models. We used MATLAB to measure the
average time to calculate the write amplification at different
overprovisioning factors. We equally divided the overprovi-
sioning factor into 100 sections p = 0.01,0.02,...,0.99, 1.

The time spent to measure the write amplification in Uni-
form distribution is about 4 - 107° seconds. It shows that N
has almost no effect on the time, except for Coupon Collec-
tor model. To compute the write amplification in Coupon
Collector model, it takes 58 seconds, 233 seconds, 936 sec-
onds, and 3690 seconds with N = 64, N = 128, N = 256,
and N = 512, respectively. The time multiplies by factor of
four every time the number of pages in a block doubles. It
is because the model makes use of binomial distribution and
factorial operation on N. As the number of pages in a block
is increasing in SSDs, it seems Coupon Collector model is no
longer feasible in practice. This is why we excluded Coupon
Collector model from the comparion of this paper.

4.4 Comparison with Empirical Result

In order to have better understanding of each model and
the effectiveness of the models in real life, we measured the
write amplification of an SSD and compared it with the mod-
els. We format the device with EXT4 file system. We gen-
erate 8 KB write workload with direct IO to bypass the file
system page cache and write immediately to the device. We
also used uniform random distribution to touch all LBA ad-
dresses.

We set p as 0.28 which is the overprovisioning factor used
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Figure 3: Write Amplification: SSD Vs. Models
(N=32768)

in commercial enterprise SSDs [1, 2]. To set the overprovi-
sioning factor on the SSD described in Table 3, we fill the
device with cold data such that overprovisioning factor be-
comes 0.28. Note that, since models uses greedy garbage col-
lection, the cold data are not selected as a victim block. We
use this property to make overprovisioning factor to 0.28.
We created cold data with the size of 102.1GB and 112.9GB
of hot data. We generate 8KB uniform random writes on the
hot data area. When the hot data is fully updated, we count
it as one iteration, and repeated 15 iterations.

Fig. 3 compares the write amplification of the SSD, Uni-
form Distribution (UD), Expected Value (EV), and Markov
model, when overprovisioning factor p is set to 0.28 and the
number of pages V. in a block is set to 32768. Coupon Col-
lector model is not shown in the graph because it took too
more than a day to compute an iteration.

The result shows that write amplification of the SSD is
2.466. Note that Expected Value and Markov model shows
write amplification of 2.481. The prediction based on Ex-
pected Value and Markov model is about 0.6% lower than
the actual write amplification in the SSD. Uniform distribu-
tion model shows difference of about 8%.

4.5 Write Amplification of a General Case

We performed experiments on an real SSD to compare the
accuracies of the models. However, the assumption of each
model on the workload is not realistic. The models assume
that the size of a hot file and the utilization is as large as
the size of the SSD. In this section, we run set of experi-
ments to understand limits of the models and the effect of
the utilization and the size of a file on write amplification.

We created EXT4 file system on the target SSD and cre-
ated a cold and hot file. We vary the utilization from 60% to
90% of the file system partition with the size of 215 GB. We
used uniform random, sequential, sequential4+random work-
load on the hot file, and measured the write amplification
of each workload. The ratio of sequential and random in the
sequential+random workload is set to 1:1. We vary the size
of the hot file from 10% to 40%, and the cold file occupies
the rest of the file system up to specified utilization ratio.

The result of the experiment is shown in Fig. 4. It shows
that the measured write amplification of number of work-
loads are less than 1.2 which is very different from the pre-
dicted values of the models. When the size of the hot file is
small with utilization of 60% and 70% the write amplifica-
tion is slightly over 1. In the case of 90% of utilization and
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the size of a hot file is set to 30% and 40% of the partition
size, the write amplification of random workload is about
1.341 and 1.518, respectively.

Fig. 5 shows the write amplification of an SSD with re-
spect to utilization. We use fileserver workload in Filebench,
Varmail workload, OLTP with Sysbench, and Cassandra
workload with YCSB. The configurations for the bench-
marks are shown in Table 5. The result shows that the write
amplification increases as the utilization increases, but the
write amplification does not exceed 1.2.

The available storage capacity after formatting the SSD
with EXT4 is 215GB. We counted the number of blocks U
in given capacity (215GB) to and we use U to calculate the
overprovisioning factor p and get 0.147. When p = 0.147 is
used in Expected Value and Markov Model, the predicted
write amplification is 4.08 showing great difference compared
to the measured write amplification. The two models are
limited in predicting the write amplification of an SSD when
the utilization and the workload pattern varies.

file size files threads
Filebench Fileserver | 256KB 80K 50
Varmail 16KB 720K 16

records | requests | threads
Sysbench OLTP 45M 1M 8
YCSB Cassandra 6M 60M 10

Table 5: Workloads of benchmarks
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(1 _Rutil)+p (8)
Rhat

By replacing the p in existing models with p, we can
more accurately predict the write amplification of an SSD
while varying the utilization (Ru::) and the ratio of the hot
file (Rpot). For example, when the utilization and the ra-
tio of a hot file is 90% and 30%, respectively, then we get
p = (170'%)# ~ 0.823. By applying p = 0.823 on Ex-
pected Value and Markov model, we get write amplification
of 1.349 which is very close to measured write amplification
of 1.341.

p:

Utilization | 80% | 90% | 90% | 90%
Hot ratio | 30% | 20% | 30% | 40%
p 1.16 | 1.24 | 0.82 | 0.62

real SSD 1.19 | 1.17 | 1.34 | 1.52
EV 1.19 | 1.17 | 1.35 | 1.53
Markov 1.19 | 1.17 | 1.35 | 1.53

Table 6: write amplification by p

Except for uniform random workloads, the measured write
amplification of an SSD with general workloads is less than
1.2. We can set p > 1.15 to get the write amplification of 1.2
in Expected Value and Markov Model for general workloads.

S. RELATED WORK

As SSDs are becoming more prevalent, many are trying
to analyze and analytically predict the behavior of SSDs.
There are some works [11, 12] that exploits windowed greedy
garbage collection algorithm with assumption the workload
is uniformly or non-uniformly spread across the given stor-
age space to find the write amplification. Agarwal et al. [3]
and Luojie et al. [14] uses greedy garbage collection under
uniform workload to analyze the write amplification and
they also investigate the relationship between the write am-
plification and the size of an SSD. Desnoyer [9] also provides
a model to find the write amplification in greedy and LRU
(FIFO) garbage collection algorithm. His work takes a step
further to analyze it under non-uniform workload to find the
write amplification in real-world workload.

While most works are based on greedy garbage collection,
Houdt [17] set out to analyze the write amplification with
an SSD running a random garbage collection algorithm. He
assumed d-Choices garbage collection and finds the relation-
ship between d and write amplification. Li et al. [13] ana-
lyzes the effect of locality of workload in garbage collection
algorithm. After analyzing the cost of cleaning and wear-
leveling, they show that exploiting the locality increases the
efficiency of the garbage collection.

6. CONCLUSION AND FUTURE WORK

As SSDs are being widely adopted by both users and stor-
age system vendors for performance reasons, having thor-
ough understanding of the write amplification of SSDs are
becoming more important. It is mostly because the write
amplification is closely related to the life time of the SSDs.
A few have analyzed the write amplification, but most of
them are based on simulation or an analytical model of the
behavior. A problem in understanding or building on top
of the previous works is that notations, basis, and assump-
tions are not the same to each other. In this work, we first



analyze the existing works in depth to not only address the
pros and cons of the works but also to re-evaluate the models
with same standards and assumptions. Secondly, we point
out that the time complexity of a model is as important as
the accuracy of the model. For example, Coupon Collector
model cannot be used in prediction because as the number
of pages in a block increases with factor of two the time com-
plexity increases with factor four. Finally, we evaluated the
write amplification of a real SSD and compared it with an-
alytical models, which previous works have failed to show.
The result shows that Expected Value and Markov model
show the most closest resemblance to the actual write am-
plification of an SSD with difference of only 0.6% in uniform
random case. The accuracy of Uniform Distribution is much
lower than the two, it is off by about 8%. The experiment
shows that the write amplification of models varies greatly
depending on the utilization and hot file ratio in the SSD.
Use of models available in the field have to be considered
carefully because they are not accurate in representing the
write amplification of general use cases.

All the models lack practicality in real world because they
are based on the assumption that workload follows uniform
distribution and exploit a form of greedy garbage collection.
Two of the models, Coupon Collector and Markov model,
adopts the notion of hotness in to their models to consider
the case with non-uniform traffic. If their non-uniform traffic
approaches are to have any practical values, wear-leveling
of the SSDs must be considered, but their models do not
take the wear-leveling into account. Greedy garbage collec-
tion is not the only garbage collection algorithms, yet all
the models are based on the primitive garbage collection
algorithms. Since the write amplification is heavily depen-
dent on the garbage collection policy, we need more in-depth
studies on the write amplification with different garbage col-
lection algorithms. Here are suggestions for future work.
Since all of the given models are based on a single stor-
age system, uniform workload distribution, and primitive
garbage collection algorithm, this field of study asks for bet-
ter model that explains parallelism of SSD, wear-leveling,
sophisticated garbage collection policy, and real world work-
load. The study of write amplification of SSDs needs to
broaden its focus on addressing the life span of SSDs as
a function of workload, wear-leveling, and the write ampli-
fication.
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