
This paper is included in the Proceedings of the
16th USENIX Conference on File and Storage Technologies.

February 12–15, 2018 • Oakland, CA, USA
ISBN 978-1-931971-42-3

Open access to the Proceedings of
the 16th USENIX Conference on
File and Storage Technologies

is sponsored by USENIX.

Barrier-Enabled IO Stack for Flash Storage
Youjip Won, Hanyang University; Jaemin Jung, Texas A&M University;

Gyeongyeol Choi, Joontaek Oh, and Seongbae Son, Hanyang University;
Jooyoung Hwang and Sangyeun Cho, Samsung Electronics

https://www.usenix.org/conference/fast18/presentation/won

https://www.usenix.org/conference/fast18/presentation/won

Barrier-Enabled IO Stack for Flash Storage

Youjip Won1 Jaemin Jung2∗ Gyeongyeol Choi1

Joontaek Oh1 Seongbae Son1 Jooyoung Hwang3 Sangyeun Cho3

1Hanyang University 2Texas A&M University 3Samsung Electronics

Abstract
This work is dedicated to eliminating the overhead re-
quired for guaranteeing the storage order in the mod-
ern IO stack. The existing block device adopts a pro-
hibitively expensive approach in ensuring the storage or-
der among write requests: interleaving the write requests
with Transfer-and-Flush. Exploiting the cache barrier
command for Flash storage, we overhaul the IO sched-
uler, the dispatch module, and the filesystem so that these
layers are orchestrated to preserve the ordering condi-
tion imposed by the application with which the associ-
ated data blocks are made durable. The key ingredients
of Barrier-Enabled IO stack are Epoch-based IO schedul-
ing, Order-Preserving Dispatch, and Dual-Mode Jour-
naling. Barrier-enabled IO stack can control the storage
order without Transfer-and-Flush overhead. We imple-
ment the barrier-enabled IO stack in server as well as
in mobile platforms. SQLite performance increases by
270% and 75%, in server and in smartphone, respec-
tively. In a server storage, BarrierFS brings as much as
by 43× and by 73× performance gain in MySQL and
SQLite, respectively, against EXT4 via relaxing the dura-
bility of a transaction.

1 Motivation
The modern Linux IO stack is a collection of the ar-
bitration layers; the IO scheduler, the command queue
manager, and the writeback cache manager shuffle the
incoming requests at their own disposal before pass-
ing them to the next layers. Despite the compound un-
certainties from the multiple layers of arbitration, it
is essential for the software writers to enforce a cer-
tain order in which the data blocks are reflected to the
storage surface, storage order, in many cases such as
in guaranteeing the durability and the atomicity of a
database transaction [47, 26, 35], in filesystem journal-
ing [67, 41, 65, 4], in soft-update [42, 63], or in copy-on-
write or log-structure filesystems [61, 35, 60, 31]. En-
forcing a storage order is achieved by an extremely ex-
pensive approach: dispatching the following request only

∗This work was done while the author was a graduate student at
Hanyang University.

 0

 5

 10

 15

 20

 25

 30

 0 50 100 150 200 250O
rd

e
re

d
 I
O

 /
 O

rd
e
rl
e
s
s
 I
O

 (
%

)
Orderless IO (IOPSX10)

3

A

B

C

D

E

F

G

HDD

supercap

HDD

 1351

 2131

2297
2296584403

 y = (3.4 X 10) x-1.1

Figure 1: Ordered write vs. Orderless write, Except
‘HDD’, all are Flash storages; A: (1ch)/eMMC5.0, B:
(1ch)/UFS2.0, C: (8ch)/SATA3.0, D: (8ch)/NVMe, E:
(8ch)/SATA3.0 (supercap), F: (8ch)/PCIe, G: (32ch)
Flash array, The number next to each point is the IOPS
of write() followed by fdatasync().

after the data block associated with the preceding re-
quest is completely transferred to the storage device and
is made durable. We call this mechanism a Transfer-and-
Flush. For decades, interleaving the write requests with
a Transfer-and-Flush has been the fundamental principle
to guarantee the storage order in a set of requests [24, 16].

We observe a phenomenal increase in the performance
and the capacity of the Flash storage. The performance
increase owes much to the concurrency and the paral-
lelism in the Flash storage, e.g. the multi-channel/way
controller [73, 6], the large size storage cache [48], and
the deep command queue [19, 27, 72]. A state of the
art NVMe SSD reportedly exhibits up to 750 KIOPS
random read performance [72]. It is nearly 4,000× of
a HDD’s performance. The capacity increase is due to
the adoption of the finer manufacturing process (sub-10
nm) [25, 36], and the multi-bits per cell (MLC, TLC, and
QLC) [5, 11]. Meanwhile, the time to program a Flash
cell has barely improved, and is even deteriorating in
some cases [22].

The Transfer-and-Flush based order-preserving mech-
anism conflicts with the parallelism and the concurrency
in the Flash storage. It disables the parallelism and the
concurrency feature of the Flash storage and exposes
the raw Flash cell programming latency to the host. The

USENIX Association 16th USENIX Conference on File and Storage Technologies 211

overhead of the Transfer-and-Flush mechanism will be-
come more significant as the Flash storage employs a
higher degree of parallelism and the denser Flash de-
vice. Fig. 1 illustrates an important trend. We measure
the sustained throughput of orderless random write (plain
buffered write) and the ordered random write in EXT4
filesystem. In ordered random write, each write request is
followed by fdatasync(). X-axis denotes the through-
put of orderless write which corresponds to the rate at
which the storage device services the write requests at its
full throttle. This usually matches the vendor published
performance of the storage device. The number next to
each point denotes the sustained throughput of the or-
dered write. The Y-axis denotes the ratio between the
two. In a single channel mobile storage for smartphone
(SSD A), the performance of ordered write is 20% of
that of unordered write (1351 IOPS vs. 7000 IOPS). In
a thirty-two channel Flash array (SSD G), this ratio de-
creases to 1% (2296 IOPS vs. 230K IOPS). In SSD with
supercap (SSD E), the ordered write performance is 25%
of that of the unordered write. The Flash storage uses su-
percap to hide the flush latency from the host. Even in
a Flash storage with supercap, the overhead of Transfer-
and-Flush is significant.

Many researchers have attempted to address the over-
head of storage order guarantee. The techniques de-
ployed in the production platforms include non-volatile
writeback cache at the Flash storage [23], no-barrier
mount option at the EXT4 filesystem [15], and transac-
tional checksum [56, 32, 64]. Efforts such as transac-
tional filesystem [50, 18, 54, 35, 68] and transactional
block device [30, 74, 43, 70, 52] save the application
from the overhead of enforcing the storage order asso-
ciated with filesystem journaling. A school of work ad-
dress more fundamental aspects in controlling the stor-
age order, such as separating the ordering guarantee
from durability guarantee [9], providing a programming
model to define the ordering dependency among the set
of writes [20], and persisting a data block only when the
result needs to be externally visible [49]. Despite their el-
egance, these works rely on Transfer-and-Flush when it
is required to enforce the storage order. OptFS [9] relies
on Transfer-and-Flush in enforcing the order between the
journal commit and the associated checkpoint. Feather-
stitch [20] relies on Transfer-and-Flush to implement the
ordering dependency between the patchgroups.

In this work, we revisit the issue of eliminating the
Transfer-and-Flush overhead in the modern IO stack. We
develop a Barrier-Enabled IO stack, in which the filesys-
tem can issue the following request before the preced-
ing request is serviced and yet the IO stack can enforce
the storage order between them. The barrier-enabled IO
stack consists of the cache barrier-aware storage device,
the order-preserving block device layer, and the bar-

rier enabled filesystem. For cache barrier-aware storage
device, we exploit the “cache barrier” command [28].
The barrier-enabled IO stack is built upon the founda-
tion that the host can control a certain partial order in
which the cache contents are flushed. The “cache bar-
rier” command precisely serves this purpose. For the
order-preserving block device layer, the command dis-
patch mechanism and the IO scheduler are overhauled so
that the block device layer ensures that the IO requests
from the filesystem are serviced preserving a certain par-
tial order. For the barrier-enabled filesystem, we define
new interfaces, fbarrier() and fdatabarrier(), to
separate the ordering guarantee from the durability guar-
antee. They are similar to fsync() and fdatasync(),
respectively, except that they return without waiting for
the associated blocks to become durable. We modify
EXT4 for the order-preserving block device layer. We
develop dual-mode journaling for the order-preserving
block device. Based upon the dual-mode journaling, we
newly implement fbarrier() and fdatabarrier()

and rewrite fsync().
Barrier-enabled IO stack removes the flush overhead

as well as the transfer overhead in enforcing the stor-
age order. While large body of the works have focused
on eliminating the flush overhead, few works have ad-
dressed the overhead of DMA transfer to enforce the stor-
age order. The benefits of the barrier-enabled IO stack
include the followings;

• The application can control the storage order virtually
without any overheads, including the flush overhead,
DMA transfer overhead, and context switch.

• The latency of a journal commit decreases signifi-
cantly. The journaling module can enforce the storage
order between the journal logs and the journal com-
mit block without interleaving them with flush or with
DMA transfer.

• Throughput of the filesystem journaling improves sig-
nificantly. The dual-mode journaling commits multi-
ple transactions concurrently and yet can guarantee the
durability of the individual journal commit.

By eliminating the Transfer-and-Flush overhead, the
barrier-enabled IO stack successfully exploits the con-
currency and the parallelism in modern Flash storage.

2 Background
2.1 Orders in IO stack
A write request travels a complicated route until the
data blocks reach the storage surface. The filesystem
puts the request to the IO scheduler queue. The block
device driver removes one or more requests from the
queue and constructs a command. It probes the device
and dispatches the command if the device is available.

212 16th USENIX Conference on File and Storage Technologies USENIX Association

Writeback
Cache

Flash
IO Scheduler

Command
Queue

Host Storage

Dispatch
Queue

I D X P

Figure 2: IO stack Organization

The device is available if the command queue is not full.
The storage controller inserts the incoming command
at the command queue. The storage controller removes
the command from the command queue and services it (
i.e. transfers the associated data block between the host
and the storage). When the transfer finishes, the device
signals the host. The contents of the writeback cache are
committed to the storage surface either periodically or by
an explicit request from the host.

We define four types of orders in the IO stack; Issue
Order, I , Dispatch Order, D , Transfer Order, X , and
Persist Order, P . The issue order I = {i1, i2, . . . , in} is
a set of write requests issued by the file system. The sub-
script denotes the order in which the requests enter the IO
scheduler. The dispatch order D = {d1,d2, . . . ,dn} de-
notes a set of the write requests dispatched to the stor-
age device. The subscript denotes the order in which
the requests leave the IO scheduler. The transfer order,
X = {x1,x2, . . . ,xn}, is the set of transfer completions.
The persist order, P = {p1, p2, . . . , pn}, is a set of oper-
ations that make the data blocks in the writeback cache
durable. We say that a partial order is preserved if the
relative position of the requests against a designated re-
quest, barrier, are preserved between two different types
of orders. We use the notation ‘=’ to denote that a partial
order is preserved. The partial orders between the differ-
ent types of orders may not coincide due to the following
reasons.

• I 6= D . The IO scheduler reorders and coalesces
the IO requests subject to the scheduling principle,
e.g. CFQ, DEADLINE, etc. When there is no schedul-
ing mechanism, e.g. NO-OP scheduler [3] or NVMe
[13] interface, the dispatch order may be equal to the
issue order.

• D 6= X . The storage controller can freely schedule
the commands in its command queue. In addition, the
commands can be serviced out-of-order due to the er-
rors, the time-outs, and the retry.

• X 6= P . The writeback cache of the storage is not
FIFO. In Flash storage, persist order is governed not
by the order in which the data blocks are made durable
but by the order in which the associated mapping table
entries are updated. The two may not coincide.

Due to all these uncertainties, the modern IO stack is said
to be orderless [8].

2.2 Transfer-and-Flush
Enforcing a storage order corresponds to preserving a
partial order between the order in which the filesystem
issues the requests, I , and the order in which the associ-
ated data blocks are made durable, P . It is equivalent to
collectively enforcing the partial orders between the pair
of the orders in the adjacent layers in Fig. 2. It can be
formally represented as in Eq. 1.

(I = P)≡ (I = D)∧ (D = X)∧ (X = P) (1)

The modern IO stack has evolved under the assumption
that the host cannot control the persist order, i.e. X 6=
P . This is due to the physical characteristics of the ro-
tating media. For rotating media such as HDDs, a per-
sist order is governed by disk scheduling algorithm. The
disk scheduling is entirely left to the storage controller
due to its complicated sector geometry which is hidden
from outside [21]. When the host blindly enforces a cer-
tain persist order, it may experience anomalous delay in
IO service. Due to this constraint of X 6= P , Eq. 1 is
unsatisfiable. The constraint that the host cannot control
the persist order is a fundamental limitation in modern
IO stack design.

The block device layer adopts the indirect and the ex-
pensive approach to control the storage order in spite
of the constraint X 6= P . First, after dispatching the
write command to the storage device, the caller post-
pones dispatching the following command until the pre-
ceding command is serviced, i.e. until the associated
DMA transfer completes. We refer to this mechanism as
Wait-on-Transfer. Wait-on-Transfer mechanism ensures
that the commands are serviced in order and to satisfy
D = X . Wait-on-Transfer is expensive; it blocks the
caller and interleaves the requests with DMA transfer.
Second, when the preceding command is serviced, the
caller issues the flush command and waits for its com-
pletion. The caller issues the following command only
after the flush command returns. This is to ensure that
the associated data blocks are persisted in order and to
satisfy X = P . We refer to this mechanism as Wait-
on-Flush. The modern block device layer uses Wait-on-
Transfer and Wait-on-Flush in pair when it needs to en-
force the storage order between the write requests. We
call this mechanism as Transfer-and-Flush.

The cost of Transfer-and-Flush is prohibitive. It neu-
tralizes the internal parallelism of the Flash storage con-
troller, stalls the command queue, and exposes the caller
to DMA transfer and raw cell programming delays.

2.3 Analysis: fsync() in EXT4
We examine how the EXT4 filesystem controls the stor-
age order in an fsync(). In Ordered journaling mode
(default), the data blocks are persisted before the journal

USENIX Association 16th USENIX Conference on File and Storage Technologies 213

Storage

Filesystem

fsync()

start

JBD

Block Layer

fsync()

return

D FlushJD JC Flush

DMA Transfer Context Switch Execution

Figure 3: DMA, flush, and context switches in fsync(),
‘D’, ‘JC’ and ‘JC’ denote the DMA transfer time for D,
JD and JC, respectively. ‘Flush’ denotes the time to ser-
vice the flush request.

transaction. Fig. 3 illustrates the behavior of an fsync().
The filesystem issues the write requests for a set of dirty
pages, D. D may consist of the data blocks from dif-
ferent files. After issuing the write requests, the appli-
cation thread blocks waiting for the completion of the
DMA transfer. When the DMA transfer completes, the
application thread resumes and triggers the JBD thread
to commit the journal transaction. After triggering the
JBD thread, the application thread sleeps again. When
the JBD thread makes journal transaction durable, the
fsync() returns. It should be emphasized that the ap-
plication thread triggers the JBD thread only after D is
transferred. Otherwise, the storage controller may ser-
vice the write request for D and the write requests for
journal commit in an out-of-order manner, and the stor-
age controller may persist the journal transaction prema-
turely (before D is transferred).

A journal transaction is usually committed using two
write requests: one for writing the coalesced chunk of the
journal descriptor block and the log blocks and the other
for writing the commit block. In the rest of the paper,
we will use JD and JC to denote the coalesced chunk of
the journal descriptor and the log blocks, and the com-
mit block, respectively. In committing a journal trans-
action, JBD needs to enforce the storage orders in two
relations: within a transaction and between the transac-
tions. Within a transaction, JBD needs to ensure that JD
is made durable ahead of JC. Between the journal trans-
actions, JBD has to ensure that journal transactions are
made durable in order. When either of the two conditions
are violated, the file system may recover incorrectly in
case of unexpected failure [67, 9]. For the storage order
within a transaction, JBD interleaves the write request
for JD and the write request for JC with Transfer-and-
Flush. To control the storage order between the transac-
tions, JBD thread waits for JC to become durable before
it starts committing the following transaction. JBD uses
Transfer-and-Flush mechanism in enforcing both intra-
transaction and inter-transaction storage order.

In earlier days of Linux, the block device layer ex-
plicitly issued a flush command in committing a jour-

nal transaction [15]. In this approach, the flush command
blocks not only the caller but also the other requests in
the same dispatch queue. Since Linux 2.6.37, the filesys-
tem (JBD) implicitly issues a flush command [16]. In
writing JC, JBD tags the write request with REQ FLUSH

and REQ FUA. Most storage controllers have evolved to
support these two flags; with these two flags, the storage
controller flushes the writeback cache before servicing
the command and in servicing the command it directly
persists JC to storage surface bypassing the writeback
cache. In this approach, only the JBD thread blocks and
the other threads that share the same dispatch queue can
proceed. Our effort can be thought as a continuation to
this evolution of the IO stack. We mitigate the Transfer-
and-Flush overhead by making the storage device more
capable: supporting a barrier command and by redesign-
ing the host side IO stack accordingly.

3 Order-Preserving Block Device Layer
3.1 Design
The order-preserving block device layer consists of the
newly defined barrier write command, order-preserving
dispatch module, and Epoch-based IO scheduler. We
overhaul the IO scheduler, the dispatch module, and the
write command so that they can preserve the partial order
between the different types of orders, I = D , D = X ,
and X = P , respectively. Order-preserving dispatch
module eliminates the Wait-on-Transfer overhead and
the newly defined barrier write command eliminates the
wait-on-flush overhead. They collectively together pre-
serve the partial order between the issue order I and the
persist order P without Transfer-and-Flush.

The order-preserving block device layer categorizes
the write requests into two categories, orderless write
and order-preserving write. The order-preserving re-
quests are the ones that are subject to the storage or-
dering constraint. Orderless request is the one which
is irrelevant to the ordering dependency and which can
be scheduled freely. We distinguish the two to avoid
imposing unnecessary ordering constraint in scheduling
the requests. The details are to come shortly. We re-
fer to a set of the order-preserving requests that can

fbarrier()

BarrierFS

(Dual Mode Journaling)

Order Preserving

Dispatch

Epoch Based

IO Scheduler

Barrier Compliant Storage Device

fdatabarrier()

WRITE with

BARRIER flag BARRIER

File

System

Block

Layer

File

System

Block

Layer

Figure 4: Organization of the barrier-enabled IO stack

214 16th USENIX Conference on File and Storage Technologies USENIX Association

be reordered with each other as an epoch [14]. We
define a special type of order-preserving write as a
barrier write. A barrier write is used to delimit an
epoch. We introduce two new attributes REQ ORDERED

and REQ BARRIER for the bio object and the request

object to represent an order-preserving write and a bar-
rier write. REQ ORDERED attribute is used to specify the
order-preserving write. Barrier write request has both
REQ ORDERED and REQ BARRIER attributes. The order-
preserving block device layer handles the request differ-
ently based upon its category. Fig. 4 illustrates the orga-
nization of Barrier-Enabled IO stack.

3.2 Barrier Write, the Command
The “cache barrier,” or “barrier” for short, command is
defined in the standard command set for mobile Flash
storage [28]. With barrier command, the host can control
the persist order without explicitly invoking the cache
flush. When the storage controller receives the barrier
command, the controller guarantees that the data blocks
transferred before the barrier command becomes durable
after the ones that follow the barrier command do. A
few eMMC products in the market support cache bar-
rier command [1, 2]. The barrier command can satisfy
the condition X = P in Eq. 1 which has been unsat-
isfiable for several decades due to the mechanical char-
acteristics of the rotating media. The naive way of using
barrier is to replace the existing flush operation [66]. This
simple replacement still leaves the caller under the Wait-
on-Transfer overhead to enforce the storage order.

Implementing a barrier as a separate command oc-
cupies one entry in the command queue and costs the
host the latency of dispatching a command. To avoid this
overhead, we define a barrier as a command flag. We des-
ignate one unused bit in the SCSI command for a bar-
rier flag. We set the barrier flag of the write command to
make itself a barrier write. When the storage controller
receives a barrier write command, it services the barrier
write command as if the barrier command has arrived
immediately following the write command.

With reasonable complexity, the Flash storage can be
made to support a barrier write command [30, 57, 39].
When the Flash storage has Power Loss Protection (PLP)
feature, e.g. a supercapacitor, the writeback cache con-
tents are guaranteed to be durable. The storage controller
can flush the writeback cache fully utilizing its paral-
lelism and yet can guarantee the persist order. In Flash
storage with PLP, we expect that the performance over-
head of the barrier write is insignificant.

For the devices without PLP, the barrier write com-
mand can be supported in three ways; in-order writeback,
transactional writeback, or in-order recovery. In in-order
writeback, the storage controller flushes the data blocks
in epoch granularity. The amount of data blocks in an

epoch may not be large enough to fully utilize the paral-
lelism of the Flash storage. The in-order writeback style
of the barrier write implementation can bring the perfor-
mance degradation in cache flush. In transactional write-
back, the storage controller flushes the writeback cache
contents as a single unit [57, 39]. Since all epochs in the
writeback cache are flushed together, the persist order
imposed by the barrier command is satisfied. The trans-
actional writeback can be implemented without any per-
formance overhead if the controller exploits the spare
area of the Flash page to represent a set of pages in
a transaction [57]. The in-order recovery method relies
on a crash recovery routine to control the persist order.
When multiple controller cores concurrently write the
data blocks to multiple channels, one may have to use so-
phisticated crash recovery protocol such as ARIES [46]
to recover the storage to consistent state. If the entire
Flash storage is treated as a single log device, we can
use simple crash recovery algorithm used in LFS [61].
Since the persist order is enforced by the crash recovery
logic, the storage controller can flush the writeback cache
at the full throttle as if there is no ordering dependency.
The controller is saved from performance penalty at the
cost of complexity in the recovery routine.

In this work, we modify the firmware of the UFS stor-
age device to support the barrier write command. We use
a simple LFS style in-order recovery scheme. The mod-
ified firmware is loaded at the commercial UFS product
of the Galaxy S6 smartphone1. The modified firmware
treats the entire storage device as a single log structured
device. It maintains an active segment in memory. FTL
appends incoming data blocks to the active segment in
the order in which they are transferred. When an active
segment becomes full, the controller stripes the active
segment across the multiple Flash chips in log-structured
manner. In crash recovery, the UFS controller locates the
beginning of the most recently flushed segment. It scans
the pages in the segment from the beginning till it en-
counters the page that has not been programmed success-
fully. The storage controller discards the rest of the pages
including the incomplete one.

Developing a barrier-enabled SSD controller is an en-
gineering exercise. It is governed by a number of design
choices and should be addressed in a separate context. In
this work, we demonstrate that the performance benefit
achieved by the barrier command well deserves its com-
plexity if the host side IO stack can properly exploit it.

3.3 Order-Preserving Dispatch
Order-preserving dispatch is a fundamental innovation in
this work. In order-preserving dispatch, the block device

1Some of the authors are firmware engineers at Samsung Electron-
ics and have an access to the FTL firmware of Flash storage products.

USENIX Association 16th USENIX Conference on File and Storage Technologies 215

finish I/O

re-run

IRQ

receive

CMD

decode

CMD

Block Layer

Filesystem

Device

submit I/O

reordering

& merge
dispatch

DMA

transfer

Wi Wi+1(WoD) Wi+1(WoT)

WoD WoT

Figure 5: Wait-on-Dispatch vs Wait-on-Transfer, Wi: ith

write request, Wi+1(WoD): (i+ 1)th write request under
Wait-on-Dispatch, Wi+1(WoT): (i+1)th write request un-
der Wait-on-Transfer

layer dispatches the following command immediately af-
ter it dispatches the preceding one (Fig. 5) and yet the
host can ensure that the two commands are serviced in
order. We refer to this mechanism as Wait-on-Dispatch.
The order-preserving dispatch is to satisfy the condition
D = X in Eq. 1 without Wait-on-Transfer overhead.

The dispatch module constructs a command from
the requests. The dispatch module constructs the bar-
rier write command when it encounters the barrier write
request, i.e. the write request with REQ ORDERED and
REQ BARRIER flags. For the other requests, it constructs
the commands as it used to do in the legacy block device.

Implementing an order-preserving dispatch is rather
simple; the block device driver sets the priority of a bar-
rier write command as ordered. Then, the SCSI compli-
ant storage device services the command satisfying the
ordering constraint. The following is the reason. SCSI
standard defines three command priority levels: head of
the queue, ordered, and simple [59]. With each, the stor-
age controller puts the incoming command at the head of
the command queue, at the tail of the command queue
or at an arbitrary position determined at its disposal, re-
spectively. The default priority is simple. The command
with simple priority cannot be inserted in front of the ex-
isting ordered or head of the queue command. Exploit-
ing the command priority of existing SCSI interface, the
order-preserving dispatch module ensures that the bar-
rier write is serviced only after the existing requests in
the command queue are serviced and before any of the
commands that follow the barrier write are serviced.

The device can temporarily be unavailable or the
caller can be switched out involuntarily after dispatch-
ing a write request. The order-preserving dispatch mod-
ule uses the same error handling routine of the existing
block device driver; the kernel daemon inherits the task
and retries the failed request after a certain time interval,
e.g. 3 msec for SCSI devices [59]. The ordered priority
command has rarely been used in the existing block de-
vice implementations. This is because when the host can-
not control the persist order, enforcing a transfer order
with ordered priority command barely carries any mean-

ing from the perspective of ensuring the storage order. In
the emergence of the barrier write, the ordered priority
plays an essential role in making the entire IO stack an
order-preserving one.

The importance of order-preserving dispatch cannot
be emphasized further. With order-preserving dispatch,
the host can control the transfer order without releas-
ing the CPU and without stalling the command queue.
IO latency can become more predictable since there ex-
ists less chance that the CPU scheduler interferes with
the caller’s execution. ∆WoT and ∆WoD in Fig. 5 illustrate
the delays between the consecutive requests in Wait-on-
Transfer and Wait-on-Dispatch, respectively. In Wait-on-
Dispatch, the host issues the next request Wi+1(WoD) im-
mediately after it issues Wi. In Wait-on-Transfer, the host
issues the next request Wi+1(WoT) only after Wi is ser-
viced. ∆WoD is an order of magnitude smaller than ∆WoT .

3.4 Epoch-Based IO scheduling
Epoch-based IO scheduling is designed to preserve the
partial order between the issue order and the dispatch or-
der. It satisfies the condition I = D . It is designed with
three principles; (i) it preserves the partial order between
the epochs, (ii) the requests within an epoch can be freely
scheduled with each other, and (iii) an orderless request
can be scheduled across the epochs.

When an IO request enters the scheduler queue, the IO
scheduler determines if it is a barrier write. If the request
is a barrier write, the IO scheduler removes the barrier
flag from the request and inserts it into the queue. Oth-
erwise, the scheduler inserts it to the queue as is. When
the scheduler inserts a barrier write to the queue, it stops
accepting more requests. Since the scheduler blocks
the queue after it inserts the barrier write, all order-
preserving requests in the queue belong to the same
epoch. The requests in the queue can be freely re-ordered
and merged with each other. The IO scheduler uses the
existing scheduling discipline, e.g. CFQ. The merged re-
quest will be order-preserving if one of the components
is order-preserving request. The IO scheduler designates
the last order-preserving request that leaves the queue as
a new barrier write. This mechanism is called Epoch-
Based Barrier Reassignment. When there are not any
order-preserving requests in the queue, the IO sched-
uler starts accepting the IO requests again. When the
IO scheduler unblocks the queue, there can be one or
more orderless requests in the queue. These orderless re-
quests are scheduled with the requests in the following
epoch. Differentiating orderless requests from the order-
preserving ones, we avoid imposing unnecessary order-
ing constraint on the irrelevant requests.

Fig. 6 illustrates an example. The circle and the
rectangle that enclose the write request denote the
order-preserving flag and barrier flag, respectively. An

216 16th USENIX Conference on File and Storage Technologies USENIX Association

W3

W3
W4 Block

Device

{W1, W2, W4}

I/O Scheduler

W1W2W4 W3 W2W1

W4

W2W1

{W1, W2, W4}
W1

W2

W4

W5

W6

W3

W5W6

W5

W5

fsync() Wi: Write Request i

REQ_ORDERED: REQ_BARRIER:

Epoch Epoch

Figure 6: Epoch Based Barrier Reassignment

fdatasync() creates three write requests: w1,w2, and
w4. The barrier-enabled filesystem, which will be de-
tailed shortly, marks the write requests as ordering pre-
serving ones. The last request, w4, is designated as
a barrier write and an epoch, {w1,w2,w4}, is estab-
lished. A pdflush creates three write requests w3,w5,
and w6. They are all orderless writes. The requests
from the two threads are fed to the IO scheduler as
w1,w2,w3,w5,wbarrier

4 ,w6. When the barrier write, w4,
enters the queue, the scheduler stops accepting the new
request. Thus, w6 cannot enter the queue. The IO sched-
uler reorders the requests in the queue and dispatches
them as w2,w3,w4,w5,wbarrier

1 order. The IO scheduler
relocates the barrier flag from w4 to w1. The epoch is
preserved after IO scheduling.

The order-preserving block device layer now satis-
fies all three conditions, I = D ,D = X and X = P
in Eq. 1 with an Epoch-based IO scheduling, an order-
preserving dispatch and a barrier write, respectively. The
order-preserving block device layer successfully elimi-
nates the Transfer-and-Flush overhead in controlling the
storage order and can control the storage order with only
Wait-on-Dispatch overhead.

4 Barrier-Enabled Filesystem

4.1 Programming Model
The barrier-enabled IO stack offers four synchroniza-
tion primitives: fsync(), fdatasync(), fbarrier(),
and fdatabarrier(). We propose two new filesys-
tem interfaces, fbarrier() and fdatabarrier(), to
separately support ordering guarantee. fbarrier() and
fdatabarrier() synchronize the same set of blocks
with fsync() and fdatasync(), respectively, but they
return without ensuring that the associated blocks be-
come durable. fbarrier() bears the same semantics as
osync() in OptFS [9] in that it writes the data blocks
and the journal transactions in order but returns without
ensuring that they become durable.
fdatabarrier() synchronizes the modified blocks,

but not the journal transaction. Unlike fdatasync(),
fdatabarrier() returns without persisting the as-
sociated blocks. fdatabarrier() is a generic stor-
age barrier. By interleaving the write() calls with
fdatabarrier(), the application ensures that the data

blocks associated with the write requests that precede
fdatabarrier() are made durable ahead of the data
blocks associated with the write requests that follow
fdatabarrier(). It plays the same role as mfence for
memory barrier [53]. Refer to the following codelet. Us-
ing fdatabarrier(), the application ensures that the
”world” is made durable only after ”Hello” does.

write(fileA, "Hello") ;

fdatabarrier(fileA) ;

write(fileA, "World") ;

The order-preserving block device layer is filesystem ag-
nostic. In our work, we modify EXT4 for barrier enabled
IO stack.

4.2 Dual Mode Journaling

Filesystem

Storage

fsync()

JBD

D FlushJD JC Flush

DMA Transfer Context Switch Execution

(a) fsync() in EXT4; JBD writes JC with FLUSH/FUA. The latter
’Flush’ for persisting ’JC’ directly to the storage surface.

()

Storage

Filesystem

fsync()

Commit

D FlushJD JC

Flush

(b) fsync() and fbarrier() in BarrierFS
Figure 7: Details of fsync() and fbarrier()

Committing a journal transaction essentially consists
of two saparate tasks: (i) dispatching the write commands
for JD and JC and (ii) making JD and JC durable. Ex-
ploiting the order-preserving nature of the underlying
block device, we physically separate the control plane ac-
tivity (dispatching the write requests) and the data plane
activity (persisting the associated data blocks and jour-
nal transaction) of a journal commit operation. Further,
we allocate the separate threads to each task so that the
two activities can proceed in parallel with minimum de-
pendency. The two threads are called as commit thread
and flush thread, respectively. We refer to this mecha-
nism as Dual Mode Journaling. Dual Mode Journaling
mechanism can support two journaling modes, durability
guarantee mode and ordering guarantee mode, in versa-
tile manner.

The commit thread is responsible for dispatching the
write requests for JD and JC. The commit thread writes

USENIX Association 16th USENIX Conference on File and Storage Technologies 217

each of the two with a barrier write so that JD and JC
are persisted in order. The commit thread dispatches the
write requests without any delay in between (Fig. 7(b)).
In EXT4, JBD thread interleaves the write request for JC
and JD with Transfer-and-Flush (Fig. 7(a)). After dis-
patching the write request for JC, the commit thread in-
serts the journal transaction to the committing transac-
tion list and hands over the control to the flush thread.

The flush thread is responsible for (i) issuing the flush
command, (ii) handling error and retry and (iii) removing
the transaction from the committing transaction list. The
behavior of the flush thread varies subject to the dura-
bility requirement of the journal commit. If the journal
commit is triggered by fbarrier(), the flush thread re-
turns after removing the transaction from the committing
transaction list. It returns without issuing the flush com-
mand. If the journal commit is triggered by fsync(), the
flush thread involves more steps. It issues a flush com-
mand and waiting for the completion. When the flush
completes, it removes the the associated transaction from
the committing transaction list and returns. BarrierFS
supports all journal modes in EXT4; WRITEBACK, OR-
DERED and DATA.

The dual thread organization of BarrierFS journaling
bears profound implications in filesystem design. First,
the separate support for the ordering guarantee and the
durability guarantee naturally becomes an integral part
of the filesystem. Ordering guarantee involves only the
control plane activity. Durability guarantee requires the
control plane activity as well as data plane activity. Bar-
rierFS partitions the journal commit activity into two
independent components, control plane and data plane
and dedicates separate threads to each. This modular de-
sign enables the filesystem primitives to adaptively adjust
the activity of the data plane thread with respect to the
durability requirement of the journal commit operation;
fsync() vs. fbarrier(). Second, the filesystem jour-
naling becomes concurrent activity. Thanks to the dual
thread design, there can be multiple committing transac-
tions in flight. In most journaling filesystems that we are
aware of, the filesystem journaling is a serial activity; the
journaling thread commits the following transaction only
after the preceding transaction becomes durable. In dual
thread design, the commit thread can commit a new jour-
nal transaction without waiting for the preceding com-
mitting transaction to become durable. The flush thread
asynchronously notifies the application thread about the
completion of the journal commit.

4.3 Synchronization Primitives
In fbarrier() and fsync(), BarrierFS writes D, JD,
and JC in a piplelined manner without any delays in
between (Fig. 7(b)). BarrierFS writes D with one or
more order-preserving writes whereas it writes JD and

JC with the barrier writes. In this manner, BarrierFS
forms two epochs {D,JD} and {JC} in an fsync() or
in an fbarrier() and ensures the storage order between
these two epochs. fbarrier() returns when the filesys-
tem dispatches the write request for JC. fsync() returns
after it ensures that JC is made durable. Order-preserving
block device satisfies prefix constraint [69]. When JC be-
comes durable, the order-preserving block device guar-
antees that all blocks associated with preceding epochs
have been made durable. An application may repeatedly
call fbarrier() committing multiple transactions si-
multaneously. By writing JC with a barrier write, Barri-
erFS ensures that these committing transactions become
durable in order. The latency of an fsync() reduces sig-
nificantly in BarrierFS. It reduces the number of flush
operations from two in EXT4 to one and eliminates the
Wait-on-Transfer overheads (Fig. 7).

In fdatabarrier() and fdatasync(), BarrierFS
writes D with a barrier write. If there are more than
one write requests in writing D, only the last one is set
as a barrier write and the others are set as the order-
preserving writes. An fdatasync() returns after the
data blocks, D, become durable. An fdatabarrier()

returns immediately after dispatching the write requests
for D. fdatabarrier() is the crux of the barrier-
enabled IO stack. With fdatabarrier(), the applica-
tion can control the storage order virtually without any
overheads: without waiting for the flush, without wait-
ing for DMA completion, and even without the context
switch. fdatabarrier() is a very light-weight storage
barrier.

An fdatabarrier() (or fdatasync()) may not find
any dirty pages to synchronize upon its execution. In
this case, BarrierFS explicitly triggers the journal com-
mit. It forces BarrierFS to issue the barrier writes for JD
and JC. Through this mechanism, fdatabarrier() or
fdatasync() can delimit an epoch as desired by the ap-
plication even in the absence of any dirty pages.

4.4 Handling Page Conflicts
A buffer page may have been held by the committing
transaction when an application tries to insert it to the
running transaction. We refer to this situation as page
conflict. Blindly inserting a conflict page into the run-
ning transaction yields its removal from the committing
transaction before it becomes durable. The EXT4 filesys-
tem checks for the page conflict when it inserts a buffer
page to the running transaction [67]. If the filesystem
finds a conflict, the thread delegates the insertion to the
JBD thread and blocks. When the committing transaction
becomes durable, the JBD thread identifies the conflict
pages in the committed transaction and inserts them to
the running transaction. In EXT4, there can be at most
one committing transaction. The running transaction is

218 16th USENIX Conference on File and Storage Technologies USENIX Association

guaranteed to be free from page conflict when the JBD
thread has made it durable and finishes inserting the con-
flict pages to the running transaction.

In BarrierFS, there can be more than one committing
transactions. The conflict pages may be associated with
different committing transactions. We refer to this sit-
uation as multi-transaction page conflict. As in EXT4,
BarrierFS inserts the conflict pages to the running trans-
action when it makes a committing transaction durable.
However, to commit a running transaction, BarrierFS has
to scan all buffer pages in the committing transactions
for page conflicts and ensure that it is free from any page
conflicts. When there exists large number of committing
transactions, the scanning overhead to check for the page
conflict can be prohibitive in BarrierFS.

To reduce this overhead, we propose the conflict-page
list for a running transaction. The conflict-page list rep-
resents the set of conflict pages associated with a running
transaction. The filesystem inserts the buffer page to the
conflict-page list when it finds that the buffer page that
it needs to insert to the running transaction is subject to
the page conflict. When the filesystem has made a com-
mitting transaction durable, it removes the conflict pages
from the conflict-page list in addition to inserting them to
the running transaction. A running transaction can only
be committed when the conflict-page list is empty.

4.5 Concurrency in Journaling

tD tX tF

tD+tX+tF

tD
BarrierFS

EXT4

(quick flush)

EXT4

(full flush)

t

tD+tX+t

EXT4

(no flush)

tD+tX

Txi

Txi

Txi

Txi

Txi+1

Txi+1

Txi+1

Figure 8: Concurrency in filesystem journaling under
varying storage order guarantee mechanisms, tD: dis-
patch latency, tX : transfer latency, tε : flush latency in su-
percap SSD, tF : flush latency

We examine the degree of concurrency in journal com-
mit operation under different storage order guarantee
mechanisms: BarrierFS, EXT4 with no-barrier option
(EXT4 (no flush)), EXT4 with supercap SSD (EXT4
(quick flush)), and plain EXT4 (EXT4 (full flush)). With
no-barrier mount option, the JBD thread omits the
flush command in committing a journal transaction. With
this option, the EXT4 guarantees neither durability nor
ordering in journal commit operation since the storage
controller may make the data blocks durable out-of-

order. We examine this configuration to illustrate the
filesystem journaling behavior when the flush command
is removed in the journal commit operation.

In Fig. 8, each horizontal line segment represents a
journal commit activity. It consists of the solid line seg-
ment and the dashed line segment. The end of the hor-
izontal line segment denotes the time when the transac-
tion reaches the disk surface. The end of the solid line
segment represents the time when the journal commit
returns. If they do not coincide, it means that the jour-
nal commit finishes before the transaction reaches the
disk surface. In EXT4 (full flush), EXT4 (quick flush),
and EXT4 (no flush), the filesystem commits a new
transaction only after preceding journal commit finishes.
The journal commit is a serial activity. In EXT4 (full
flush), the journal commit finishes only after all associ-
ated blocks are made durable. In EXT4 (quick flush), the
journal commit finishes more quickly than in EXT4 (full
flush) since the SSD returns the flush command without
persisting the data blocks. In EXT4 (no flush), the jour-
nal commit finishes more quickly than EXT (quick flush)
since it does not issue the flush command. In journal-
ing throughput, BarrierFS prevails the remainders by far
since the interval between the consecutive journal com-
mits is as small as the dispatch latency, tD.

The concurrencies in journaling in EXT4 (no flush)
and in EXT4 (quick flush) have their price. EXT4 (quick
flush) requires the additional hardware component, su-
percap, in the SSD. EXT4 (quick flush) guarantees nei-
ther durability or ordering in the journal commit. Bar-
rierFS commits multiple transactions concurrently and
yet can guarantee the durability of the individual journal
commit without the assistance of additional hardware.

The barrier enabled IO stack does not require any ma-
jor changes in the existing in-memory or on-disk struc-
ture of the IO stack. The only new data structure we in-
troduce is the “conflict-page-list” for a running transac-
tion. Barrier enabled IO stack consists of approximately
3K LOC changes in the IO stack of the Linux kernel .

4.6 Comparison with OptFS
As the closest approach of our sort, OptFS deserves an
elaboration. OptFS and barrier-enabled IO stack differ
mainly in three aspects; the target storage media, the
technology domain, and the programming model. First,
OptFS is not designed for the Flash storage but the
barrier-enabled IO stack is. OptFS is designed to reduce
the disk seek overhead in a filesystem journaling; via
committing multiple transactions together (delayed com-
mit) and via making the disk access sequential (selec-
tive data mode journaling). Second, OptFS is the filesys-
tem technique while the barrier enabled IO stack deals
with the entire IO stack; the storage device, the block
device layer and the filesystem. OptFS is built upon the

USENIX Association 16th USENIX Conference on File and Storage Technologies 219

legacy block device layer. It suffers from the same over-
head as the existing filesystems do. OptFS uses Wait-on-
Transfer to control the transfer order between D and JD.
OptFS relies on Transfer-and-Flush to control the stor-
age order between the journal commit and the associated
checkpoint in osync(). Barrier-enabled IO stack elim-
inates the overhead of Wait-on-Transfer and Transfer-
and-Flush in controlling the storage order. Third, OptFS
focuses on revising the filesystem journaling model. Bar-
rierFS is not limited to revising the filesystem journaling
model but also exports generic storage barrier with which
the application can group a set of writes into an epoch.

5 Applications
To date, fdatasync() has been the sole resort to en-
force the storage order between the write requests. The
virtual disk managers for VM disk image, e.g., qcow2,
use fdatasync() to enforce the storage order among
the writes to the VM disk image [7]. SQLite uses
fdatasync() to control the storage order between the
undo-log and the journal header and between the up-
dated database node and the commit block [37]. In a sin-
gle insert transaction, SQLite calls fdatasync() four
times, three of which are to control the storage order. In
these cases, fdatabarrier() can be used in place of
fdatasync(). In some modern applications, e.g. mail
server [62] or OLTP, fsync() accounts for the dominant
fraction of IO. In TPC-C workload, 90% of IOs are cre-
ated by fsync() [51]. With improved fsync() of Bar-
rierFS, the performance of the application can increase
significantly. Some applications prefer to trade the dura-
bility and the freshness of the result for the performance
and scalability of the operation [12, 17]. One can replace
all fsync() and fdatasync() with ordering guaran-
tee counterparts, fbarrier() and fdatabarrier(),
respectively, in these applications.

6 Experiment
We implement a barrier-enabled IO stack on three dif-
ferent platforms, enterprise server (12 cores, Linux
3.10.61), PC server (4 cores, Linux 3.10.61) and smart-
phone (Galaxy S6, Android 5.0.2, Linux 3.10). We test
three storage devices: 843TN (SATA 3.0, QD2=32, 8
channels, supercap), 850PRO (SATA 3.0, QD=32, 8
channels), and mobile storage (UFS 2.0, QD=16, single
channel). We compare the BarrierFS against EXT4 and
OptFS [9]. We refer to each of these as supercap-SSD,
plain-SSD, and UFS, respectively. We implement barrier
write command in UFS device. In plain-SSD and super-
cap SSD, we assume that the performance overhead of
barrier write is 5% and none, repsectively.

2QD: queue depth

 0

 20

 40

 60

 80

 100

plain-SSD supercap-SSD UFS
 0
 4
 8
 12
 16
 20
 24
 28
 32

IO
P

S
 (

X
1

0

)
3

Q
u

e
u

e
 D

e
p

th

XnF
X

B
P

0.170.02

0.80

30.7 29.6

0.51

0.84

30.8
29.5

0.63

14.8

7.03

Figure 9: 4KB Randwom Write; XnF: write() fol-
lowed by fdatasync(), X: write() followed by
fdatasync()(no-barrier option), B: write() fol-
lowed by fdatabarrier(), P: orderless write()

 0
 8

 16
 24
 32

 0 0.05 0.1 0.15 0.2

Q
D

time (sec)

(a) Wait-on-Transfer, plain SSD

 0
 8

 16
 24
 32

 0 0.05 0.1 0.15 0.2

Q
D

time (sec)

(b) Barrier Write, plain SSD

 0
 4
 8

 12
 16

 0.2 0.25 0.3 0.35 0.4

Q
D

time (sec)

(c) Wait-on-Transfer, UFS

 0
 4
 8

 12
 16

 0.2 0.25 0.3 0.35 0.4

Q
D

time (sec)

(d) Barrier Write, UFS

Figure 10: Queue Depth, 4KB Random Write

6.1 Order-Preserving Block Layer
We examine the performance of 4 KByte random write
with different ways of enforcing the storage order: P
(orderless write [i.e. plain buffered write]), B (barrier
write), X (Wait-on-Transfer) and XnF (Transfer-and-
Flush). Fig. 9 illustrates the result.

The overhead of Transfer-and-Flush is severe. With
Transfer-and-Flush, the IO performances of the ordered
write are 0.5% and 10% of orderless write in plain-SSD
and UFS, respectively. In supercap SSD, the performance
overhead is less significant, but is still considerable; the
performance of the ordered write is 35% of the orderless
write in UFS. The overhead of DMA transfer is signifi-
cant. When we interleave the write requests with DMA
transfer, the IO performance is less than 40% of the or-
derless write in each of the three storage devices.

The overhead of barrier write is negligible. When us-
ing a barrier write, the ordered write exhibits 90% perfor-
mance of the orderless write in plain-SSD and super-cap
SSD. For UFS, it exhibits 80% performance of the order-
less write. The barrier write drives the queue to its maxi-
mum in all three Flash storages. The storage performance
is closely related to the command queue utilization [33].
In Wait-on-Transfer, the queue depth never goes beyond
one (Fig. 10(a) and Fig. 10(c)). In barrier write, the queue
depth grows near to its maximum in all storage devices
(Fig. 10(b) and Fig. 10(d)).

220 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 1

 2

 3

plain-SSD supercap-SSD UFS

N
o

.
o

f
C

tx

EXT4-DR BFS-DR EXT4-OD BFS-OD

2.001.98

1.02

0.12

2.00

1.32
1.01

0.16

2.001.99

1.01

0.21

Figure 11: Average Number of Context Switches, EXT4-
DR: fsync(), BFS-DR: fsync(), EXT-OD: fsync()
with no-barrier, BFS-OD: fbarrier(), ‘DR’ = dura-
bility guarantee, ‘OD’ = ordering guarantee, ‘EXT4-OD’
guarantees only the transfer order, but not storage order.

6.2 Filesystem Journaling
We examine the latency, the number of context switches
and the queue depth in filesystem journaling in EXT4
and BarrierFS. We use Mobibench [26]. For latency,
we perform 4 KByte allocating write() followed by
fsync(). With this, an fsync() always finds the up-
dated metadata to journal and the fsync() latency prop-
erly represents the time to commit a journal transaction.
For context switch and queue depth, we use 4 KByte
non-allocating random write followed by different syn-
chronization primitives.

Latency: In plain-SSD and supercap-SSD, the average
fsync() latency decreases by 40% when we use Barri-
erFS against when we use EXT4 (Table 2). In UFS, the
fsync() latency decreases by 60% in BarrierFS com-
pared against EXT4. UFS experiences more significant
reduction in fsync() latency than the other SSDs do.

BarrierFS makes the fsync() latency less variable.
In supercap-SSD and UFS, the fsync() latencies at
the 99.99th percentile are 30× of the average fsync()

latency (Table 2). In BarrierFS, the tail latencies at
99.99th percentile decrease by 50%, 20%, and 70%
in UFS, plain-SSD, and supercap-SSD, respectively,
against EXT4.

(%) UFS plain-SSD supercap-SSD
EXT4 BFS EXT4 BFS EXT4 BFS

µ 1.29 0.51 5.95 3.52 0.15 0.09
Median 1.20 0.44 5.43 3.01 0.15 0.09

99th 4.15 3.51 11.41 8.96 0.16 0.10
99.9th 22.83 9.02 16.09 9.30 0.28 0.24

99.99th 33.10 17.60 17.26 14.19 4.14 1.35

Table 1: fsync() latency statistics (msec)

Context Switches: We examine the number of ap-
plication level context switches in different journaling
modes (Fig. 11). In EXT4, fsync() wakes up the caller
twice: after D is transferred and after the journal transac-
tion is made durable(EXT4-DR). This applies to all three
storages. In BarrierFS, the number of context switches
in an fsync() varies subject to the storage device. In
UFS and supercap SSD, fsync() of BarrierFS wakes

 0

 4

 8

 12

 16

 0 0.2 0.4 0.6 0.8

Q
D

time (msec)

fsync()
 start

 next

fsync()

(a) Durability Guarantee

 0

 4

 8

 12

 16

 0 0.2 0.4 0.6 0.8

Q
D

time (msec)

dispatch

complete

(b) Ordering Guarantee

Figure 12: Queue Depth in BarrierFS: fsync() and
fbarrier()

up the caller twice, as in the case of fsync() of EXT4.
However, the reasons are entirely different. In UFS and
supercap-SSD, the intervals between the successive write
requests are much smaller than the timer interrupt inter-
val due to small flush latency. A write() request rarely
finds the updated metadata and an fsync() often resorts
to an fdatasync(). fdatasync() wakes up the caller
(the application thread) twice in BarrierFS: after transfer-
ring D and after flush completes. In plain SSD, fsync()
of BarrierFS wakes up the caller once: after the trans-
action is made durable. The plain-SSD uses TLC Flash.
The interval between the successive write()s is longer
than the timer interrupt interval. The application thread
blocks after triggering the journal commit and and wakes
up after the journal commit operation completes.

BFS-OD manifests the benefits of BarrierFS. The
fbarrier() rarely finds updated metadata since it re-
turns quickly and as a result, most fbarrier() calls are
serviced as fdatabarrier(). fdatabarrier() does
not block the caller and therefore does not accompany
any involuntary context switch.

Command Queue Depth: In BarrierFS, the host dis-
patches the write requests for D, JD, and JC in tan-
dem. Ideally, there can be as many as three commands
in the queue. We observe only up to two commands in
the queue in servicing an fsync() (Fig. 12(a)). This
is due to the context switch between the application
thread and the commit thread. Writing D and writing
JD are 160 µsec apart, but it takes 70µsec to service
the write request for D. In fbarrier(), BarrierFS suc-
cessfully drives the command queue to its full capacity
(Fig. 12(b)).

Throughput and Scalability: The filesystem journal-
ing is a main obstacle against building an manycore scal-
able system [44]. We examine the throughput of filesys-
tem journaling in EXT4 and BarrierFS with a varying
number of CPU cores in a 12 core machine. We use mod-
ified DWSL workload in fxmark [45]; each thread per-
forms a 4-Kbyte allocating write followed by fsync().
Each thread operates on its own file. BarrierFS exhibits
much more scalable behavior than EXT4 (Fig. 13). In
plain-SSD, BarrierFS exhibits 2× performance against
EXT4 in all numbers of cores (Fig. 13(a)). In supercap-

USENIX Association 16th USENIX Conference on File and Storage Technologies 221

SSD, the performance saturates with six cores in both
EXT4 and BarrierFS. BarrierFS exhibits 1.3× journal-
ing throughput against EXT4 (Fig. 13(b)).

6.3 Server Workload
We run two workloads: varmail [71] and OLTP-
insert [34]. OLTP-insert workload uses MySQL
DBMS [47]. varmail is a metadata-intensive workload.
It is known for the heavy fsync() traffic. There are total
four combinations of the workload and the SSD (plain-
SSD and supercap-SSD) pair. For each combination,
we examine the benchmark performances for durability
guarantee and ordering guarantee, respectively. For dura-
bility guarantee, we leave the application intact and use
two filesystems, the EXT4 and the BarrierFS (EXT4-DR
and BFS-DR). The objective of this experiment is to
examine the efficiency of fsync() implementations
in EXT4 and BarrierFS, respectively. For ordering
guarantee, we test three filesystems, OptFS, EXT4 and
BarrierFS. In OptFS and BarrierFS, we use osync()

and fdatabarrier() in place of fsync(), respec-
tively. In EXT4, we use nobarrier mount option. This
experiment examines the benefit of Wait-on-Dispatch.
Fig. 14 illustrates the result.

Let us examine the performances of varmail work-
load. In plain-SSD, BFS-DR brings 60% performance
gain against EXT4-DR in varmail workload. In
supercap-SSD, BFS-DR brings 10% performance gain
against EXT4-DR. The experimental result of supercap-
SSD case clearly shows the importance of eliminating
the Wait-on-Transfer overhead in controlling the stor-
age order. The benefit of BarrierFS manifests itself when
we relax the durability guarantee. In ordering guaran-
tee, BarrierFS achieves 80% performance gain against
EXT4-OD. Compared to the baseline, EXT4-DR, Bar-
rierFS achieves 36× performance (1.0 vs. 35.6 IOPS)
when we enforce only ordering guarantee with BarrierFS
(BFS-OD) in plain SSD .

In MySQL, BFS-OD prevails EXT4-OD by 12%.
Compared to the baseline, EXT4-DR, BarrierFS
achieves 43× performance (1.3 vs. 56.0 IOPS) when
we enforce only ordering guarantee with BarrierFS
(BFS-OD) in plain SSD.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12

o
p

s
/s

e
c
 (

X
1

03
)

#core

EXT4-DR BFS-DR

(a) plain-SSD

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

o
p

s
/s

e
c
 (

X
1

03)

#core

EXT4-DR BFS-DR

(b) supercap-SSD

Figure 13: fxmark: scalability of filesystem journaling

6.4 Mobile Workload: SQLite
We examine the performances of the libarary based em-
bedded DBMS, SQLite, under the durability guarantee
and the ordering guarantee, respectively. We examine
two journal modes, PERSIST and WAL. We use ’Full
Sync’ and the WAL file size is set to 1,000 pages, both of
which are default settings [58]. In a single insert trans-
action, SQLite calls fdatasync() four times. Three of
them are to control the storage order and the last one is
for making the result of a transaction durable.

For durability guarantee mode, We replace the first
three fdatasync()’s with fdatabarrier()’s and
leave the last one. In mobile storage, BarrierFS achieves
75% performance improvement against EXT4 in de-
fault PERSIST journal mode under durability guar-
antee (Fig. 15). In ordering guarantee, we replace
all four fdatasync()’s with fdatabarrier()’s. In
UFS, SQLite exhibits 2.8× performance gain in BFS-
OD against EXT4-DR. The benefit of eliminating the
Transfer-and-Flush becomes more dramatic as the stor-
age controller employs higher degree of parallelism. In
plain-SSD, SQLite exhibits 73× performance gain in
BFS-OD against EXT4-DR (73 vs. 5300 ins/sec).

Notes on OptFS: OptFS does not perform well in our
experiment (Fig. 14 and Fig. 15), unlike that in [9]. We
find two reasons. First, the benefit of delayed checkpoint
and selective data mode journaling becomes marginal in
Flash storage. Second, in Flash storage (i.e. the storage
with short IO latency) the delayed checkpoint and the
selective data mode journaling negatively interact with
each other and bring substantial increase in the memory
pressure. The increased memory pressure severely im-
pacts the performance of osync(). The osync() scans
all dirty pages for the checkpoint at its beginning. Selec-
tive data mode journaling inserts the updated data blocks
to the journal transaction. Delayed checkpoint prohibits
the data blocks in the journal transaction from being
checkpointed until the associated ADN arrives. As a re-
sult, osync() checkpoints only a small fraction of dirty
pages each time it is called. The dirty pages in the jour-
nal transactions are scanned multiple times before they
are checkpointed. The osync() shows particularly poor
performance in OLTP workload (Fig. 14), where most

 0

 10

 20

 30

 40

 50

 60

Varmail OLTP-insert Varmail OLTP-insert

EXT4-DR BFS-DR OptFS EXT4-OD BFS-OD

plain-SSD supercap-SSD

1.01.6

19.4 21.1

35.8

1.31.3

(X10)
3

7.0

51.9
56.0

18.6
21.7

18.3

36.3

28.9 29.3
20.3

7.9

33.3
39.2

Figure 14: varmail (ops/s) and OLTP-insert (Tx/s)

222 16th USENIX Conference on File and Storage Technologies USENIX Association

 0

 0.5

 1

 1.5

 2

PERSIST WAL

T
x
/s

 (
X

1
0

)

3

0.3
0.4

EXT4-DR BFS-DR

0.6
0.7

0.6 0.6

1.3
1.4

(a) UFS

 0

 3

 6

 9

 12

PERSIST WAL

T
x
/s

 (
X

1
0

)

3

 0.1 0.3
 0.8

 3.5

EXT4-ODOptFS BFS-OD

 5.3

0.30.3

0.9

6.5

9.1

(b) plain-SSD

Figure 15: SQLite Performance: ins/sec, 100K inserts

updates are subject to data mode journaling.

6.5 Crash Consistency
We test if the BarrierFS recovers correctly against the
unexpected system failure. We use CrashMonkey for
the test [40]. We modify CrashMonkey to understand
the barrier write so that the CrashMonkey can prop-
erly delimit an epoch when it encounters a barrier
write. We run two workloads; rename root to sub and
create delete. For durability guarantee (fsync()),
BarrierFS passes all 1,000 test cases as EXT4 does in
both workloads. For ordering guarantee (fsync() in
EXT4-OD and fbarrier() in BarrierFS), BarrierFS
passes all 1,000 test cases whereas EXT4-OD fails in
some cases. This is not surprising since EXT4 with
nobarrier option guarantees neither the transfer orders
nor the persist orders in committing the filesystem jour-
nal transaction.

Scenario - EXT4-DR BFS-DR EXT4-OD BFS-OD

A
clean 1000 1000 547 1000
fixed 0 0 0 0
failed 0 0 453 0

B
clean 1000 1000 109 1000
fixed 0 0 891 0
failed 0 0 0 0

Table 2: Crash Consistency Test of EXT4 and Barri-
erFS, Scenario A: rename root to sub, Scenario B:
create delete

7 Related Work
Featherstitch [20] proposes a programming model to
specify the set of requests that can be scheduled to-
gether, patchgroup, and the ordering dependency be-
tween them, pg depend(). While xsyncfs [49] miti-
gates the overhead of fsync(), it needs to maintain com-
plex causal dependencies among buffered updates. NoFS
(no order file system) [10] introduces “backpointer” to
eliminate the Transfer-and-Flush based ordering in the
file system. It does not support transaction.

A few works proposed to use multiple running trans-
actions or multiple committing transactions to circum-
vent the Transfer-and-Flush overhead in filesystem jour-
naling [38, 29, 55]. IceFS [38] allocates separate running
transaction for each container. SpanFS [29] splits a jour-

nal region into multiple partitions and allocates commit-
ting transactions for each partition. CCFS [55] allocates
separate running transactions for individual threads. In
these systems, each journaling session still relies on the
Transfer-and-Flush mechanism.

A number of file systems provide a multi-block atomic
write feature [18, 35, 54, 68] to relieve applications from
the overhead of logging and journaling. These file sys-
tems internally use the Transfer-and-Flush mechanism
to enforce the storage order in writing the data blocks
and the associated metadata blocks. Exploiting the order-
preserving block device layer, these filesystems can use
Wait-on-Dispatch mechanism to enforce the storage or-
der between the data blocks and the metadata blocks and
can be saved from the Transfer-and-Flush overhead.

8 Conclusion
The Flash storage provides the cache barrier command to
allow the host to control the persist order. HDD cannot
provide this feature. It is time for designing the new IO
stack for the Flash storage that is free from the unnec-
essary constraint inherited from the old legacy that the
host cannot control the persist order. We built a barrier-
enabled IO stack based upon the foundation that the
host can control the persist order. In the barrier-enabled
IO stack, the host can dispense with Transfer-and-Flush
overhead in controlling the storage order and can suc-
cessfully saturate the underlying Flash storage. We like
to conclude this work with two key observations. First,
the “cache barrier” command is a necessity rather than
a luxury. It should be supported in all Flash storage
products ranging from the mobile storage to the high-
performance Flash storage with supercap. Second, the
block device layer should be designed to eliminate the
DMA transfer overhead in controlling the storage order.
As the Flash storage becomes quicker, the relative cost
of tardy “Wait-on-Transfer” will become more substan-
tial. To saturate the Flash storage, the host should be able
to control the transfer order without interleaving the re-
quests with DMA transfer.

We hope that this work provides a useful foundation
in designing a new IO stack for the Flash storage3.

9 Acknowledgement
We would like to thank our shepherd Vijay Chi-
dambaram and the anonymous reviewers for their valu-
able feedback. We also would like to thank Jayashree
Mohan for her help in CrashMonkey. This work is
funded by Basic Research Lab Program (NRF, No.
2017R1A4A1015498), the BK21 plus (NRF), ICT R&D
program (IITP, R7117-16-0232) and Samsung Elec.

3The source code for barrier enabled IO stack is available at https:
//github.com/ESOS-Lab/barrieriostack.

USENIX Association 16th USENIX Conference on File and Storage Technologies 223

https://github.com/ESOS-Lab/barrieriostack
https://github.com/ESOS-Lab/barrieriostack

References

[1] emmc5.1 solution in sk hynix. https://www.skhynix.
com/kor/product/nandEMMC.jsp.

[2] Toshiba expands line-up of e-mmc version 5.1 com-
pliant embedded nand flash memory modules. http:

//toshiba.semicon-storage.com/us/company/

taec/news/2015/03/memory-20150323-1.html.

[3] AXBOE, J. Linux block IO present and future. In Proc. of
Ottawa Linux Symposium (Ottawa, Ontario, Canada, Jul
2004).

[4] BEST, S. JFS Overview. http://jfs.sourceforge.

net/project/pub/jfs.pdf, 2000.

[5] CHANG, Y.-M., CHANG, Y.-H., KUO, T.-W., LI, Y.-
C., AND LI, H.-P. Achieving SLC Performance with
MLC Flash Memory. In Proc. of DAC 2015 (San Fran-
cisco, CA, USA, 2015).

[6] CHEN, F., LEE, R., AND ZHANG, X. Essential roles
of exploiting internal parallelism of flash memory based
solid state drives in high-speed data processing. In Proc.
of IEEE HPCA 2011 (San Antonio, TX, USA, Feb 2011).

[7] CHEN, Q., LIANG, L., XIA, Y., CHEN, H., AND KIM,
H. Mitigating sync amplification for copy-on-write vir-
tual disk. In Proc. of USENIX FAST 2016 (Santa Clara,
CA, 2016), pp. 241–247.

[8] CHIDAMBARAM, V. Orderless and Eventually
Durable File Systems. PhD thesis, UNIVIRSITY OF
WISCONSIN–MADISON, 2015.

[9] CHIDAMBARAM, V., PILLAI, T. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Optimistic Crash
Consistency. In Proc. of ACM SOSP 2013 (Farming-
ton, PA, USA, Nov 2013). https://github.com/

utsaslab/optfs.

[10] CHIDAMBARAM, V., SHARMA, T., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. Consistency
Without Ordering. In Proc. of USENIX FAST 2012 (San
Jose, CA, USA, Feb 2012).

[11] CHO, Y. S., PARK, I. H., YOON, S. Y., LEE, N. H.,
JOO, S. H., SONG, K.-W., CHOI, K., HAN, J.-M.,
KYUNG, K. H., AND JUN, Y.-H. Adaptive multi-pulse
program scheme based on tunneling speed classification
for next generation multi-bit/cell NAND flash. IEEE
Journal of Solid-State Circuits(JSSC) 48, 4 (2013), 948–
959.

[12] CIPAR, J., GANGER, G., KEETON, K., MORREY III,
C. B., SOULES, C. A., AND VEITCH, A. LazyBase:
trading freshness for performance in a scalable database.
In Proc. of ACM EuroSys 2012 (Bern, Switzerland, Apr
2012).

[13] COBB, D., AND HUFFMAN, A. NVM express and the
PCI express SSD Revolution. In Proc. of Intel Developer
Forum (San Francisco, CA, USA, 2012).

[14] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK,
E., LEE, B., BURGER, D., AND COETZEE, D. Better I/O
through byte-addressable, persistent memory. In Proc. of
ACM SOSP 2009 (Big Sky, MT, USA, Oct 2009).

[15] CORBET, J. Barriers and journaling filesystems. http:

//lwn.net/Articles/283161/, August 2010.

[16] CORBET, J. The end of block barriers. https://lwn.

net/Articles/400541/, August 2010.

[17] CUI, H., CIPAR, J., HO, Q., KIM, J. K., LEE, S., KU-
MAR, A., WEI, J., DAI, W., GANGER, G. R., GIBBONS,
P. B., ET AL. Exploiting bounded staleness to speed
up big data analytics. In Proc. of USENIX ATC 2014
(Philadelihia, PA, USA, Jun 2014).

[18] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS,
R., AND STOICA, I. Wide-area Cooperative Storage with
CFS. In Proc. of ACM SOSP 2001 (Banff, Canada, Oct
2001).

[19] DEES, B. Native command queuing-advanced perfor-
mance in desktop storage. IEEE Potentials Magazine 24,
4 (2005), 4–7.

[20] FROST, C., MAMMARELLA, M., KOHLER, E., DE LOS

REYES, A., HOVSEPIAN, S., MATSUOKA, A., AND

ZHANG, L. Generalized File System Dependencies. In
Proc. of ACM SOSP 2007 (Stevenson, WA, USA, Oct
2007).

[21] GIM, J., AND WON, Y. Extract and infer quickly: Ob-
taining sector geometry of modern hard disk drives. ACM
Transactions on Storage (TOS) 6, 2 (2010).

[22] GRUPP, L. M., DAVIS, J. D., AND SWANSON, S. The
bleak future of nand flash memory. In Proc.of USENIX
FAST 2012 (Berkeley, CA, USA, 2012).

[23] GUO, J., YANG, J., ZHANG, Y., AND CHEN, Y. Low
cost power failure protection for mlc nand flash storage
systems with pram/dram hybrid buffer. In Proc. of DATE
2013 (Alpexpo Grenoble, France, 2013), pp. 859–864.

[24] HELLWIG, C. Patchwork block: update documentation
for req flush / req fua. https://patchwork.kernel.

org/patch/134161/.

[25] HELM, M., PARK, J.-K., GHALAM, A., GUO, J., WAN

HA, C., HU, C., KIM, H., KAVALIPURAPU, K., LEE,
E., MOHAMMADZADEH, A., ET AL. 19.1 A 128Gb
MLC NAND-Flash device using 16nm planar cell. In
Proc. of IEEE ISSCC 2014 (San Francisco, CA, USA, Feb
2014).

[26] JEONG, S., LEE, K., LEE, S., SON, S., AND WON, Y.
I/O Stack Optimization for Smartphones. In Proc. of
USENIX ATC 2013 (San Jose, CA, USA, Jun 2013).

[27] JESD220C, J. S. Universal Flash Storage(UFS) Version
2.1.

[28] JESD84-B51, J. S. Embedded Multi-Media
Card(eMMC) Electrical Standard (5.1).

[29] KANG, J., ZHANG, B., WO, T., YU, W., DU, L., MA,
S., AND HUAI, J. SpanFS: A Scalable File System on
Fast Storage Devices. In Proc. of USENIX ATC 2015
(Santa Clara, CA, USA, Jul 2015).

[30] KANG, W.-H., LEE, S.-W., MOON, B., OH, G.-H.,
AND MIN, C. X-FTL: Transactional FTL for SQLite
Databases. In Proc. of ACM SIGMOD 2013 (New York,
NY, USA, Jun 2013).

224 16th USENIX Conference on File and Storage Technologies USENIX Association

https://www.skhynix.com/kor/product/nandEMMC.jsp
https://www.skhynix.com/kor/product/nandEMMC.jsp
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://toshiba.semicon-storage.com/us/company/taec/news/2015/03/memory-20150323-1.html
http://jfs.sourceforge.net/project/pub/jfs.pdf
http://jfs.sourceforge.net/project/pub/jfs.pdf
https://github.com/utsaslab/optfs
https://github.com/utsaslab/optfs
http://lwn.net/Articles/283161/
http://lwn.net/Articles/283161/
https://lwn.net/Articles/400541/
https://lwn.net/Articles/400541/
https://patchwork.kernel.org/patch/134161/
https://patchwork.kernel.org/patch/134161/

[31] KESAVAN, R., SINGH, R., GRUSECKI, T., AND PATEL,
Y. Algorithms and data structures for efficient free space
reclamation in wafl. In Proc. of USENIX FAST 2017
(Santa Clara, CA, 2017), USENIX Association, pp. 1–14.

[32] KIM, H.-J., AND KIM, J.-S. Tuning the ext4 filesys-
tem performance for android-based smartphones. In Proc.
of ICFCE 2011 (2011), S. Sambath and E. Zhu, Eds.,
vol. 133 of Advances in Intelligent and Soft Computing,
Springer, pp. 745–752.

[33] KIM, Y. An empirical study of redundant array of inde-
pendent solid-state drives (RAIS). Springer Cluster Com-
puting 18, 2 (2015), 963–977.

[34] KOPYTOV, A. SysBench manual. http:

//imysql.com/wp-content/uploads/2014/10/

sysbench-manual.pdf, 2004.

[35] LEE, C., SIM, D., HWANG, J., AND CHO, S. F2FS: A
New File System for Flash Storage. In Proc. of USENIX
FAST 2015 (Santa Clara, CA, USA, Feb 2015).

[36] LEE, S., LEE, J.-Y., PARK, I.-H., PARK, J., YUN, S.-
W., KIM, M.-S., LEE, J.-H., KIM, M., LEE, K., KIM,
T., ET AL. 7.5 A 128Gb 2b/cell NAND flash memory in
14nm technology with tPROG=640us and 800MB/s I/O
rate. In Proc. of IEEE ISSCC 2016 (San Francisco, CA,
USA, Feb 2016).

[37] LEE, W., LEE, K., SON, H., KIM, W.-H., NAM, B.,
AND WON, Y. WALDIO: eliminating the filesystem jour-
naling in resolving the journaling of journal anomaly. In
Proc. of USENIX ATC 2015 (Santa Clara, CA, USA, Jul
2015).

[38] LU, L., ZHANG, Y., DO, T., AL-KISWANY, S.,
ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU,
R. H. Physical Disentanglement in a Container-Based
File System. In Proc. of USENIX OSDI 2014 (Broom-
field, CO, USA, Oct 2014).

[39] LU, Y., SHU, J., GUO, J., LI, S., AND MUTLU, O.
Lighttx: A lightweight transactional design in flash-based
ssds to support flexible transactions. In Proc. of IEEE
ICCD 2013.

[40] MARTINEZ, A., AND CHIDAMBARAM, V. Crashmon-
key: A framework to automatically test file-system crash
consistency. In 9th USENIX Workshop on Hot Top-
ics in Storage and File Systems (HotStorage 17) (Santa
Clara, CA, 2017). https://github.com/utsaslab/

crashmonkey.

[41] MATHUR, A., CAO, M., BHATTACHARYA, S., DILGER,
A., TOMAS, A., AND VIVIER, L. The new ext4 filesys-
tem: current status and future plans. In Proc. of Linux
symposium 2007 (Ottawa, Ontario, Canada, Jun 2007).

[42] MCKUSICK, M. K., GANGER, G. R., ET AL. Soft Up-
dates: A Technique for Eliminating Most Synchronous
Writes in the Fast Filesystem. In Proc. of USENIX ATC
1999 (Monterey, CA, USA, Jun 1999).

[43] MIN, C., KANG, W.-H., KIM, T., LEE, S.-W., AND

EOM, Y. I. Lightweight application-level crash consis-
tency on transactional flash storage. In Proc. of USENIX
ATC 2015 (Santa Clara, CA, USA, Jul 2015).

[44] MIN, C., KASHYAP, S., MAASS, S., AND KIM, T. Un-
derstanding Manycore Scalability of File Systems. In
Proc. of USENIX ATC 2016 (Denver, CO, USA, Jun
2016).

[45] MIN, C., KASHYAP, S., MAASS, S., AND KIM, T. Un-
derstanding manycore scalability of file systems. In
Proc.of USENIX ATC 2016 (Denver, CO, 2016), pp. 71–
85.

[46] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH,
H., AND SCHWARZ, P. ARIES: a transaction recov-
ery method supporting fine-granularity locking and par-
tial rollbacks using write-ahead logging. ACM Transac-
tions on Database Systems(TODS) 17, 1 (1992), 94–162.

[47] MYSQL, A. Mysql 5.1 reference manual. Sun Microsys-
tems (2007).

[48] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A.
Write Off-loading: Practical Power Management for En-
terprise Storage. ACM Transactions on Storage(TOS) 4,
3 (2008), 10:1–10:23.

[49] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN,
P. M., AND FLINN, J. Rethink the Sync. In Proc. of
USENIX OSDI 2006 (Seattle, WA, USA, Nov 2006).

[50] OKUN, M., AND BARAK, A. Atomic writes for data in-
tegrity and consistency in shared storage devices for clus-
ters. In Proc. of ICA3PP 2002 (Beijing, China, Oct 2002).

[51] OU, J., SHU, J., AND LU, Y. A high performance file
system for non-volatile main memory. In Proc. of ACM
EuroSys 2016 (London, UK, Apr 2016).

[52] OUYANG, X., NELLANS, D., WIPFEL, R., FLYNN, D.,
AND PANDA, D. K. Beyond block I/O: Rethinking tra-
ditional storage primitives. In Proc. of IEEE HPCA 2011
(San Antonio, TX, USA, Feb 2011).

[53] PALANCA, S., FISCHER, S. A., MAIYURAN, S., AND

QAWAMI, S. Mfence and lfence micro-architectural im-
plementation method and system, July 5 2016. US Patent
9,383,998.

[54] PARK, S., KELLY, T., AND SHEN, K. Failure-atomic
Msync(): A Simple and Efficient Mechanism for Preserv-
ing the Integrity of Durable Data. In Proc. of ACM Eu-
roSys 2013 (Prague, Czech Republic, Apr 2013).

[55] PILLAI, T. S., ALAGAPPAN, R., LU, L., CHI-
DAMBARAM, V., ARPACI-DUSSEAU, A. C., AND

ARPACI-DUSSEAU, R. H. Application crash consistency
and performance with ccfs. In Proc.of USENIX FAST
2017 (Santa Clara, CA, 2017), pp. 181–196.

[56] PRABHAKARAN, V., BAIRAVASUNDARAM, L. N.,
AGRAWAL, N., GUNAWI, H. S., ARPACI-DUSSEAU,
A. C., AND ARPACI-DUSSEAU, R. H. IRON File Sys-
tems. In Proc. of ACM SOSP 2005 (Brighton, UK, Oct
2005).

[57] PRABHAKARAN, V., RODEHEFFER, T. L., AND ZHOU,
L. Transactional flash. In Proc. of USENIX OSDI 2008
(Berkeley, CA, USA, 2008), pp. 147–160.

USENIX Association 16th USENIX Conference on File and Storage Technologies 225

http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
http://imysql.com/wp-content/uploads/2014/10/sysbench-manual.pdf
https://github.com/utsaslab/crashmonkey
https://github.com/utsaslab/crashmonkey

[58] PUROHITH, D., MOHAN, J., AND CHIDAMBARAM, V.
The dangers and complexities of sqlite benchmarking. In
Proceedings of the 8th Asia-Pacific Workshop on Systems
(New York, NY, USA, 2017), APSys ’17, ACM, pp. 3:1–
3:6.

[59] REV, H. SCSI Commands Reference Manual.
http://www.seagate.com/files/staticfiles/

support/docs/manual/Interface%20manuals/

100293068h.pdf/, Jul 2014. Seagate.

[60] RODEH, O., BACIK, J., AND MASON, C. Btrfs: The
linux b-tree filesystem. ACM Transactions on Storage
(TOS) 9, 3 (2013).

[61] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems (TOCS) 10, 1 (Feb.
1992), 26–52.

[62] SEHGAL, P., TARASOV, V., AND ZADOK, E. Evaluat-
ing Performance and Energy in File System Server Work-
loads. In Proc. of USENIX FAST 2010 (San Jose, CA,
USA, Feb 2010).

[63] SELTZER, M. I., GANGER, G. R., MCKUSICK, M. K.,
SMITH, K. A., SOULES, C. A., AND STEIN, C. A. Jour-
naling Versus Soft Updates: Asynchronous Meta-data
Protection in File Systems. In Proc. of USENIX ATC 2000
(San Diego, CA, USA, Jun 2000).

[64] SHILAMKAR, G. Journal Checksums. http:

//wiki.old.lustre.org/images/4/44/Journal-\

checksums.pdf, May 2007.

[65] SWEENEY, A., DOUCETTE, D., HU, W., ANDERSON,
C., NISHIMOTO, M., AND PECK, G. Scalability in the
xfs file system. In Proc. of USENIX ATC 1996 (Berkeley,
CA, USA, 1996).

[66] TS’O, T. Using Cache barrier in liue of REQ FLUSH.
http://www.spinics.net/lists/linux-ext4/

msg49018.html, September 2015.

[67] TWEEDIE, S. C. Journaling the linux ext2fs filesystem.
In Proc.of The Fourth Annual Linux Expo (Durham, NC,
USA, May 1998).

[68] VERMA, R., MENDEZ, A. A., PARK, S., MANNAR-
SWAMY, S., KELLY, T., AND MORREY, C. Failure-
Atomic Updates of Application Data in a Linux File Sys-
tem. In Proc. of USENIX FAST 2015 (Santa Clara, CA,
USA, Feb 2015).

[69] WANG, Y., KAPRITSOS, M., REN, Z., MAHAJAN, P.,
KIRUBANANDAM, J., ALVISI, L., AND DAHLIN, M.
Robustness in the salus scalable block store. In Proceed-
ings of the 10th USENIX Conference on Networked Sys-
tems Design and Implementation (Berkeley, CA, USA,
2013), nsdi’13, USENIX Association, pp. 357–370.

[70] WEISS, Z., SUBRAMANIAN, S., SUNDARARAMAN, S.,
TALAGALA, N., ARPACI-DUSSEAU, A., AND ARPACI-
DUSSEAU, R. ANViL: Advanced Virtualization for Mod-
ern Non-Volatile Memory Devices. In Proc. of USENIX
FAST 2015 (Santa Clara, CA, USA, Feb 2015).

[71] WILSON, A. The new and improved FileBench. In Proc.
of USENIX FAST 2008 (San Jose, CA, USA, Feb 2008).

[72] XU, Q., SIYAMWALA, H., GHOSH, M., SURI, T.,
AWASTHI, M., GUZ, Z., SHAYESTEH, A., AND BAL-
AKRISHNAN, V. Performance Analysis of NVMe SSDs
and Their Implication on Real World Databases. In Proc.
of ACM SYSTOR 2015 (Haifa, Israel, May 2015).

[73] Y. PARK, S., SEO, E., SHIN, J. Y., MAENG, S., AND

LEE, J. Exploiting Internal Parallelism of Flash-based
SSDs. IEEE Computer Architecture Letters(CAL) 9, 1
(2010), 9–12.

[74] ZHANG, C., WANG, Y., WANG, T., CHEN, R., LIU,
D., AND SHAO, Z. Deterministic crash recovery
for NAND flash based storage systems. In Proc. of
ACM/EDAC/IEEE DAC 2014 (San Francisco, CA, USA,
Jun 2014).

226 16th USENIX Conference on File and Storage Technologies USENIX Association

http://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068h.pdf/
http://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068h.pdf/
http://www.seagate.com/files/staticfiles/support/docs/manual/Interface%20manuals/100293068h.pdf/
http://wiki.old.lustre.org/images/4/44/Journal-\checksums.pdf
http://wiki.old.lustre.org/images/4/44/Journal-\checksums.pdf
http://wiki.old.lustre.org/images/4/44/Journal-\checksums.pdf
http://www.spinics.net/lists/linux-ext4/msg49018.html
http://www.spinics.net/lists/linux-ext4/msg49018.html

	Motivation
	Background
	Orders in IO stack
	Transfer-and-Flush
	Analysis: fsync() in EXT4

	Order-Preserving Block Device Layer
	Design
	Barrier Write, the Command
	Order-Preserving Dispatch
	Epoch-Based IO scheduling

	Barrier-Enabled Filesystem
	 Programming Model
	Dual Mode Journaling
	Synchronization Primitives
	Handling Page Conflicts
	Concurrency in Journaling
	Comparison with OptFS

	Applications
	Experiment
	Order-Preserving Block Layer
	Filesystem Journaling
	Server Workload
	Mobile Workload: SQLite
	Crash Consistency

	Related Work
	Conclusion
	Acknowledgement

