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ABSTRACT
In this paper, we visit the energy consumption issue of the IO
subsystem for wearable device. We argue that the IO stack for wear-
able device is subject to extreme inefficiency in terms of the IO
volume and the number of flush requests. The deficiency of the IO
stack leaves a room for improvement from the energy consump-
tion’s point of view. In this work, we characterize the IO access
patterns of the smartwatch device, develop a model to estimate
the energy consumption from the given IO traces, and propose a
set of methods to optimize the IO subsystem behavior for energy
saving. In smartwatch, the amount of data written daily is 10× as
large as the amount of data read daily. The amount of data written
to the flash storage each day is approximately as large as the free
space in the storage device. To minimize the energy consumption
associated with the IO activities in smartwatch, we propose Meta-
data Embedding and Selective Directory Sync for SQLite DBMS and
Flushless Durability Guarantee for the filesystem. We implement
the proposed techniques in the commercially available smartwatch
product. The proposed techniques reduce the energy consumption
associated with the IO activities by 60%. It corresponds to 3% sav-
ings in the overall energy consumption. It is achieved solely via
software optimization.
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1 INTRODUCTION
Thanks to the advancement in smartwatch, a variety of digital
information such as the text messages, the emails, the weather
forecast, and the stock price alert, becomes available at one’s wrist.
It is used not only to display the information but also to act as a
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surrogate to record every dimension of the user’s physical behaviors
such as the heart rate, the number of steps the user has taken,
and the running distance. For the past five years, the unit sales of
smartwatch have doubled every year [28]. Given this trend, the
smartwatch may soon become one of the essential daily gadgets.

Despite the rapidly growing popularity of the smartwatch, it
has been mere five years since the smartwatch first appeared on
the market. It has not been long since the smartwatch has been
under the technical exploration [11, 20, 21]. The smartwatch is
not a scaled-down version of the smartphone with the inferior
hardware specification mounted on the wrist. The smartwatch is
fundamentally different device in its nature from the smartphone.
One of the key concerns for the wearable device is battery life. The
battery life of the smartwatch product lasts three to four days [29].
It is much longer than that of the smartphone, which is charged
on daily basis. However, given that one replaces the battery of the
wrist watch in every couple of years, we believe that the people’s
expectation on the battery life of the smartwatch is much higher
than that of the smartphone. On the same token, the battery life of
the smartwatch still leaves much to be desired and is subject to the
further investigation [7, 24, 25].

In smartphone, CPU, GPU, network, and display components
are the major sources of energy consumption [2]. The energy con-
sumption associated with accessing the storage device is not signifi-
cant [18]. In contrast, the smartwatch is mainly used for conveying
the push notifications and tracking the fitness activities [21]. Wear-
able device has 5 to 6 sensors ranging from the heart rate monitor
and gyro sensor to the GPS sensor [1, 8]. These sensors collect a
wide variety of data. Wearable device first stores the collected data
in its storage and asynchronously synchronizes it to the smartphone.
We carefully argue that the energy consumption associated with the
IO activities accounts for larger fraction of energy in wearables than
in smartphone and that the IO activities account for non-negligible
amount of total energy consumption in the wearable device.

In this work, we aim at reducing the energy consumption as-
sociated with IO activities in smartwatch. We modify the SQLite
DBMS and EXT4 filesystem so that the smartwatch does not gener-
ate unnecessary IO and is free from generating unnecessary flush.
We collect the IO trace from the daily worn smartwatch device
and characterize the IO behavior of the smartwatch. We develop
a model to estimate the energy consumption associated with the
IO activities from the IO trace. We develop Metadata Embedding,
Selective Directory Sync, and Flushless Durability Guarantee to
reduce the energy consumption associated with the smartwatch IO.
The contribution of this work can be summarized as follows.
• We find the essential characteristics of the smartwatch IO. Smart-
watch IO is heavily write intensive. The amount of data written
to the storage is 10× larger than the amount of data read from
the storage on the daily average. The amount of data written to
the storage each day is as much as the available storage space.
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• The proposed energy model enables us to estimate the energy
consumption from the IO trace with simple voltage monitor. The
energy model measures the energy difference between the differ-
ent types of workloads and computes the energy consumption
associated with the DMA transfer and writeback cache flush.

• We propose Metadata Embedding, Selective Directory Sync, and
Flushless Durability Guarantee to mitigate the energy consump-
tion overhead of the smartwatch IO. With Metadata Embedding,
we reduce unnecessary IO traffic by eliminating the internal
fragmentation of the SQLite journal organization. With Selec-
tive Directory Sync, we eliminate the unnecessary EXT4 journal
transaction. With Flushless Durability Guarantee, we effectively
eliminate the flush operation in fsync()and fdatasync()by
exploiting the non-removable nature of the smartwatch battery
installation. It saves the energy consumption associated with
programming a flash cell.
With all these techniques, we reduce the energy consumption

associated with the IO activities by 60%. Overall, the proposed op-
timization techniques save 3% of the energy consumption, which
corresponds to 2.8 mAh per day, solely with software only opti-
mization and without any performance overhead.

2 BACKGROUND
2.1 SQLite DBMS
Arguably, SQLite is themostwidely deployedDBMS in theworld [6].
SQLite is the default DBMS in all smartphone platforms including
Android, iOS, Tizen, Firefox, etc. Most smartphone applications
rely on SQLite DBMS to manage their data persistently. By default,
SQLite uses B-tree for its database file. An SQLite database file
consists of a database header page and the set of database nodes.
By default, the node size is 4 KByte. Fig. 1 illustrates the structure
of the database file. The database header page contains 100 Byte
header and the database schema at the beginning and at the end
of the database header page, respectively. The rest of the database
header page remains unused. Database node takes heap like struc-
ture as shown in Fig. 2. There is an array of <key, pointer> pairs at
the beginning of the node. They are sorted with a key. The pointer
represents the location of the associated values. The values are
placed from the end of the node. The values grow in the opposite
direction to the <key, pointer> pairs.

Page 1
(Database Header)

Page 2 Page 3 … Page N

… Schema

Table
File change 

counter

Magic 

Header
… SQLite

version 

Free

space

Table100 Byte

Figure 1: Database file structure in SQLite

Figure 2: Database node structure in SQLite (PH: Page Header)

…

P# CKDB page image

JH

512 Byte

28B
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Undo log 1 Undo log 2 Undo log 3

Figure 3: Rollback journal file structure in SQLite (JH: Journal
Header, P#: Page Number, CK: Checksum)

Fig. 3 illustrates the structure of the rollback journal file of SQLite
DBMS. The database journal file consists of 512 Byte journal header
and a set of undo-logs. An undo-log consists of 4 Byte page number,
the image of the database page before an update, and 4 Byte check-
sum. The actual journal header size is 28 Byte. SQLite appends the
padding so that the journal header forms an entire sector. This is
to make the update on the journal header robust against the power
crash [27]. When the journal header and the undo-logs are on the
same sector, a sudden power off when the journal header is updated
may corrupt the undo-logs on the same disk sector. SQLite takes
pessimistic approach to protect the database journal file against the
corruption due to unexpected power failure.

For atomicity and durability of a transaction, SQLite provides
two journaling schemes: rollback journaling and Write-Ahead Log-
ging (WAL). SQLite provides three different journaling modes for
rollback journaling; DELETE, TRUNCATE, and PERSIST. We like
to limit our discussion to PERSIST mode. PERSIST is the default
journaling mode in SQLite. Algorithm 1 describes the pseudo code
for SQLite transaction in PERSIST mode. An SQLite transaction
consists of three phases: logging, database update, and log-reset.

Let us examine the details of each phase. In logging phase,
SQLite records 0 to the number of log pages field (i.e. page count)
in the journal header. This is to denote that the transaction has
started. Then, SQLite logs the undo-logs. After logging, SQLite
calls fdatasync()to make the results durable. Then, SQLite calls
fdatasync()for the parent directory. This is to ensure that the

Algorithm 1: Pseudo code for transaction in PERSIST mode
1 j f d : journal file descriptor
2 f d : database file descriptor
3 dir f d : parent directory file descriptor
4 function PERSIST transaction(jfd, fd)
5 write (jfd,journal header);
6 for each logs[i] do
7 write (j f d , page number);
8 write (j f d , logs[i]) ;
9 write (j f d , checksum);

10 end
11 fdatasync(j f d);
12 fdatasync(dir f d);
13 write(j f d , page count);
14 fdatasync(j f d) ; /* Logging phase */

15 for each dirty_pages[i] do
16 write(f d , dirty_pages[i]);
17 end
18 fdatasync(f d) ; /* Database update phase */

19 journal reset();
20 fdatasync(j f d) ; /* Log-reset phase */

21 return;
22 end
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newly created directory entry for the rollback journal file is per-
sisted. This is required only when the rollback journal file is newly
created, e.g. when the newly downloaded application is executed for
the first time. The fdatasync()for persisting the directory block is
prohibitively expensive. It is expensive in two aspects: IO volume
and flush. A single EXT4 journal transaction consists of at least
three disk blocks: a header block for EXT4 journal transaction, one
or more blocks (e.g. updated metadata blocks) to be logged in the
filesystem journal transaction, and a commit block of filesystem
journal transaction. Committing a filesystem journal transaction
accompanies two flush operations: one after writing the journal log
blocks and the other after writing the journal commit block. After
persisting the parent directory, SQLite writes the number of log
pages to the SQLite journal header. After writing the number of
log pages to the SQLite journal header, SQLite calls fdatasync()to
persist the header page of the SQLite journal file.

In database update phase, SQLite writes one or more updated
database node blocks and the associated database header to the
database file. SQLite calls fdatasync()to persist the result of the
database update. In log-reset phase, SQLite updates the journal
header to 0. This is to denote that the transaction has made durable
successfully. SQLite calls fdatasync()to make the result of the
journal header reset to be durable.

A single SQLite transaction creates five fdatasync()calls and
writes at least six additional blocks for the journal header and
EXT4 journal transaction. If an insert transaction updates a single
database node only, then at least six blocks are written to the storage
device excluding the undo-logs and the database updates. Even
worse, these writes are interleaved by a number of flush operations.

2.2 PMIC/Shutdown
Mobile device has PMIC (Power Management Integrated Circuit).
PMIC monitors the voltage level and protects the system against
under-provisioning of the voltage. The PMIC consists of themonitor
(i.e. fuel gauge), charger, and voltage regulator. The fuel gauge
monitors the voltage level. It reads the register value of the PMIC
to obtain the voltage level of the battery. The charger charges the
battery. The regulator regulates the voltage level of the battery.

We examine Gear S3 Tizen, a target wearable platform for this
study. In Tizen wearable platform, the Linux kernel driver for PMIC
polls the voltage level in every 30 seconds. Based upon the voltage
state of the battery, a kernel daemon, deviced, takes the different
actions. Tizen defines five battery states subject to the remain-
ing battery life: Normal, Warning (<15%), Critical (<5%), Poweroff
(<1%), and Realoff (0%). When battery state changes from Poweroff
to Realoff, the deviced performs powerdown. The detailed power
off sequence is as follows. The device daemon flushes the dirty page
cache entries to prevent the data loss. The kernel stops all daemons.
Then, the kernel shutdowns the individual devices and executes
the shutdown functions associated with each device driver if any
such functions are registered.

Unless the battery is physically detached from the device or
unless the PMIC and the associated software components are buggy,
the PMIC protects the system from any data loss in case of the
normal power outage. It takes less than a few milliseconds to flush
the writeback cache of the mobile storage device. When PMIC
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reads the remaining battery capacity to be 0%, the battery still can
operate the device for a fewmore seconds. It gives the device drivers
sufficient time for persisting the dirty pages.

3 IO CHARACTERISTICS
3.1 Collecting IO Traces
Acquiring a correct understanding on the underlying IO traffic is
an essential part of the study. We perform limited study on IO
characteristics of the smartwatch. Comprehensive analysis on IO
characteristics requires the trace collection from the extensive set
of users and the users have to be chosen to properly represent
diverse sectors of the society such as gender, profession, age, etc.
The extensive study of the IO characteristics of the smartwatch is
beyond the scope of this work. In this study, we collect the IO trace
from the two male software developers. They wear Samsung Gear
S3 smartwatch as the normal daily worn device. We collect the trace
for one month. We use a trace collection tool, Androtrace [19]. We
port Androtrace to Tizen platform.

3.2 Primitive Analysis
We first examine the average daily IO count and volume. As shown
in Fig. 4, the IO behavior of the smartwatch is heavily write inten-
sive. On the average, the user 1 and user 2 write 1.3 GByte and 2.6
GByte per day. The number of writes is 11× and 35× higher than the
number of reads in user 1 and user 2, respectively. The smartwatch
device has only 1.4 GByte of storage space left. The smartwatch
has 4 GByte flash storage and the pre-installed software occupies
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Med. 75% 99% 99.9% Max
Transaction 68 104 160 184 1256

.db 16 36 60 60 336
.db-journal 28 52 64 64 352
EXT4 journal 16 20 56 100 1204

Table 1: IO size of an SQLite transaction, DB updates, journal up-
dates, and filesystem journal (KB)

Transaction count (%) Med. 75% 99% Max
.wnoti-service.db (76.1%) 76 116 160 1256

.shelath.db (9.9%) 72 76 128 336
.helathShare.db (6.7%) 64 64 88 220

.rua.db (4.2%) 68 76 128 304
.msg-consumer-server.db (1.5%) 56 72 168 588
Table 2: Quantiles of SQLite transactions in Top 5 DB (KB)

2.6 GByte of the storage capacity. For user 1, the amount IO written
to the storage in a day equals the amount of the available storage
space. For user 2, the situation is worse. The amount of IO written
to the storage is nearly 2× to the available storage space. We are
not aware of any computing systems that write entire available
storage space for worth of data every day.

We examine how the filesystem partition is accessed. We parti-
tion the filesystem partition into three regions: data, metadata, and
filesystem journal. We analyze the IO count and volume for each
region. Fig. 5 illustrates the result. For both users, journal writes
account for substantial fraction of IOs written to the storage. The
journal writes account for 26% and 20% of the total IO volume in
user 1 and user 2, respectively. The IO requests to the data region
account for 53% and 72% of the total IO volume in user 1 and user 2,
respectively. Metadata writes account for remaining fraction of IOs.
We examine how the data region is accessed. We categorize the files
into eight types. They are SQLite database (*.db), SQLite journal
(*.db-journal), SQLiteWAL (*.db-wal), SQLite temp (*.db-shm),
multimedia file (*.jpg,*.mp3,*.mp4,*.MOV,*.avi), executable
file (*.so), resource file (*.dat,*.xml,*.cache), etc. Fig. 6 illus-
trates the result. The write volume for SQLite database file accounts
for 10% and 44% of total file IOs and the write volume for SQLite
journal file accounts for 15% and 38% of total file IOs in user 1 and
user 2, respectively.

3.3 SQLite Transaction Analysis
The IO requests associated with SQLite DBMS account for as much
as 90% of total IOs written to the storage device from IO volume
as well as IO count’s point of view as shown in Fig. 6. We parse
the collected trace and identify the beginning and the end of a
transaction from the collected trace [6]. We analyze the size of the
SQLite transactions. The average size of the SQLite transactions
is 80.8 KByte. In PERSIST mode, an SQLite transaction updates
the rollback journal file and the associated database file. The re-
sults of the updates are made durable through fdatasync(). An
fdatasync() occasionally accompanies EXT4 journal transaction.
Table 1 summarizes the size of an SQLite transaction and the sizes
of the associated database updates, rollback journal updates, and
filesystem journal, respectively. In median, an SQLite transaction

Figure 7: Storage access footprint of user 2 (daily average), bin size
= 4 MB (c : csa, s : system-data, u : user, r : rootfs)

writes four pages to the database file while it writes eleven pages
to the SQLite journal file as well as the filesystem journal.

The database accesses are extremely skewed. We examine the
frequency of database updates in Gear S3. Table 2 presents the
top 5 frequently updated databases. The IO requests to the top 3
most frequently updated databases account for over 90% of the
total SQLite transactions. Heavy SQLite IOs in Gear S3 are mainly
driven by the push notification and fitness activity tracking. The
wnoti-service.db is the most frequently updated database; it ac-
counts for 76.1% of total SQLite transactions. The wnoti-service.db
database file is updated when Gear S3 smartwatch receives push
notifications such as an instant message and an email from smart-
phone’s applications. Also, the shealth.db and healthShare.db
are one of the top 5most frequently updated databases; they account
for 9.9% and 6.7% of total SQLite transactions, respectively. These
two databases are for health application. The rua.db records the ap-
plication launch history. It manages recently used applications. The
access to rua.db accounts for 4.2% of total SQLite transactions. The
msg-consumer-server.db is managed by message application; it
accounts for 1.5% of total SQLite transactions.

We examine the storage footprint of the smartwatch IOs. Fig. 7
illustrates the footprint of the storage IOs of user 2. Storage access
is heavy tailed. 4.5% of the storage space accounts for 90% of the
data blocks written. We partition the entire 4 GByte storage space
into 4 MByte unit. We compute the amount of data written to
each 4 MByte partition each day. The storage capacity is 4 GByte
and the pre-installed binaries such as Linux kernel and the various
applications occupy 2.6 GByte of the storage. There are 1.4 GByte of
space available in the storage. The smartwatch writes the data block
to all free pages in the flash storage each day. The frequently written
storage regions correspond to the database file of the frequently
used applications and the filesystem journal. This characteristic is
observed in both user 1 and user 2.

4 MODELING IO ENERGY CONSUMPTION
We develop a model to obtain the energy consumption of the IO
operations from a given IO trace. The objective of this model is
to use minimal instrumentation equipment so that anyone with a
simple voltage instrumentation device can use this model. We use a
Monsoon monitor to measure the aggregate energy consumption of
the IO request [26]. Our modeling consists of two parts: identifying
a session and computing the energy consumption.

4.1 Identifying a Session
IO trace is a sequence of IO operations.We partition the IO trace into
a sequence of sessions. There are two types of sessions: SQLite ses-
sion and non-SQLite session. An SQLite session denotes a sequence
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Figure 8: Sessions in the IO trace (S1 : Non-SQLite session [DMA 4
KB, 60 KB and Flush 64 KB], S2: Non-SQLite session [DMA 4 KB
and Flush 4 KB], S3: SQLite session [3 updated database nodes])

of IO operations associated with executing an SQLite transaction.
One or more transactions can be interleaved with each other. A
multiple SQLite transactions can form a single SQLite session. Non-
SQLite session is a set of IO operations that is irrelevant to the
SQLite transaction. A non-SQLite session is delimited by the flush
operation. Fig. 8 illustrates an example. There are three sessions
in the trace, S1, S2 and S3. S1 and S2 are associated with commit-
ting an EXT4 journal transaction. In EXT4 journaling, JBD thread
first persists the journal log blocks and then it persists the journal
commit block. JBD thread issues a flush command after it transfers
the log blocks of the filesystem journal transaction. The first non-
SQLite session is delimited (S1). After it writes the journal commit
block to the storage, it issues a flush command again. The second
non-SQLite session is delimited (S2). An SQLite session starts with
writing the undo-logs to the SQLite journal file. In Fig. 8, an SQLite
session starts at the trace id of 76695. With regular pattern of the
SQLite journal transaction, we can unambiguously identify the
beginning and the end of the SQLite session [6]. Here, the SQLite
session ends at id 76672 (S3).

For each session, we count the number of blocks written to
the storage. For the non-SQLite session, we count the number of
updated pages. Session S1 writes 4 KByte and 60 KByte, respectively.
Session S2 writes 4 KByte. For the SQLite session, we count the
number of updated database pages. In SQLite transaction, the IO
operation amplifies. We only count the number of updated pages
in the database file. Session S3 updates a database header page (id
76670) and three database nodes (id 76671).

4.2 Computing the Energy Consumption
Computing the energy consumption of the IO trace consists of two
parts: measuring the baseline energy consumption for per-session
and computing the total energy consumption. First, we measure
the baseline energy consumption for varying SQLite session sizes.
The behavior of an SQLite is highly sensitive to the various con-
figuration options [6]. Gear S3 uses PERSIST mode journaling and
FULLSYNC option in SQLite. We create the transaction that up-
dates N pages and repeat the transaction 10,000 times. We measure
the energy consumption when the device is in the idle state and
when the device is performing a transaction. We take the differ-
ence between the two and compute the average amount of energy
consumption in updating N database pages.

Second, we obtain the baseline energy consumption for non-
SQLite session with varying sizes. Non-SQLite session consists of

Nand FlashPage Cache

Storage  

(eMMC)

Writeback Cache

write()+fdatasync(),Epersist

write()+fdatsync(),Exfer

(with no-barrier)
Host

Eflush

Figure 9: Energy consumption for different IO phases

two phases: DMA and flush. In DMA phase, the host transfers the
data blocks to the storage device. In this case, the data blocks do
not necessarily reach the disk surface. The data blocks are deliv-
ered to the writeback cache of the storage device unless the write
command has FUA option. We denote the energy consumption as-
sociated with transferring the data blocks to the storage device as
Exf er . A non-SQLite session is delimited by flush operation. The
flush command is not captured in the block trace. We can indirectly
infer the flush command since the last write request for writing
the log blocks in the filesystem journal transaction or the write re-
quest for writing the journal commit block in the filesystem journal
transaction carries flush flag such as REQ_FLUSH and REQ_FUA. The
energy consumption for flushing the writeback cache is denoted
by Ef lush . We measure the baseline energy consumption for the
non-SQLite session under varying the number of blocks written.
Under varying the number of data blocks, N , we write N blocks
and call fdatasync(). With this experiment, we obtain the energy
consumption associated with persisting N blocks, Epersist . We
perform non-allocating writes not to trigger filesystem journaling.
Then, we set the no-barrier mount option and perform the same
experiment. With no-barrier option, the filesystem omits issuing
the flush command in fsync() and in fdatasync(). It corresponds
to the energy consumption required to transfer the data blocks to
the writeback cache, Exf er . Taking the difference between the two,
we obtain the amount of energy for flushing N blocks that reside
in the writeback cache, Ef lush . Fig. 9 schematically illustrates the
concept of Epersist , Exf er and Ef lush .

The total IO energy consumption for a given IO trace can be
obtained through the sum of energy derived from individual IO ses-
sions.We determine the number of updated pages in the non-SQLite
sessions and the number of updated database pages in the SQLite
sessions. We apply the baseline energy consumption measurement.

5 OPTIMIZATION
5.1 Metadata Embedding
SQLite journal structure is not aligned with 4 KByte block size. A
journal file consists of a 512 Byte journal header and a sequence of
undo-logs. Each 4 KByte undo-log page is prepended and appended
with 4 Byte page number and 4 Byte checksum, respectively. Log-
ging a single 4 KByte database page to the journal file corresponds
to writing 512 Byte journal header, 4 KByte database node, 4 Byte
page number, and 4 Byte checksum. This fragmented structure
entails severe write amplification in undo-logging. When a trans-
action needs to log two database pages, SQLite writes three pages
for the journal header update and the undo-logs. Then, it writes
the journal header page again to record the number of undo-log
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Figure 10: Rollback journal page structure with Metadata Embed-
ding (PH: PageHeader, JH: Journal Header, CC: File Change Counter,
P#: Page Number, CK: Checksum)

pages. In this scenario, the actual amount of data blocks written to
the storage is twice as many as the amount of the updated database
pages in logging phase.

We modified the structure of journal file and the SQLite log struc-
ture to eliminate the internal fragmentation. This technique is called
Metadata Embedding. Metadata Embedding has been proposed to
improve the throughput of the smartphone applications [15, 17].
We use this technique to minimize the energy consumption associ-
ated with IO activities. Fig. 10 illustrates the structure of undo-log
page in the SQLite journal file with Metadata Embedding. In SQLite,
we can configure the size of each B-tree node and can reserve a
certain amount of space at the end of the node. The size of a B-tree
node is set to 4 KByte. Different from the existing SQLite journal
file, we reserve 40 Byte in the B-tree node. We record the journal
header (28 Byte), file change counter (4 Byte), page number (4 Byte),
and checksum (4 Byte) at the reserved space. In the original SQLite
database design, file change counter is stored in the database header
page. We will explain the meaning of storing file change counter at
the reserved space of journal file in Section 5.3. The actual space of
a B-tree node decreases from 4096 Byte to 4054 Byte. The available
space decreases by 1%. We believe that 1% space decrease is not
unreasonable given the benefit of Metadata Embedding. In the first
block of the journal file, the reserved space harbors the journal
header, file change counter, page number, and checksum. In the
rest of the blocks of the journal file, the reserved space carries the
associated page number and checksum.

Flash storage guarantees 4 KByte atomic write. This is because
FTL services the write operation in out-of-place manner and the
content of a given logical page is updated via changing the physical
page number of the associated logical page to a new location. With
Metadata Embedding technique, we embed the journal header at
the reserved space of the first undo-log page. We also embed the
page number and checksum into the undo-log page for aligning the
size of B-tree node to 4 KB. Through this, we can eliminate 2 page
writes with 1 fdatasync() in logging phase. Despite its simplicity,
the implication of Metadata Embedding is substantial. For example,
when you log one database page, we can reduce the total write
operations associated with undo-logging from three to one.

5.2 Selective Directory Sync
The second optimization is Selective Directory Sync. The directory
synchronization is not needed in all transactions. It is required only
when the journal file is created for the first time. SQLite removes
the rollback journal file when it closes the database connection
and it creates the rollback journal file when it opens the database
connection. The application keeps the connection to the database
file when it is active. The journal file is rarely created. The benefit of

eliminating the directory synchronization is significant. It saves the
IOs associated with committing a filesystem journal transaction. A
filesystem journal transaction consists of at least three disk blocks
and it is written with two flush operations.

5.3 Relocating File Change Counter
SQLite maintains the database version number (i.e. file change
counter) at the database header page. SQLite increases the file
change counter in the database update phase. After the SQLite
updates the database node, it increases the file change counter by
one. The database header with the updated file change counter is
written to the database file at the end of the database update phase.
SQLite calls fdatasync()to make the result of the database updates
durable. File change counter is used to determine if the database
pages cached in the application’s local address space are up-to-date.
When an application starts an SQLite transaction, it first compares
the database version number of the cached the database with the
database version number of the associated database file in the disk.
If they are the same, SQLite updates the cached database pages.
Otherwise, SQLite reads the database file from the disk again.

In this work, we migrate the file change counter from the data-
base header to the journal header as shown in Fig. 10. In rollback
journaling, SQLite reads the journal header when SQLite starts a
database transaction. At this time, SQLite can extract the database
version number by reading the file change counter in the journal
header. When the transaction finishes, SQLite updates the database
version number and stores the updated database version number at
the journal header. The journal file persists with the associated data-
base file. We can safely manage the database version number with
the journal file. Via relocating the file change counter to the journal
file, we can save an IO associated with updating the database header
in database update phase.

5.4 Flushless Durability Guarantee
Any reasonably capable mobile devices have PMIC to protect the
system against the power crash and to avoid the data loss. Most
modern filesystems take overly pessimistic approach in committing
a journal transaction [5]; the filesystem uses a flush command to
control the order in which the results of the writes reach the disk
surface. This pessimistic approach is grounded upon the assumption
that the storage controller can flush the writeback cache contents
in out of order manner and the contents in the writeback cache can
be lost at any time due to the power crash [30].

In the wearable device, we believe that this assumption is overly
stringent. Wearable device has non-removable battery and PMIC
module. Due to the hardware assistance, the writeback cache con-
tents can survive the warm crash such as OS failures [3] or kernel
panic [9]. Buggy software can drain the battery very rapidly [22],
but PMIC module shuts down the OS ahead enough giving suf-
ficient time slack for flash storage to persist the contents in the
writeback cache. fsync()and fdatasync()invoke the flush com-
mand to ensure that the data blocks associated with the preceding
writes become durable before the host issues the following writes.
On the same token, if the results of preceding writes are guaranteed
to be durable, the host does not have to issue the flush command.
If the results of preceding writes are guaranteed to be durable, the
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(a) Energy Consumption (b) Throughput

Figure 11: Energy consumption and SQLite performance

Figure 12: Energy consumption of insert transaction for varying
transaction size: stock IO stack vs. energy efficient IO stack

host can issue the following writes without waiting for the results
of the preceding writes to become durable. We exploit the hard-
ware characteristics of wearable device and propose to exclude
flush command in fsync() and fdatasync(). When we mount the
filesystem with nobarrier option, EXT4 filesystem does not issue
flush command in fsync()and fdatasync().

Persisting the results of writes is expensive in terms of energy
consumption. The flash controller has to program one or more flash
pages every time when it receives a flush command. As a means to
improve the energy consumption of wearable device, we propose
to exclude the flush command in fsync()and fdatasync()and yet
guarantee the durability of transaction.

6 EXPERIMENT
6.1 Experimental Setup
We implement Metadata Embedding and Selective Directory Sync
in commercially available Samsung Gear S3 smartwatch model.
Gear S3 has Dual-Core 1.0 GHz Exynos 7270, 512 MByte RAM, 4
GByte eMMC, and 380 mAh battery capacity. Gear S3 is operated
with Tizen 2.3 platform that runs with Linux kernel 3.18. In order
to evaluate the performance and energy consumption of SQLite
transactions, we use Mobibench [12] as well as real IO trace. We use
Monsoon power monitor to obtain the energy consumption of IO
stack from Gear S3. To capture the energy consumption of IO stack,
we first measure the energy consumption when the device is in idle
state. Then, we measure the energy consumption of Gear S3 when
the device is running various different types of IO workloads. We
take the difference between the two in order to obtain the energy
consumption associated with IO. We use in-house board to measure
the voltage level of battery.

6.2 SQLite Benchmark
We measure the energy consumption and SQLite performance of
Gear S3 smartwatch. We use Mobibench to generate the SQLite
transactions. We use PERSIST journal mode and FULLSYNC option
that are the default SQLite configurations in Gear S3. We examine

h

Figure 13: Daily energy consumption of IO stack for Gear S3

three different versions of the SQLite: (i) stock SQLite, (ii) SQLite
with Metadata Embedding and Selective Directory Sync (SQLite-
ME), and (iii) SQLite with Metadata Embedding, Selective Directory
Sync, and nobarrier filesystem mount (SQLite-ME+FL). As de-
scribed in Section 3.3, the average size of SQLite transaction is
about 80 KByte in Gear S3. This corresponds to the transaction
which has six database operations including insert, update, and
delete. We set the Mobibench to perform six database operations in
a transaction and each of operation works on the different tables.
We run each of SQLite transaction 10,000 times. All experiments
were repeated 5 times and then averaged.

Fig. 11(a) illustrates the energy consumption of an SQLite trans-
action. An insert transaction of the stock SQLite consumes 2.5 mJ.
With Metadata Embedding and Selective Directory Sync (SQLite-
ME), insert transaction of the modified SQLite consumes 1.4 mJ. We
reduce the energy consumption of insert transaction by 43%. Next,
we eliminate the flush command in fsync()and fdatasync()with
nobarrier filesystem option. Applying all proposed techniques,
we reduce the energy consumption of SQLite transaction by up to
58%. The proposed techniques not only reduce the energy consump-
tion but also improve the SQLite performance. Fig. 11(b) illustrates
the throughput of SQLite transactions. SQLite-ME improves the
throughput of SQLite by 62% in insert transactions.With nobarrier
option, SQLite-ME+FL further improves the throughput of SQLite
transactions by up to 2.5×.

6.3 Effect of Transaction Size
We measure the energy consumption of an SQLite transaction.
We vary the number of operations in a transaction from one to
twenty. We repeat the transaction 10,000 times and take the average.
As shown in Fig. 12, the optimized IO stack reduces the energy
consumption per transaction from 60% to 40%. The energy saving
is more significant when the number of operations in a transaction
is smaller. On the average, an SQLite transaction updates three to
four database pages [6]. In this case, the energy saving per SQLite
transaction corresponds to 60%.

6.4 Real World Energy Saving
The vital concern is how significant the proposed techniques are
from the total battery capacity’s point of view. The battery capacity
of Gear S3 is 380 mAh. The vendor claims that the battery lasts for
three to four days. We assume that Gear S3 consumes 95 mAh of
energy per day. We apply the energy consumption model to the
real IO traces collected from user 1 and user 2. Fig. 13 illustrates
the daily energy consumption of IO stack for Gear S3 smartwatch.
In case of user 1, the energy consumption of IO activities accounts
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for 2.1 mAh per day. SQLite transactions account for 35% of the
energy associated with the IO activities. In case of user 2, the en-
ergy consumption of IO activities accounts for 5.4 mAh per day.
User 2 creates 2.5× as many IO energy as user 1. In user 2, SQLite
transactions account for 74% of the energy associated with the IO
activities. According to our estimation, the energy consumption
associated with the IO activities accounts for 2.2% and 5.7% of the
daily energy in user 1 and user 2, respectively.

Applying our optimization techniques, we save 0.8 mAh per
day in user 1. In user 2, we reduce the energy consumption asso-
ciated with the IO activities by 2.7 mAh. We reduce the energy
consumption associated with the IO activities by up to 50%. It is
equivalent to 3% of the daily energy consumption of the smart-
watch. In commercial wearable device, every individual hardware
and software components are highly optimized to minimize the
energy consumption. There is barely any room for further reduc-
tion in the energy consumption. We believe that saving 3% of total
energy consumption is significant since it is achieved solely via
software optimization and since it does not require any hardware
assistance nor does it accompany any performance overhead.

7 RELATED WORK
Energy consumption of smartphones has been extensively studied
since smartphones have emerged [2, 4, 10]. Compared to the other
hardware components such as CPU, GPU, network, and display,
the energy consumption of storage has not been received much
attention. Li et al. [18] showed that storage software may con-
sume as much as 200 times more energy than storage hardware.
Mohan et al. [23] proposed a model to obtain the energy consump-
tion of IO operation via taking the difference between the energy
consumption associated with the different workloads. Recently, a
few works have focused on the energy consumption of wearable
devices. Huang et al. [11] proposed a fast storage system based on
battery-backed RAM to increase the performance and battery life
of wearables. Liu et al. [21] analyzed the usage patterns, energy
consumption, and network traffic of smartwatch. Liu et al. [20]
conducted an in-depth analysis of wearable OS in terms of four key
aspects including CPU usage, idle episodes, thread-level parallelism,
and micro-architectural behaviors.

Android IO stack has been under intense research for the past
few years [6, 16]. Jeong et al. [12] found the cause for anomalous
IO behavior of the Android IO stack, Journaling of Journal. A fair
amount of works has been dedicated to resolve the Journaling of
Journal anomaly, e.g. Delta Journaling [13], Write-Ahead Logging
with direct IO [17], multi-version B-tree [15], and NVRAMWrite-
Ahead Logging [14].

8 CONCLUSION
Battery life is one of the most crucial aspects of battery-powered
mobile devices, especially for wearables. In this work, we found
that storage IO activities account for non-trivial amount of energy
consumption in wearables. To extend the battery life of wearable
device, we developed a set of techniques includingMetadata Embed-
ding, Selective Directory Sync, and Flushless Durability Guarantee.
We demonstrated that the proposed IO stack improves the battery
life of wearables by 3% solely via software optimization.
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