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ABSTRACT
In this paper, we address the issue of guaranteeing the atom-
icity of metadata update in a write() system call in EXT4
filesystem. Recent versions of EXT4 delay inserting the up-
dated inode to the running journal transaction until the asso-
ciated dirty pages are actually written to the disk. This is to
avoid excessive fsync() overhead. While this approach ef-
fectively reduces the tail latency of fsync(), we found that it
can incorrectly recover the file and it can expose the interim
state of the inode to the application when the filesystem
crashes unexpectedly. To address this problem, we propose
Delayed Inode Update, DIU. Instead of separating the update
of an inode and its insertion to the running transaction, we
propose delaying the update until the associated inode is
inserted into journal transaction. Delayed Inode Update is
crafted not to entail any performance overhead nor does it in-
crease the fsync() latency. With Delayed Inode Update, the
average and the worst case latency of an fsync() decrease
by 15% and 43% in a designated workload, respectively.

1 INTRODUCTION
EXT4 [28] filesystem is the most widely used filesystem in all
range of computing platforms from thewearable device [1] to
the enterprise server. EXT4 adopts block granularity and redo
only physical logging [17] for crash recovery. While EXT4
journaling is known for its maturity and sophistication, it is
still considered as one of the most significant impediments
in the modern IO subsystem in fully exploiting hardware
performance of the underlying storage [14].
∗The initial version of the source code is publicly available at https://www.
spinics.net/lists/linux-ext4/msg55460.html

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APSys ’17, September 2, 2017, Mumbai, India
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5197-3/17/09. . . $15.00
https://doi.org/10.1145/3124680.3124722

EXT4 filesystem maintains one active transaction in mem-
ory where the filesystem maintains the redo logs. This is a
called running transaction. To avoid frequent journal com-
mit [19], EXT4 filesystem aggregates updated blocks to the
active transaction and flushes them either periodically or
via an explicit call, e.g. fsync(). By aggregating multiple
updated blocks, EXT4 can commit the journal transaction
less frequently and the overhead of the filesystem journal-
ing can be mitigated. This aggregated approach introduces
another problem. The ordered mode, one of the journaling
modes in EXT4, ensures that the dirty page cache entries
are made durable before the associated metadata do. This
is to avoid any inconsistency between the file blocks and
the associated metadata, e.g. the block pointers point to the
file blocks with garbage data. When an inode in the running
transaction happens to have a large amount of dirty pages,
e.g. downloading a file, committing a running transaction
can take a prohibitive amount of time reaching as much as
a few seconds [7]. When an application calls an fsync(), it
may suffer from unexpectedly long latency due to the other
inodes which are in the same running transaction.
By delaying the time when the updated inode is inserted

to the running transaction, one can improve the worst case
latency of fsync(). This is because fsync() only writes the
metadata of the associated file to the journal area.

However, we have found that this approach can incorrectly
recover the filesystem and it can leave one or more files in the
inconsistent state in the case of unexpected system failure
in the ordered mode journaling. We call this problem atomic
metadata update failure.
In this work, we propose Delayed Inode Update (DIU) to

guarantee the atomic update of the file size associated with a
write() in EXT4. The delayed inode update technique post-
pones not only the insertion of the updated metadata into
a journal transaction but also the update of the inode itself
without compromising the atomicity of the inode update.
DIU consists of two technical ingredients: delayed filesize up-
date (DFU) and delayed timestamp journaling (DTJ). Delayed
filesize update (DFU) guarantees the atomicity of metadata
update operation. Delayed timestamp journaling (DTJ) ef-
fectively reduces the amount of metadata committed to the
storage.

https://www.spinics.net/lists/linux-ext4/msg55460.html
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Figure 1: transaction structure of EXT4 journaling
(Ordered mode). MB: metadata block, I: VFS inode

In the fsync() performance evaluation, DIU shows up to
15% and 43% lower latency than EXT4 in the average and
the worst case latency.
The rest of the paper is organized as follows. Section 2

describes the basics of the EXT4 journaling and the write
implementation. Section 3 describes the consistency guar-
antee issue in EXT4. Section 4 describes the design and the
implementation of DIU. Section 5 shows the performance of
DIU compared with EXT4. Section 6 describes the related
work and Section 7 concludes the paper.

2 BACKGROUND
2.1 Journaling in EXT4
EXT4 filesystem provides three journaling modes: the write-
backmode, the orderedmode, and the datamode [22]. The de-
fault is the ordered mode. In the ordered mode, the filesystem
journals only the updated metadata. The filesystem guaran-
tees that the dirty pages associated with the metadata being
journaled are made durable before the journal transaction
which contains the updated metadata is made durable [23].

To mitigate the overhead of filesystem journaling, EXT4
filesystem aggregates the blocks which are to be journaled
and writes them as a single unit, called a journal transaction
or a transaction for short.
A journal transaction consists of the transaction header

block, one or more log blocks and the transaction commit
block. A transaction is in one of three states; running, com-
mitting, and checkpoint. A running transaction is one where
the applications or JBD2 thread are inserting the log records.
The transaction is said to be in committing state if it is being
written to the storage. The committing transaction is frozen.
It stops accepting more log blocks. When an application tries
to journal an updated block, a new running transaction is
created if it does not exist. EXT4 has at most one running
transaction and at most one committing transaction [28].
Once a transaction is committed, the state of a transaction
changes to "checkpoint". There can be one or more transac-
tions in the checkpoint state.
Fig. 1 shows the transaction structure of EXT4. Each

transaction is assigned a unique identifier, tid. A
transaction maintains a set of updated blocks, called

buffers to be journaled. The set of buffers is maintained
as a linked list of the pointers to the associated page cache
entries. A transaction structure maintains a list of inodes,
inode list associated with the log blocks.

EXT4 filesystem dedicates a separate thread for journaling,
the Journaling Block Device 2(JBD2) daemon [16]. The JBD2
daemon runs periodically (default 5 seconds) [25] or is woken
up by the fsync() system call [2].

Linux OS maintains two versions of the inode: VFS inode
and EXT4 inode. EXT4 inode is the on disk representation of
a file and is the filesystem specific data structure. VFS inode is
intended to insulate the OS from the implementation details
of the individual filesystems. It is a common representation
of a file. When a file is opened, VFS inode is created and
is initialized with the value associated with a given EXT4
inode. Usually, VFS inode is a superset of filesystem specific
inode, e.g. EXT4 inode. Inode list in a journal transaction
is a list of VFS inodes. The inode list is used to identify
the dirty pages for a given files. When the JBD2 starts com-
mitting a journal transaction in ordered mode, it first scans
the inode list and dispatches the write requests for the
associated dirty pages. Once this is done, the JBD2 writes
the transaction header block and the blocks in the buffers
list to the journal region. The JBD2 daemon waits until the
dirty page cache entries, the journal header block and the log
blocks are made durable. Then, it issues the write request for
journal commit block. Later, the committed metadata blocks
are checkpointed to the original location in the filesystem
partition by the kworker thread [7].

2.2 Types of write() in EXT4
We categorize the write() operations into four categories.
First, we categorize write into two major types depending
upon whether it allocates a new file block or not: an allocat-
ing write (AW) and a non-allocating write (NAW).
An allocating write is divided into two categories based

upon whether the starting position is aligned with block
boundary or not: aligned write (AW-A) and unaligned write
(AW-U). Non-allocating write is further divided into two
based upon whether the file size changes or not: size preserv-
ing (NAW-SP) and size-changing (NAW-SC). Fig. 2 illustrates
an example for each of the four categories.

Each of write follows a different execution path in updat-
ing the associated metadata and in journaling them. Fig. 3
shows the individual sequences. EXT4 filesystem maintains
two variables to represent a file size. One is in the VFS inode
and the other is in the EXT4 inode. The metadata is updated
as follows.
First, it updates the access time (atime) and modification

time (mtime) of the VFS-inode and the EXT4-inode respec-
tively. After the metadata block is inserted to the buffers



Guaranteeing the Metadata Update Atomicity in EXT4 File system APSys ’17, September 2, 2017, Mumbai, India

0 KB 4 KB 8 KB 12 KB 16 KB

pwrite(12, 2)NAW-SP

pwrite(14, 2)NAW-SC

pwrite(14, 6)AW-U

pwrite(16, 4)AW-A

EOF

Figure 2: Types of write(): size preserving non-
allocating write (NAW-SP), size changing non-
allocating (NAW-SC), aligned allocating write (AW-A),
and unaligned allocating write (AW-U)
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Figure 3: Metadata update and journaling for each
write() type, TS: atime and mtime, DS: file size in EXT4
on-disk inode, MS: file size in VFS inode

list in the running transaction, it updates the page cache en-
tries. Then, the file size at the EXT4 inode is updated. There
is an important distinction in the way in which the file size
is updated. In the size-changing non-allocating write, the file
size of the EXT4 inode is increased by the size of appended
data. In the unaligned allocating write, the file size of the
EXT4 inode is updated to the sum of the already allocated
blocks. In the size preserving non-allocating write and in the
aligned allocating write, the file size of the EXT4 inode is
not updated.

When the file size of the EXT4 inode is updated, the inode
is inserted to the inode list of the running transaction.
The implementation of the updating inode list depends
on the kernel version. In the Linux kernel prior to version
3.8, write() system call inserts the updated inode to inode
list. In the Linux kernel version 3.8 and later, the write()
system call omits to insert the updated inode to the inode
list. Fig. 4 illustrates the difference.

NAW-SP NAW-SC AW-A AW-U
write() O O

fsync()/kworker O O

Table 1: The number of updates of the file size in EXT4
inode

After the inode list is updated, the updated EXT4 inode
is inserted to the buffers list of a running transaction. If the
EXT4 inode is already inserted into the buffers list at the
time of the timestamp [29] update, the insertion is skipped.
Finally, the file size of the VFS inode is updated to its final
value after the inode block is inserted to the buffers list.
Fig. 3 illustrates how the individual fields at the metadata
and the running transaction are updated.
In the size preserving non-allocating write, the file size

of the EXT4 inode is not updated. In the size changing non-
allocating write, the file size of the EXT4 inode is updated
once, and the updated metadata block is inserted into the
journal transaction once. In the aligned allocating write,
the file size of the EXT4 inode is updated once, not by the
write() system call but by the kworker thread. The updated
metadata block is inserted to the journal transaction twice:
one in the write() system call and the other by kworker or
fsync(). In the unaligned allocating write, the file size of
the EXT4 inode is updated twice: at the write() and at the
kworker thread. The updated metadata block is inserted into
journal transaction twice. Table 1 shows the number of file
size updates of the EXT4 inode according to the write types.

3 PROBLEM STATEMENT
Delayed Inode Insertion is proposed to reduce the worst case
latency of fsync() [27]. It fails to guarantee the atomicity of
the metadata update operation[18] in EXT4. Due to Delayed
Inode Insertion, the ordering constraint between the data
block and the associated metadata in the ordered mode jour-
naling can be compromised. There is a time interval during
which the content of the inode list and the content of
the buffers list of a running transaction do not coincide.
The problem arises when the application calls an fsync()
system call to persist the dirty pages and the metadata for a
file. When the JBD2 daemon commits a running transaction,
it is possible that some inodes in the running transaction are
not present in the inode list. The JBD2 daemon fails to
persist the dirty pages associated with these missing inodes
when the inodes which are not present in the inode list
are made durable through the journal commit. When the
system crashes, the recovery module can recover the inodes
in the journal region, but without the appropriate data blocks
on disk.
The root cause of this problem is the metadata inconsis-

tency in a journal transaction. Some of the updated inodes
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Figure 4: Updating the metadata and the journal transaction. SNA
EXT 4: updating the file size in EXT4 inode in non-

allocating write, SAEXT 4: updating the file size in EXT4 inode in allocating write, SV FS : updating the file size in VFS
inode

write(fileA, 6KB) IEXT4 ←16KB

write(fileB, 6KB) IEXT4 ←16KB

fsync(fileA) IEXT4 ←20KB IEXT4 ←20KB

After crash IEXT4 = 20KB IEXT4 = 16KB IEXT4 = 20KB IEXT4 = 14KB

time

Current  IEXT4 = 14KB

Figure 5: Example of AW-U (Unaligned allocating
write) in EXT4 and DIU. IEXT 4 : EXT4 inode

which have been inserted in the buffers list may not be
present in the inode list. This happens due to the delayed
inode insertion in the recent versions of EXT4. In Linux prior
to version 3.8, an updated inode is inserted to the buffers
list as well as inode list at the same time. It is guaranteed
that the buffers list and inode list in a journal transac-
tion are aligned with each other (Fig. 4).

In delayed inode insertion, when the application updates
the size of a file, the associated inode may not be inserted
to the inode list (I1 in Fig. 4) while the associated meta-
data block is inserted to the buffers list in the running
transaction. This happens when the starting offset of a write
operation is not aligned with the start of a file block; the size
changing non allocating write(NAW-SC) and the unaligned
allocating write(AW-U).

Fig. 5 shows an example. There are the two files, namely,
fileA and fileB. The sizes of two files are 14 KB. An application
appends 6 KB data blocks to fileA and fileB, respectively. Both
are unaligned allocating write. In the context of the caller,
the sizes of the two files are updated to 16 KB (I1 in Fig.
4). The metadata blocks associated with the updated inodes
are inserted into the buffers list of a running transaction.
When the application calls fsync(‘fileA’), it writes the
data of fileA to the writeback cache in a storage and changes
the file size to 20 KB. After the JBD2 daemon wakes up, the
inode of fileB as well as the inode of fileA in the buffers list
are committed to the storage. If a system crash occurs after
the fsync() is completed, EXT4 recovers the inodes of fileA
and fileB. The recovered inode of fileB has the updated file
size, 16 KB, even though the data of fileB has not been made
durable.
We have tested four other open source filesystems,

XFS[26], F2FS[11], BTRFS[20], and ZFS[21] if they guarantee
the atomicity in metadata update1. XFS, F2FS, and BTRFS
passed the test, but ZFS has failed.

4 DELAYED INODE UPDATE
4.1 Delayed File Size Update
We postpone updating the file size until when the associ-
ated dirty pages are flushed to the storage. This is called
the Delayed Filesize Update (DFU). Unlike EXT4, DFU post-
pones updating the file size to the point when the dirty pages

1the test code is available at https://github.com/seongbaeSon/DIU.git
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(d) Unaligned Allocating write

Figure 6: write() and filesystem journaling in EXT4, DFU, and DFU+DTJ. TS: atime and mtime, DS: file size of EXT4
on-disk inode, MS: file size of VFS inode

are flushed. In DFU, the filesystem checks if the file size in
the EXT4 inode is same as that of the VFS inode when the
kworker or fsync() flushes the dirty pages of the inode to
the storage. If they do not match, the file size of the EXT4
inode is updated to the file size of the VFS inode and the
updated EXT4 inode is inserted to the running transaction.
Fig. 6 illustrates how the metadata is updated in original

EXT4 and in DIU, respectively. In the size preserving non-
allocating write and the aligned allocating write, DFU does
not bring any change (Fig. 6(a), Fig. 6(c)). In the size chang-
ing non-allocating write (NAW-SC) and in the unaligned
allocating write (AW-U), the file size is updated in write()
system call. In delayed inode update, we update the file size
when the kworker thread flushes the dirty pages (Fig. 6(b)
and Fig. 6(d)). Let us provide an example (DIU in Fig. 5). DFU
does not change the file size within a write() system call. In
DFU, the inode of fileA and the inode of fileB are not inserted
into the buffers list of the running transaction. The file size
is changed from 14 KB to 20 KB when the associated dirty
pages are flushed to disk.

When an fsync(‘fileA’) is called, the metadata block
associatedwith the inode of fileA is inserted into the buffers
list. In delayed inode update, the inode of fileB is still not
inserted in the running transaction. The JBD2 daemon com-
mits the journal transaction. If a system crash occurs after
fsync() is completed, the inode of fileB is still 14 KB since
the inode of fileB is not written in the journal area. DFU
ensures the consistency of fileB by preventing the inode of
fileB from being written in the journal area before the user
data of fileB is flushed.

4.2 Delayed Timestamp Journaling
In EXT4, the updated inode is inserted to the running transac-
tion twice: after updating the timestamp and after the block
is actually allocated. We develop Delayed Timestamp Jour-
naling to reduce the amount of IO associated with journaling
and to reduce the fsync() latency.
In the allocating write, the inode is inserted into the

running transaction twice. write() system call inserts the
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inode to a running transaction after it updates the times-
tamp(mtime and atime). The kworker thread or fsync()
allocates the block, updates the file size and inserts the up-
dated inode to the running transaction. It is possible that the
JBD2 daemon is triggered between the two insertions. Then,
the metadata block which contains the inode is written to
the storage twice.
In Delayed Timestamp Journaling, the filesystem omits

the first insertion of the two. It does not insert the inode
to the running transaction when it updates the timestamp.
‘DFU+DTJ’ in the Fig. 6 illustrates this scheme.

In the allocating write, Delayed Timestamp Journaling
reduces the amount of IO associated with journaling which
reduces the latency of fsync(). Suppose that we append
4 KB blocks to fileA and fileB respectively, and we call
fsync(‘fileA’). In EXT4, the metadata block associated
with fileA and the metadata block associated with fileB are in-
serted to the running transaction when the write() system
call is called. The running transaction contains the metadata
blocks associated with fileA’s inode and the fileB’s inode. If
we use both Delayed File size Update (DFU) and Delayed
Timestamp Journaling (DTJ), the running transaction con-
tains only the metadata block associated with fileA. The run-
ning transaction becomes smaller when the fsync(‘fileA’)
is called. If we assume that thousands of files are being up-
dated, the benefit of applying Delayed Timestamp Journaling
can be substantial.

4.3 Logging while Swapping
Linux kernel has a swapping mechanism which stores the
less frequently used pages to the secondary storage. kswapd
is responsible for swapping out the page cache entries [3]. In
Delayed Inode Update scheme, the updated inode is inserted
to a journal transaction when the dirty pages are flushed to
the storage, i.e. fsync() and kworker thread. When flushing
the dirty pages, the kworker thread identifies the dirty pages
and inserts the metadata blocks associated with the dirty
pages to the running transaction. If a dirty page is swapped
out, the associated page cache entry is marked as clean. In
Delayed Inode Update, the kworker thread fails to journal the
updated inode if the associated dirty pages are all swapped
out. In EXT4, this problem does not occur since the updated
inode is inserted to the running transaction in the write()
system call.
In Linux, only the page cache entries that have physical

disk location are subject to swapping. The above-mentioned
issue occurs only for the non-allocating writes.
In Delayed Inode Update, the swap daemon is modified

to insert the updated metadata to the running transaction.
When the swap daemon selects a victim page, it examines
whether the associated inode block needs to be journaled. If
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Figure 7: 4KB write followed by fsync()) and SQLite
(persist mode). EXT4 runs in ordered mode.

necessary, the swap daemon inserts the associated metadata
block to the running transaction.

5 EXPERIMENTS
We implement Delayed Inode Update in EXT4 of the Linux
v4.10.We compare the behavior of three EXT4 versions: stock
EXT4 (EXT4), EXT4 with Delayed Filesize Update (DIU) and
EXT4 with Delayed Filesize Update and Delayed Timestamp
Journaling (DIU+). In this experiment, we use PC server with
Intel i5-2500, 8 GB RAM, Plextor M6 Pro 128 GB SSD, and
Ubuntu 16.04 LTS.

5.1 Micro Benchmark
We use Mobibench [8] to generate workload. We use two
workloads: random write and sqlite. In the random write
workload, we create 256 MB file for each thread. A thread
performs a 4KB random write followed by fsync(). We in-
crease the number of threads from one to ten.
Fig. 7(a) illustrates the performances of EXT4, DIU and

DIU+ in the random write workload (NAW-SP) respectively.
The performance of DIU+ and DIU does not introduce any
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mean med 75th 99th 99.9th 99.99th
EXT4 20.6 6.78 8.07 379.3 4,439 4,877
DIU 21.2 6.80 8.10 383 4,494 4,500
DIU+ 17.5 3.58 4.78 437.5 1,162 2,827

Table 2: fsync() latency statistics (msec)

performance degradation while they guarantee the atomicity
in metadata update operation.

Fig. 7(b) shows the performance of SQLite transaction for
EXT4, DIU and DIU+. Delayed Inode Update does not aggra-
vate the IO performance while it guarantees the atomicity
of the metadata update.

5.2 fsync() Performance
We examine the fsync() performance in EXT4, DIU and
DIU+. The objective of this study is to examine the latency
of the fsync(). We create 1,000 files and perform 4 KB se-
quential write on each of the files iteratively. All those files
are the allocating writes. At the end of each iteration, we
perform fsync() on the last written file. Each file is written
total 4 MB. We measure the latency of fsync().

Fig. 8 shows the result in CDF of the fsync() latency. Ta-
ble 2 shows the mean, median, and the worst case latency.
DIU+ reduced the median latency and the worst case latency
of 99.99th by 47% and 43% respectively, compared to EXT4.
When fsync() is called, EXT4 writes the metadata of up to
1,000 files to the journal area at commit, including the inode
related to the fsync(). However, DIU+ inserts only the inode
associated with fsync() into the running transaction and
writes the inode to the journal area. The EXT4 and DIU ex-
hibit almost identical fsync() latency. That is because EXT4
and DIU share the same mechanism in inserting the updated
metadata block to the running transaction and subsequently
they exhibit the same amount of IO in filesystem journaling.
On the other hand, the fsync() latency at 99.99% decreases
by 40% by Delayed Timestamp Journaling from 4.9 sec to
2.8 sec. It reduces the latency of fsync() effectively when
intensive write() and fsync() happens to a large number
of files.

6 RELATEDWORKS
Several papers have sought to improve the fsync() per-
formance [5, 7, 9, 10, 12, 13, 17, 24]. IceFS [13] allocates a
separate journal region called Cube for each container. It
makes the journal commit operations for different container-
ized units more scalable and reduces the worst case latency
of fsync() caused by a compound transaction [4, 15]. The
filesystem journaling for a single cube suffers from the same
worst case latency problemwhich the legacy EXT4 filesystem
suffers from. Similar to IceFS, SpanFS [9] adopts independent
virtualized storage devices, which is called a domainwhich is
a logically separate unit for independent journaling among
containers. By allocating a journal area for each domain,
SpanFS can reduce the tail latency of the fsync() system
call. However, SpanFS also has the fsync() latency problem
caused by compound transactions in the same domain.
Eager syncing [6] suggests a logging mechanism to re-

duce the fsync() latency. For redo logging, Eager syncing
constructs a set of data and metadata, which is called an iset.
When fsync() is called, the iset associated with the system
call is written to the logging area. By composing the iset only
with the relevant data, Eager syncing reduces the latency for
a fsync() system call. This differs from EXT4’s compound
transaction which puts unrelated metadata together; how-
ever, it has the overhead of journaling the data as well as the
metadata related to the iset.

7 CONCLUSION
In this paper, we propose Delayed Inode Update scheme
to address the atomic metadata update failure in EXT4. By
delaying the update to the file size, we guarantee the atom-
icity of the metadata update operation. By delaying the time
stamp journaling, we improve the tail latency of the fsync().
Through experiments, we show that Delayed Inode Update
has negligible performance overhead and that it reduces
the average and the worst case latency up to 15% and 43%
respectively, compared to stock EXT4.
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