
Proceedings of NIDC2016

Program Code Regeneration Method

for Non-volatile Memory Platform

Seongsu Lee Youjip Won

Hanyang University, Seoul, Korea

{su880214 | yjwon}@hanyang.ac.kr

Abstract: Non-volatile memory is a promising material

that covers both cache and secondary storage in a

memory hierarchy. Many software platforms exploiting

non-volatile have been developed and provide user-level

programming interfaces. However, common programs

cannot allocate non-volatile memory. In this paper, we

introduce a code generation method for HEAPO that is

one of non-volatile memory software platforms. With

the method, a program designed for a legacy operating

system using DRAM as main memory is converted to a

program running on the non-volatile memory platform

without code modification manually.

Keywords: Non-volatile memory; Code generation;

1 Introduction

DRAM is used as main memory in almost computer

systems from a tiny embedded system to a massive

database server. DRAM has critical limits such as power

consumption, scaling capacity, data recovery overhead

and serialization overhead. Non-volatile memory

devices have been developed, and each device has

different characteristics. So, they are expected to be used

for each component in the memory hierarchy.

While non-volatile memory devices have been

developed, many researches in software have been

attempted on filesystem [1-3] and persistent object

programming interfaces [4-7]. Persistent object means

that data has to be kept permanently and can be accessed

by processes or an operating system until it is removed

[8]. Software platforms for a persistent object are

developed to benefit a persistent memory object instead

of a persistent object in a secondary storage. However,

most programs are designed to run on a legacy operating

system that does not provide non-volatile memory.

To make a program use non-volatile memory, source

code of the program can be modified to use persistent

object programming libraries which are provided by

non-volatile memory platforms. Each non-volatile

memory platform has its own programming model and

APIs. Thus, a user has to learn each platform

programming model and the way on using APIs.

In this paper, we introduce an automation technique to

convert a common program to a program that runs

non-volatile memory platform without manual code

modification. With the proposed method, a user does not

need to know how to apply programming models and

APIs to existing programs.

2 Background

In this section, we explain HEAPO [4] that is one of

non-volatile memory software platform. Fig. 1 shows a

virtual address space in HEAPO. A new segment named

persistent heap is defined in the address space, and

persistent objects are allocated in the persistent heap.

Pages in the persistent heap are mapped to physical page

frame from non-volatile memory. HEAPO is designed

for a hybrid system that uses STT-MRAM [9] and

DRAM as main memory.

Figure 1. Address space in HEAPO and NVRAM

HEAPO has its own namespace like a filesystem. A

process uses a persistent object based on its name like a

file. HEAPO provides programming library and APIs to

manipulate persistent objects for a programmer. If a

programmer uses HEAPO programming library on

coding a program, the process allocates non-volatile

memory to store a persistent object. The allocated

persistent objects are kept permanently in NVRAM, so

that can be used by processes or system afterward.

The programming model of HEAPO is simple. HEAPO

provides C Programming language user-level library.

The most necessary APIs are pos_create(), pos_map(),

pos_delete(), pos_malloc() and pos_free(). First, a

process creates a persistent object by pos_create() with a

name that does not have to be duplicated with other

persistent objects’ names. If a persistent object that has

the same name exists, a process fails to create a

persistent object with the name. In the above-mentioned

case, the process maps a persistent object existing

already in NVRAM to its process address space by

Proceedings of NIDC2016

pos_map(). Since a persistent object is created or

mapped, the process can allocate dynamically a memory

chunk in bytes from a persistent object by pos_malloc().

The way on using pos_malloc() is almost similar to

malloc() from C standard library. As expected by the

names of APIs, pos_delete() is used to delete a persistent

object in the persistent heap, and pos_free() is the same

role with free() from C standard library.

3 Code regeneration method based on

profiling

Figure 2. Process of code regeneration

In this section, we describe the automation technique to

convert a program to a program that runs non-volatile

memory platform. We consider memory objects in heap

segment to apply the non-volatile programming model

and APIs. In the process address space, memory objects

are stored in data (bss), heap, and stack segment.

Memory objects in each segment has its own properties

and purposes in the legacy programming model. A

memory object in heap is dynamically allocated while

the program is running which is generally used to build a

data structure that are dynamically updated. Also,

memory objects in heap can be accessed throughout the

program by referencing the memory address unless they

are deallocated. On the other hand, a local variable that

is given a local scope can be only accessed within in a

function and a block where the variables are declared in.

Local variables are automatically allocated and freed. In

the legacy programming model, recursive function and

multi-threaded programming exist, and a local variable

is used throughout the models. And a global variable in

data (bss) segment including local variable declared with

static keyword has global scope meaning that it is visible

throughout the program. However, in the proposed

methods, programming APIs are used. To convert global

variables, modifying loader may be required. For the

reasons, we rule out local variables and global variables

as consideration of persistent object. Fig 2 shows the

code regeneration process.

3.1 Profiling program code

The procedure of converting a program consists of two

components. First of all, a program code is profiled to

find memory objects among all objects in heap that will

be changed to a persistent object. And then, the APIs of

HEAPO are applied to the program code based on

information that are gathered by profiling. Fig 2 shows

the code regeneration process.

Code profiler uses front-end library of low-level virtual

machine (LLVM) [10] compiler framework. The

front-end library provides programming APIs to modify

LLVM IR code for a programmer. By the APIs, a

programmer can modify intermediate representation (IR)

code of a program. Code Profiler inserts instructions of a

function call back and forth on instructions of memory

read/write to count memory accesses.

Figure 3. Modification on LLVM IR code by code profiler

Fig 3 represent modifying LLVM IR code to gather

information of memory accesses. Gathered information

is saved in a comma-separated values (CSV) [11] format

in a file with added IR code when the process terminates.

A program through profiling executes more instruction

to gather memory information and take longer execution

time than the execution time of the original programs.

Code profiler uses dynamic profiling approach, so the

result of profiling and generated code can adapt to

change the memory access patterns of the application.

3.2 Criterion for a persistent object

In order to apply HEAPO programming library to a

program code, we should find a proper memory object

as a persistent object. While a process is running, the

process accesses memory to read and write frequently.

Each memory device has different characteristics. By

code profiling, the read and write counts of each

memory object are gathered. And then, energy

consumption of memory objects allocated on DRAM

and STT-MRAM is calculated.

Table I Memory parameter (45nm) [12]

RAM Latency (cycles) Energy (nJ)

DRAM 24 0.72

STT-MRAM read: 20

write: 60

read: 0.4

write: 2.3

For the energy consumption for read and write memory,

we use the parameter in Table I [12] in which

STT-MRAM requires lower read energy consumption

Proceedings of NIDC2016

while it consumes more energy to write than DRAM.

The read and write energy consumption for DRAM is

0.7nJ for both, and STT-MRAM is 0.4nJ and 2.3nJ for

read and write, respectively. The calculated energy

consumption of DRAM and STT-MRAM are compared.

Then, memory objects that consume lower energy with

STT-MRAM are chosen as persistent objects.

3.3 Applying persistent object APIs

To use a persistent object, a process must create a

persistent object before manipulating a persistent object.

Like a file, a persistent object has its own unique name.

Thus, a name of a persistent object must not be

overlapped with other objects. The name of directory

where original program code resides is used as a default

name of a persistent object. In generated code, all

persistent object programming APIs use the name as a

parameter. After setting the name, a new persistent

object is created or a persistent object existing already is

mapped into process address space to use. A process has

to create or map a persistent object to call other

persistent object programming APIs to manipulate.

pos_create() creates a new persistent object, and

pos_map() maps a persistent object that is already

created. First of all main() is called when process runs,

so function call syntax for pos_create() and pos_map() is

inserted at the beginning of main(). Then, the API that

creates a persistent object is generated at the beginning

of main() of the program.

Figure 4. Programming model of HEAPO and APIs

Profiler saves information of memory object allocation

code as a text file. The information includes a name of a

file, a line number, and a variable name of malloc().

pos_malloc() allocates a chunk of memory within

persistent object created by pos_create(). The API takes

a size of memory length and additionally a name of a

persistent object. The return value is a memory address

pointer. The name from pos_create() and the size from

malloc() in original code are used as parameters for

pos_malloc(). The size from malloc() is extracted using

regular expression. Fig 4 show a simple code of the

HEAPO programming model and how to apply the APIs

to a program code.

3.4 Selectively deallocate memory

A program code through code regeneration includes both

memory allocation functions for DRAM and NVRAM.

In a process address space, the persistent heap is

separated from the heap. Memory chunks allocated by

malloc() should be deallocated by free(), and memory

chunks allocated by pos_malloc() also must be

deallocated by pos_free(). Generally, dynamic memory

allocation is used to make a data structure like a linked

list. The problems are that malloc() and pos_malloc()

together exist in generated code based on profiling and a

pointer by malloc() or pos_malloc() can be referenced

by several pointer variables. Deallocating only the

pointer variable that is in the information by profiling

code may occur critical errors. Thus, verifying memory

location is required to check whether the memory is

from the heap or the persistent heap when memory is

freed in generated code.

Persistent heap of HEAPO in 64bits address space starts

at 0x5FFEF8000000 and ends at 0x7FFEF8000000.

Memory free syntax should be generated with a

conditional statement. The generated conditional

statement is based on the memory addresses to choose

free() and pos_free(). When generating code for

deallocating memory, a name of pointer variable that is

used for an argument of free() are extracted by regular

expression. Generated memory deallocation syntax

consists of more than one statement and is grouped into

a block. Since the generated code spans multiple lines,

we use a block to group new code together to prevent

conflict with the original code. Fig 5 show how to

regenerate deallocating memory code.

Figure 5. Selectively deallocating memory

4 Experiment

To demonstrate the proposed method, we use

applications named mobibench [13] and susan from

mibench [14]. We verify that a program by the technique

Proceedings of NIDC2016

run HEAPO and the output of the program is same as

the out from the original program. Table II shows a

number of heap memory objects that fit NVRAM, an

execution time of an original program and an execution

time of a program coded with HEAPO programming

library.

Table II Code regeneration result

Program
Memory

object

Execution Time

original HEAPO

mobibench [13] 2(15) 0.901s 1.647s

susan [14] 3(9) 0.065s 0.157s

Mobibench is a benchmark tool for simulating IO

characteristics. In the result, it has 2 memory objects

among 15 objects in the heap that fits NVRAM. The two

memory objects are allocated in NVRAM by HEAPO

programming library. The execution time of a program

that is regenerated by the proposed method is increased

by 1.8x because HEAPO has its own software layer to

manage a persistent object in persistent heap. The

original program uses malloc() from C standard library.

On the other hand, the regenerated program uses

HEAPO library, and the process has to pass the HEAPO

software layer to manipulate a persistent object. The

overhead comes from more changing mode from user to

kernel and searching a persistent object in the

namespace of HEAPO. Susan is a program that

highlights edges of an image. In the case of this program,

3 objects among 9 objects fit NVRAM. Also, the

execution time is increased by 2.4x than the execution

time of the original program.

The result shows that programs have even a small

number of persistent objects and regenerated program

code by the proposed method runs without manual code

modification. However, the longer execution time can be

critical issues, so the proposed method cannot match

some program.

5 Conclusions

In this paper, we introduce a technique that converts a

program to a program running on NVRAM software

platform without manual code modification. To

automate generating code, we propose the criterion for a

persistent object using energy consumption. The

technique allows converting programs without learning

NVRAM software platform and the way on using its

APIs. Including HEAPO, many NVRAM software

platforms have been developed. The technique can be

applied to other NVRAM software platforms. As a

future work, we try to the technique to other NVRAM

software platform to provide an environment to make

many various programs run on NVRAM software

platforms.

Acknowledgements

This work was supported by the BK21 plus program

through the National Research Foundation (NRF)

funded by the Ministry of Education of Korea, Institute

for Information & communications Technology

Promotion(IITP) grant funded by the Korea

government(MSIP) [R7117-16-0232, Development of

extreme I/O storage technology for 32Gbps data

services], and the ICT R&D program of MSIP/IITP

[R0601-16-1063, Software Platform for ICT

Equipments].

References

[1] J. Jung, Y. Won, E. Kim, H. Shin, and B. Jeon, “Frash:

Exploiting storage class memory in hybrid file system for

hierarchical storage,” ACM Transactions on Storage

(TOS), vol. 6, no. 1, p. 3, 2010.

[2] X. Wu and A. Reddy, “Scmfs: a file system for storage

class memory,” in Proceedings of 2011 International

Conference for High Performance Computing,

Networking, Storage and Analysis. ACM, 2011, p. 39.

[3] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D.

Reddy, R. Sankaran, and J. Jackson, “System software

for persistent memory,” in Proceedings of the Ninth

European Conference on Computer Systems. ACM, 2014,

p. 15.

[4] T. Hwang, J. Jung, and Y. Won, “Heapo: Heap-based

persistent object store,” ACM Transactions on Storage

(TOS), vol. 11, no. 1, p. 3, 2015.

[5] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne:

Lightweight persistent memory,” ACM SIGPLAN

Notices, vol. 46, no. 3, pp. 91– 104, 2011

[6] J. Guerra, L. Marmol, D. Campello, C. Crespo, R.

Rangaswami, and J. Wei, “Software persistent memory,”

in Presented as part of the 2012 USENIX Annual

Technical Conference (USENIX ATC 12), 2012, pp.

319–331.

[7] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.

Gupta, R. Jhala, and S. Swanson, “Nv-heaps: making

persistent objects fast and safe with next-generation,

non-volatile memories,” in ACM SIGARCH Computer

Architecture News, vol. 39, no. 1. ACM, 2011, pp. 105–

118.

[8] J. Rosenberg, A. Dearle, D. Hulse, A. Lindstr¨om, and S.

Norris, “Operating system support for persistent and

recoverable computations,” Communications of the

ACM, vol. 39, no. 9, pp. 62–69, 1996

[9] Y. Huai, “Spin-transfer torque mram (stt-mram):

Challenges and prospects,” AAPPS Bulletin, vol. 18, no.

6, pp. 33–40, 2008.

[10] C. Lattner and V. Adve, “Llvm: A compilation

framework for lifelong program analysis &

transformation,” in Code Generation and Optimization,

2004. CGO 2004. International Symposium on. IEEE,

2004, pp.75–86.

[11] Y. Shafranovich, “Common format and mime type for

commaseparated values (csv) files,” RFC, 2005.

[12] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y.

Xie, “Hybrid cache architecture with disparate memory

technologies,” in ACM SIGARCH computer architecture

news, vol. 37, no. 3. ACM, 2009, pp. 34–45.

[13] S. Jeong, K. Lee, J. Hwang, S. Lee, and Y. Won,

“Framework for analyzing android i/o stack behavior:

from generating the workload to analyzing the trace,”

Future Internet, vol. 5, no. 4,

[14] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,

T. Mudge, and R. B. Brown, “Mibench: A free,

commercially representative embedded benchmark suite,”

in Workload Characterization, 2001. WWC-4. 2001

IEEE International Workshop on. IEEE, 2001, pp. 3–14.

