
Smart Layers and Dumb Result: IO Characterization of an
Android-Based Smartphone

Kisung Lee and Youjip Won

Dept. of Electronics and Computer Engineering
Hanyang University, Republic of Korea

{kisunglee|yjwon}@hanyang.ac.kr

ABSTRACT
In this paper, we offer an in-depth IO characterization of
the Android-based smartphone. We analyze the IO behav-
iors of a total of 14 Android applications from six differ-
ent categories. We examine the correlations among seven
IO attributes: originating application, file type, IO size,
IO type (read/write), random/sequential, block semantics
(Data/Metadata/Journal), and session type (buffered vs.
synchronous IO). For the purposes of our study, we de-
velop Mobile Storage Analyzer (MOST), a framework for
collecting IO attributes across layers. Let us summarize our
findings briefly. SQLite, which is the most popular tool for
maintaining persistent data in Android, puts too much bur-
den on the storage. For example, a single SQLite operation
(update or insert) results in at least 11 write operations be-
ing sent to the storage. These are for creating short-lived
files, updating database tables, and accessing EXT4 Jour-
nal. From the storage point of view, more than 50% of
writes are for EXT4 Journal updating. Excluding Meta-
data and Journal accesses, 60-80% of the writes are ran-
dom. More than 50% of the writes are synchronous. 4KB
IO accounts for 70% of all writes. In the Android platform,
each SQLite and EXT4 filesystem requires a great amount
of effort to ensure reliability in supporting transactions and
journaling, respectively. When they are combined, the re-
sults are rather dumb. The operations of SQLite and EXT4,
when combined, generate unnecessarily excessive write oper-
ations to the NAND-based storage. This not only degrades
IO performance but also significantly reduces the lifetime
of the underlying NAND flash storage. The results of this
study clearly suggest that SQLite, EXT4, and the underly-
ing NAND-based storage need to be completely overhauled
and vertically integrated so as to properly and effectively
incorporate their respective characteristics.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-time and embedded systems; D.4.3 [OPERATING

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1425-1/12/09 ...$15.00.

SYSTEMS]: File Systems Management—Access methods;
D.4.8 [OPERATING SYSTEMS]: Performance—Mea-
surements

General Terms
Measurement, Performance

Keywords
Android, Smartphone, IO Characterization, NAND flash

1. INTRODUCTION
The smartphone is growing ever more popular. It is ex-

pected that over 800,000,000 smartphones will be sold in
2016 [8]. The smartphone has changed and continues to
change the way people live. It provides a variety of ex-
tremely accessible functionalities, for example, social net-
working, picture management, music, and movies, to list
only a few. Application programs in the smartphone have
made all of these possible. While we are well familiar with
the functions and features that these applications provide,
little is known about how they interact with the underly-
ing Operating System and underlying storage. IO access
characteristics in enterprise servers [22], OLTP servers [17],
Web servers [10], and desktop PCs [26, 13] are relatively well
understood, but not in smartphones.

In this work, we aim to obtain a comprehensive under-
standing of how smartphone applications utilize and stress
underlying storage. To that end, we analyze the interaction
across software layers: applications, smartphone platform
(Android OS), filesystem, and underlying storage device.
For this purpose, we study the behaviors of the 14 represen-
tative smartphone applications. We categorize these into six
groups: Web, legacy phone applications, SNS, Multimedia,
System, and Game; further, we select one or more represen-
tative commodity applications from each of the categories.
In our cross-layer IO characterization, we carefully select
seven IO attributes to investigate the correlations among
the IOs; The attributes are originating application, file type
(.apk, .db), block type (Metadata, Data, and Journal), IO
type (read/write), session type (buffered vs. synchronous),
randomness, and IO size.

The well-defined layered structure of the modern Operat-
ing System makes it impossible to collect these IO attributes
at a single point of observation. For example, at the block
device layer, neither the file type nor the session type of
a given IO operation is available. Thus, in this work, we
develop Mobile Storage Analyzer (MOST), a framework for

23

collecting and analyzing block IO operations of the Android
smartphone. MOST, significantly, enables collection of all
seven attributes at a block device level. It addresses three
major issues: LBA-to-file mapping, LBA-to-process map-
ping, and retrospective mapping. First, MOST obtains file
type information from the LBA. Second, MOST obtains the
process information that originally triggered a given IO. The
Android system delegates all IO requests to the dedicated
kernel process. The kernel daemon, when observed at the
block device level where the trace is captured, looks like
the original process that generated the given IO request.
Therefore, we modify the Linux kernel of Android to keep
the process ID for a given IO. The third issue, which is the
most intricate of the three, is the retrospective LBA-to-file
mapping. The Android platform creates a large number of
ephemeral files due to the SQLite operation. In MOST,
LBA-to-file mapping is performed posthumously, so that
it does not interfere with ongoing system behavior. How-
ever, posthumous analysis, if the owner file of the respective
blocks has been deleted, inevitably yields orphan blocks. We
modify the Linux kernel to capture IO operations to these
short-lived files. MOST can perform LBA-to-file mapping
retrospectively: this way, it can find the owner file even
though that file had been deleted. MOST uses blktrace

[11] and debugfs [24] to collect block level IO traces and
to map LBA to files in the EXT4 filesystem, respectively.
MOST is available at [1]. Let us summarize our findings as
follows.

Smart layers and dumb result: Android OS exports
the SQLite database to allow applications to manage their
own persistent data in a structured manner. Most Android
platforms use the EXT4 filesystem to manage underlying
NAND flash-based storage devices. Both SQLite and EXT4
adopt sophisticated techniques for reliable maintenance of
data. SQLite creates temporary files (logs) for each database
operation to support transactions [5], and EXT4 adopts
journaling [23]. But when they work in combination, the
result is rather dumb. SQLite calls fsync() three times in
every database operation. In EXT4, each fsync() entails
two to three IOs for Journal writes. Combining all of these,
we observe that a single SQLite operation (update/insert)
results in at least 11 block IOs to the storage device! This
excessive IO behavior not only negatively affects IO per-
formance, but also significantly shortens the endurance of
NAND storage devices, which is of the utmost concern in
adopting NAND flash for computing devices.

Most write operations are 4KB: In all applications,
more than 70% of write operations are 4KB. They consist
mostly of database updates from SQLite, file creation and
deletion by SQLite, and Journal writes. NAND storage
for mobile devices (e.g. eMMC [9] and UFS [6]), therefore,
should focus on efficient handling of 4KB random write op-
erations.

Buffered IO is rare: We observe that in smartphone
applications, for example Contact, SMS, Browser and SNS
applications, buffered IO represents less than 30% of write.
This is an IO characteristic unique to the smartphone. This
phenomenon, in fact, has not been observed in the desk-
top or server environment, because smartphone applications
use SQLite to manage persistent data, exploiting fsync() to
preserve the atomicity of database operations. This phe-
nomenon dictates that the filesystem and NAND flash stor-
age for mobile devices should devote greater efforts to opti-

Display
LINUX KERNEL

Flash WiFi FS ...

FRAMEWORK
Telephony ...Window Package

APPLICATIONS
Camera

...Contacts Browser

LIBRARIES

 SQLite libc ...
RUNTIME

Core lib Dalvik VM

(Internal NAND, eMMC, external SD)
Block Device

Partition Description
boot zImage, ramdisk
recovery recovery
cache

data

firm update
system

sdcard

Android OS
applications and data
external data

Filesystem
rootfs
YAFF2
EXT4
FAT32

Figure 1: Android Architecture and Storage Parti-
tion

Table 1: Storage Partition of typical Android smart-
phones: Nexus One, Nexus S, and Galaxy S2.

Internal Flash eMMC External SD

N
ex

u
s
O
n
e boot rootfs

None

sdcard FAT32
recovery rootfs - -
cache yaffs2 - -
system yaffs2 - -
data yaffs2 - -

N
ex

u
sS boot rootfs system EXT4

Nonerecovery rootfs data EXT4
cache yaffs2 sdcard FAT32

G
a
la
x
y
S
2

None

boot rootfs sdcard FAT32
recovery rootfs - -
cache EXT4 - -
system EXT4 - -
data EXT4 - -
sdcard FAT32 - -

mizing themselves for delivery of more synchronous IO per-
formance.

Each Storage Partition has unique access charac-
teristics: Android OS devotes great care to harboring files
with similar characteristics at the same partition. Because
IO requests to individual partitions exhibit unique IO char-
acteristics, this approach makes partition management eas-
ier and simpler. However, since the physical and logical ad-
dresses of a block do not coincide in NAND flash, the blocks
in each partition are not likely to be clustered together in the
storage device. Therefore, efforts to maintain files with sim-
ilar characteristics in the same partition should be exploited
in the NAND flash.

The results of this study provide insights into and direc-
tions for designing future smartphone filesystems and stor-
age subsystems.

The remainder of this paper is organized as follows. In
Section 2, we briefly describe the architecture of Android
OS along with the storage configurations of Android smart-
phones. Section 3 discusses the measurement environment,
and Section 4 introduces Mobile Storage Analyzer (MOST),
a framework for tracing IO operations in Android smart-
phones. Sections 5 and 6 provide the results of an analysis
of the IO characteristics of applications and daily usage.
Section 7 discusses the future of smartphone filesystem de-
sign. Section 8 acknowledges prior efforts, and Section 9
concludes the paper.

24

Table 2: Applications and their use. [] denotes short names in figures. * denotes pre-installed in Nexus S.
Others are installed from the market. All applications are executed for one minute and repeated ten times.

Category Application Scenarios

Web Dolphin Browser [Br]
1. Execute browser and open “www.google.com.” 2. Web search by any keyword.
3. View results and repeat web searching two more times.

Basic
Contact* [Con]

1. Execute Contact and scroll lists. 2. Search a person by name. 3. Delete the item.
4. Create a new item. [Precondition: Contact is filled with 200 addresses.]

SMS* [Sms] 1. Execute SMS. 2. Write a message. 3. Send a message. 4. Receive a message.

SNS
Twitter [Twi] 1. Execute Twitter and view new tweets. 2. Write a status.
Facebook [Fb] 1. Execute Facebook and view new messages. 2. Write a status.
Kakao-Talk [Kt] 1. Execute Kakao-Talk and choose a counterpart. 2. Start to exchange messages.

Multimedia

Camera* [C] 1. Execute Camera and take a picture. 2. Take four more pictures.
Camcorder* [Cc] 1. Execute Camcorder and start to record. 2. After 50 seconds, stop recording.

Media player* [Me] 1. Execute Media player and select a movie file. 2. Play the movie and change volume.
Music player* [Mu] 1. Execute Music player and select a music file. 2. Play the music and change volume.

Gallery* [Gal]
1. Execute Gallery and scroll thumbnails. 2. Select a picture and view.
3. Repeat this five times. [Precondition: Gallery is filled with 500 pictures.]

Youtube [You] 1. Execute Youtube and search a video by any keyword. 2. View the video.

System Install* [Ins]
1. Execute Android market and select one application. 2. Install the application.
(We select 3-5MB applications that can be completely installed in 1 minute.)

Game Angry birds [Gam] 1. Execute Angry birds. 2. Select a level and play the game.

2. BACKGROUND

2.1 Brief note on Android OS
Android [7] is an open-source software stack for mobile

devices. It consists of the Operating System (Linux kernel),
Java Virtual Machine (Dalvik) and various libraries. Figure
1 shows the Android architecture. Android applications are
written in Java and packaged to the Android application
package file (.apk). Android includes a set of libraries used
by various components: SQLite, libc, Media libraries, and
others. The Android application runs on its own process,
with its own instance of the Dalvik virtual machine. The
Dalvik VM executes files in the Dalvik Executable (.dex)
format, which is optimized for a minimal memory footprint.

2.2 Storage Configuration for Smartphones
Android manages several filesystem partitions: /boot,

/recovery, /cache, /system, and /data. Table 1 summa-
rizes the storage configuration and partition information for
three smartphones recently deployed to the market: Nexus
One [2] (Jan. 2010), Nexus S [3] (Dec. 2010), and Galaxy
S2 [4] (May 2011). The storage configuration of the smart-
phone evolves with time. Nexus One, the first-generation
Android reference phone, has a 512MB internal raw NAND
flash and an external SD slot. It uses the YAFFS2 filesys-
tem to manage the storage partitions (/cache, /system, and
/data) in the internal NAND flash. Beginning from Android
2.3 (Nexus S), EXT4 filesystem is used to manage /system,
and /data on an eMMC block device (16GB). Galaxy S2,
the most recent among the three phones, does not have any
internal flash storage. It uses eMMC to harbor all storage
partitions. The EXT4 filesystem is used to manage stor-
age partitions on eMMC; YAFFS2 filesystem is no longer
used. In this paper, we focus on the /system, /data, and
/sdcard partitions because Android applications only access
these partitions. The rest of the partitions are only used
for firmware updates (/cache) and boot image maintenance
(/boot, /recovery).

3. MEASUREMENT ENVIRONMENT

3.1 Device: Nexus S
We select an Android smartphone, Nexus S [3] which

runs Android OS 2.3 (Gingerbread) based on Linux Kernel
2.6.35.9. This phone is a reference model that represents
the standard architecture of Android OS. As most Android-
based smartphones have a similar storage configuration, the
results of this study should be sufficiently representative.
Table 1 shows the partition information of Nexus S. The
/system partition (512MB) is mounted with READ-ONLY.
It contains Android-executable files and pre-installed appli-
cations. The /data partition (1GB) is mounted with READ-
WRITE and contains the user’s data. These data can in-
clude contacts, messages, settings, and applications. Both
/system and /data are formatted with EXT4. The /sdcard
partition (13.3GB) is formatted with FAT32, and can be
used to store external data such as media files, documents,
and other types.

3.2 Applications
Smartphone is a literally multipurpose device. It is used,

additionally to its phone functionality, as a Camera, MP3
player, Web browser, and SNS. For any comprehensive study,
selection of a sufficiently representative set of applications
is mandatory. We define six application categories (Basic,
Web, SNS, Multimedia, System, and Game) and select 14
applications from among them.

Basic: Contact is an address book that stores people’s
names, phone numbers, and other identifying information.
Contact operations such as search are frequently shared by
many basic applications, for example SMS, VOICE CALL,
and others. SMS is a means of communicating with oth-
ers in traditional mobile phones, but its usage is gradually
decreasing with the popularity of SNS applications.

Web: Web browser is an extremely popular application
on the Internet, and is included in the smartphone as well.
We select the Dolphin browser for our test, which is very
popular in the Android OS.

25

SNS: Social Networking Service (SNS) is another very
popular application for the smartphone. We select Face-
book, Twitter, and Kakao-Talk, which latter is one of the
most rapidly growing IP-based multi-party chatting services.

Multimedia: We select six applications in this category:
Camera, Camcorder, Media player, Music player, Gallery,
and Youtube. These applications are enabling the smart-
phone to replace traditional handheld multimedia devices
such as portable media players (PMP), MP3 players, and
digital cameras. Youtube provides an interactive means
of sharing videos; users can easily upload and play videos
through this website. This represents a very different mode
of access from that of traditional Media players, which store
and play video files locally in the device.

System: The installing application is another new fea-
ture of the smartphone. It enables the user to install new
applications in the Application market, and greatly expands
the usability of smartphones.

Game: Advanced computing ability makes the smart-
phone a powerful video game console. We select Angry birds,
which is a very popular puzzle game in Android and also in
Apple’s iOS.

3.3 Collecting Data
Table 2 summarizes the application scenarios. All of the

applications were executed for one minute and repeated ten
times. To verify the generality of the application-specific
IO traces, we also collected IO traces from daily usage. We
installed the Mobile Storage Analyzer to the smartphone
being tested, and collected IO traces for seven different 24
hour periods from Dec. 1 to Dec. 14, 2011. The pur-
pose was to examine the aggregate storage access pattern
of the smartphone. We used the smartphone in the nor-
mal ways, without any specific scenarios. Web surfing, ex-
changing messages, listening to music, and playing games are
among the typical functionalities tested. As the smartphone
is a personal and private device that users are reluctant to
share with others, installing a modified Android kernel on
the smartphones tested, and collecting traces in the regular
manner, is neither an easy task nor a major part of this work.
Collecting IO traces from just one user served our purpose
adequately well in verifying the results of our analysis.

4. MOST: MOBILE STORAGE ANALYZER
For the purposes of the present study, we develop Mobile

Storage Analyzer (MOST). It consists of (i) a modified Linux
kernel that maintains processes and file-related information
for IOs; (ii) a block analyzer that enables identification of
a file for a given block, and (iii) blktrace utility. Figure 2
provides a schematic illustration of MOST. We make MOST
publicly available at [1].

Due to the layered structure of a modern IO subsystem,
it is not possible to identify session-related information at
the block device level. When an IO request is passed across
layers, for example, from the filesystem to the block device
layer, the session-related information (i.e., file id and process
id), are lost. In order to be able to analyze the relationships
among blocks, respective files, and processes, the informa-
tion needs to be collected from the different layers. MOST
collects the IO trace at the block device driver level and
deduces the file information and the process information
for each respective block. MOST addresses three reverse-

LBA-to-Inode
Converter

EXT4 Analyzer

Inode-to-File
Converter

Metadata
Detector

Temporary block
table

Process-block
table

Block Tracer

LBA

LBA-to-Fnode
Converter

FAT32 Analyzer

Fnode-to-File
Converter

Metadata
Detector

Block Parcer

Figure 2: Mobile Storage Analyzer

Table 3: Output of Mobile Storage Analyzer
1 IO completion time
2 Flags for read and write
3 Sector address and IO size
4 Process id and process name
5 Block type: Metadata, Journal, and Data block
6 File name in case of the Data block

mapping issues: LBA-to-file mapping, LBA-to-process map-
ping, and retrospective LBA mapping.

For LBA-to-file mapping, MOST can reverse-map the disk
block to the respective file where it belongs. It accepts a
logical block number as an input, and generates a file name.
MOST uses debugfs [24] to reverse-map the block in the
EXT4 filesystem, and an in-house module for the FAT32
filesystem.

MOST identifies the original process that issued a given
IO. In Android, mmcqd daemon manages the mmc card de-
vice driver and is responsible for issuing all block IOs. With-
out any modification, blktrace reports that all block IOs are
initiated by the mmcqd daemon, which is not the informa-
tion we are interested in. We create the process-block table
in the Android Kernel. The entry of the table is <LBA,
process id>. When the IO scheduler inserts the IO request
into the queue, MOST inserts the <LBA, process id> in-
formation into process-block table. MOST references the
process-block table later in order to retrieve the process id
with a given LBA.

MOST allows retrospective LBA mapping. In Android,
we find that many files are short-lived and are created and
rapidly deleted by SQLite. Proper understanding how these
files are utilized is very significant. Although they are short-
lived, these files are all fsync()ed to NAND storage, which
greatly affects system performance. We need the file infor-
mation for a given LBA when the trace is recorded, not when
posthumously analyzed. When MOST initiates the analy-
sis procedure for a given LBA, the temporary file where
the block belonged might have been deleted and therefore
cannot be found. To address this issue, MOST creates a
file-block table in the Android kernel. A file-block table is
an array of <LBA, file>. When the IO scheduler plugs in
the LBA to the scheduler queue, MOST inserts <LBA, file>
entry to file-block table. Later, MOST references this table
to obtain the file information for a given LBA. To reduce the
table size, MOST inserts an <LBA, file> entry only for tem-
porary files, that is, when the file extension is .db-journal,
.db-mjxxxx, .bak, or tmp. When blktrace creates a log for

26

 0

 20

 40

 60

 80

 100

R
Br

W R
Con

W R
Sms

W R
Twi

W R
Kt

W R
Fb

W R
C

W R
Cc

W R
Me

W R
Mus

W R
Gal

W R
You

W R
Ins

W R
Gam

W

14
10

13
83

0

22
71

84
4

18
62

16
68

47
66

55
68

21
71

33
10

55
93

37
56

71
52

29
41

29
06

16
29

11
56

5
16

75

19
13

74
1

10
16

4
19

63

26
72

74
3

15
57

9
44

63

20
16

7
36

76

%
 o

f t
ot

al

/system /data /sdcard

Figure 3: IO distribution on each partition. The
number at the end of each bar indicates the number
of IO for R (Read) and W (Write), respectively.

the trace file, it consults the temporary block table to deter-
mine if the given block belongs to the temporary files that
triggered the respective IO.

One of the important objectives of this study is to find IO
characteristics based on the block type. MOST categorize
logical blocks into three types: Metadata, Journal, and Data.
In the EXT4 filesystem, Metadata blocks are blocks harbor-
ing a superblock, group descriptor, data block bitmap, inode
bitmap, and inode table. In the FAT32 filesystem, Metadata
blocks correspond to blocks harboring a boot record and File
Allocation Table (FAT). Journal is a journal block of the
EXT4 filesystem. Data blocks are those harboring file data
and directory entries. Table 3 illustrates the entry format
of MOST output.

5. ANALYSIS OF APPLICATION USAGE

5.1 Accesses on Filesystem Partition
We first examine how the individual applications access

each of the partitions. Figure 3 illustrates the results. The
labels on the X-axis denote the short names of the 14 ap-
plications. The label RW denotes Read and Write. The
number on the top of each bar denotes the number of the
respective operations. We find that multimedia applica-
tions and the rest exhibit very different partition usage pat-
terns. In non-multimedia applications, accesses on the /data
partition are mostly write, and /sdcard is rarely accessed.
Multimedia applications, for example Camera, Camcorder,
Gallery, andMedia player, access the /sdcard partition much
more frequently. These access characteristics reflect the An-
droid OS partition management strategy, which aims to ef-
fectively exploiting the very limited storage capacity.

The /sdcard partition is used mostly by multimedia appli-
cations that read and write very large files such as MP3, pic-
tures and movies. The underlying filesystem should be op-
timized to effectively accommodate this workload. FAT32,
which maintains file blocks as a linked list, leaves much to
be desired in its handling of large files.

5.2 Access Characteristics of Block Type
We define the three block types in NAND storage devices:

Metadata, Journal, and Data. We examine how the individ-
ual applications utilize each type. This is critical informa-
tion for both the filesystem and the storage controller. It
can be used in devising a hot/cold identification algorithm
for the NAND storage controller. The filesystem also can

 0

 20

 40

 60

 80

 100

R
Br

W R
Con

W R
Sms

W R
Twi

W R
Kt

W R
Fb

W R
C

W R
Cc

W R
Me

W R
Mus

W R
Gal

W R
You

W R
Ins

W R
Gam

W

14
10

13
83

0

22
71

84
4

18
62

16
68

47
66

55
68

21
71

33
10

55
93

37
56

71
52

29
41

29
06

16
29

11
56

5
16

75

19
13

74
1

10
16

4
19

63

26
72

74
3

15
57

9
44

63

20
16

7
36

76

%
 o

f t
ot

al

Metadata Journal Data

Figure 4: IO distribution on block type. The num-
ber at the end of each bar indicates the number of
IO for R (Read) and W (Write), respectively.

 0

 20

 40

 60

 80

 100

R
Br

W R
Con

W R
Sms

W R
Twi

W R
Kt

W R
Fb

W R
C

W R
Cc

W R
Me

W R
Mus

W R
Gal

W R
You

W R
Ins

W R
Gam

W

13
81

63
53

22
37

37
3

18
32

65
6

46
50

24
87

20
46

14
51

53
99

14
09

38
30

13
86

16
28

99
6

10
96

8
12

11

17
85

23
9

87
52

13
55

25
63

25
3

14
88

7
19

97

19
81

2
13

59

%
 o

f t
ot

al

Executable
SQLite

SQLite-temp
Multimedia

Resource
Others

Figure 5: IO distribution of each file type. The num-
ber at the end of each bar indicates the number of
Data block IO for R (Read) and W (Write), respec-
tively.

use this to design an efficient layout and caching strategy.
Figure 4 illustrates the results.

In legacy text-based applications such as Browser, Con-
tact, and SMS, most read operations are for Data blocks.
Read operations for Metadata constitute less than 5% of
the total. Interestingly, in Camera and Camcorder, 50% of
read operations are for Metadata. We find that these appli-
cations aggressively allocate Data blocks to accommodate
incoming data (jpeg images or video recordings). This ag-
gressive allocation behavior results in heavy accesses of the
File Allocation Table of FAT32 for location or allocation of
such Data blocks.

One notable point in Figure 4 is the IO operation on EXT4
Journal. In most applications, Journal block accesses rep-
resent 40-50% of write operations. Given that write is ap-
proximately ten times slower than read in NAND flash, and
given also the limited cell duration of NAND flash, such ex-
cessive journaling activity not only can seriously aggravate
system performance but also can seriously curtail NAND de-
vice lifetimes. We herein dedicate a separate section (section
5.4) to an in-depth discussion of EXT4 journaling activity
in Android OS.

5.3 Access Characteristics of File Type
We examine the correlation between each file type and the

ways in which individual applications utilize them. We cate-
gorize the files into six groups: executable, SQLite (database
tables), SQLite-temp (ephemeral database files), multime-
dia (image, video, and music), resources (application prop-
erties), and others. The file type is determined based on
the file extension: executable files (.apk, .dex, .odex, .so),
SQLite (.db), SQLite-temp (.db-journal, .db-mjxxxx), mul-

27

timedia (.3gp, .jpg, .mp3, etc), resources (.dat, .xml, .cache,
etc), and others (including directory entry).

Figure 5 illustrates the results. In most cases, executable
files are accessed in READ-ONLY mode. Installation is an
exception to this rule. Among all of the 14 applications
tested, more than 60% of read operations are for access-
ing executable files. A number of studies have proposed
prefetching of executable files to reduce application launch
latency [15]. These techniques manifest themselves further
in the smartphone environment, since most read operations
are on executable files.

Excepting some multimedia applications, the dominant
fractions of the write operations relate to SQLite database
tables. Android OS provides several options for manag-
ing persistent data, but SQLite is the most popular stor-
age method because application developers can easily make
structured and private databases for individual applications.
We find that even multimedia applications use SQLite to
store information. Media player and Music player use Au-
dioService to adjust the audio volume level with respect to
the user’s volume control, and AudioService records the vol-
ume level to setting.db. In Camera and Camcorder, ex-
ternal.db is used to manage media files.

We also find that there are many ephemeral files, most of
which, surprisingly, are created by SQLite. SQLite, in order
to implement atomic commit and rollback capabilities, does
make use of many temporary files in the course of database
processing. These temporary files have .db-journal and
.db-mjxxxx extensions. Severe performance degradation oc-
curs due to fsync() calls for each creation and update in these
files.

Our analysis shows that each file type exhibits very unique
access characteristics. In most applications, 80% of write
operations are on SQLite database, SQLite-temp, and re-
source files. Seventy percent (70%) of read operations are
for executable files. Significantly, the strong correlation be-
tween the file type and its access characteristics can be ef-
fectively exploited by the NAND storage controller. For
example, FTL can exploit file type information in making
hot/cold decisions on a given logical block. This makes the
hot/cold identification algorithm more accurate, and, sub-
sequently, the performance of garbage collection for page-
mapping FTL, and of log block merge operations for hybrid
FTL, can improve significantly.

5.4 Analysis of Excessive Journaling
In section 5.2, we observe that the number of Journal

writes accounts for 40-50% of all write operations. Given
that EXT4 is mounted with Metadata only journaling (Or-
dered mode), the number of Journal writes should constitute
a much smaller fraction of the entire write operation, which
phenomenon we regard as not only excessive but also anoma-
lous. This phenomenon is observed in all applications that
use SQLite. We perform an in-depth analysis of this issue
using the Facebook application to find a root cause. Specif-
ically, we examine the IO patterns generated when SQLite
performs write operations on a Facebook database table:
fb.db. Figure 6 illustrates the LBA write accesses over a 60
msec period. The accesses are clustered in two distinct LBA
regions: 100,000 and 300,000, the former being the location
of the EXT4 Journal and latter, the locations of the SQLite
database tables and the temporary files, respectively. In the
Figure, there are five dashed rectangles, each denoting the

1

2

3

0 10 20 30 40 50 60

LB
A

 (x
10

5)

Time (msec)

EXT4 Journal

fb.dbfb.db-journal

fsync()

open(fb.db-journal) unlink(fb.db-journal)

 write()
fsync()

write()
fsync()

write()

Figure 6: Block IO accesses of Facebook database
table (fb.db) for 60 msec.

IOs generated by a single database operation (insert or up-
date). The bottom graph of the Figure is a magnified image
of the IOs involved in this single operation.

Let us explain the details of the operations in one of the
single dashed rectangles in Figure 6. The first IO (in the
3x105 LBA region) is for creating and updating a fb.db-

journal file. The second IO (in the 3x105 LBA region) is a
commit log write to this journal file. The third IO (in the
3x105 LBA region) consists of actually two IOs, which are
visible in the magnified image. In each of these steps, SQLite
forces the results to storage via fsync(). The IO overhead
compounds according to the EXT4 filesystem. The IOs at
the bottom are for EXT4 Journal writes. In EXT4, a fsync()
call accompanies two or three Journal writes, each of which
accounts for a writing journal descriptor and a metadata.
There are a total of 7 IOs in the EXT4 Journal. In summary,
a single SQLite operation triggers at least 11 writes to the
storage device when used with the EXT4 filesystem. In this
example, the database update to fb.db consists of two of
the 11 IOs. Eighty percent (80%) of the write operations
are for purely managerial purposes!

Here, we suggest an improvement. fsync() forces both the
Metadata and Data of a file to storage. However, if write
does not cause any removal from or addition to the Data
block, storing Metadata might be unnecessary. In this case,
fdatasync(), instead of fsync(), is a good alternative for mit-
igation of the burden of excessive journaling. fdatasync()
forces only Data block. In the magnified bottom graph of
Figure 6, the second write operation to fb.db-journal up-
dates the header portion of a file of 12Bytes. It does not
cause any removal from or addition to the Data block. In
this case, fdatasync() can be a better choice, as it can sig-
nificantly improve the excessive journaling phenomenon.

5.5 IO Size Distribution
We examine the IO size distribution. We group the IOs

into five categories according to size: ≤ 4KB, ≤ 16KB, ≤
64KB, ≤ 256KB, and > 256KB. We perform analyses on the
IO and Byte counts, respectively.

Let us first examine the IO count. In all applications, the
4KB IO is dominant (top graph in Figure 7), accounting

28

 0

 20

 40

 60

 80

 100

R
Br

W R
Con

W R
Sms

W R
Twi

W R
Kt

W R
Fb

W R
C

W R
Cc

W R
Me

W R
Mus

W R
Gal

W R
You

W R
Ins

W R
Gam

W

14
10

13
83

0

22
71

84
4

18
62

16
68

47
66

55
68

21
71

33
10

55
93

37
56

71
52

29
41

29
06

16
29

11
56

5
16

75

19
13

74
1

10
16

4
19

63

26
72

74
3

15
57

9
44

63

20
16

7
36

76

%
 o

f t
ot

al

<=4KB <=16KB <=64KB <=256KB >256KB

 0

 20

 40

 60

 80

 100

R
Br

W R
Con

W R
Sms

W R
Twi

W R
Kt

W R
Fb

W R
C

W R
Cc

W R
Me

W R
Mus

W R
Gal

W R
You

W R
Ins

W R
Gam

W

4
0

M
B

1
2

3
M

B

5
8

M
B

6
M

B

4
1

M
B

1
1

M
B

1
3

4
M

B
5

2
M

B

4
0

M
B

2
4

M
B

1
3

0
M

B
3

0
M

B

1
5

3
M

B
5

2
M

B

7
2

M
B

1
0

3
M

B

2
9

4
M

B
1

1
M

B

6
1

M
B

5
M

B

1
9

8
M

B
1

2
M

B

6
8

M
B

5
M

B

4
5

3
M

B
1

0
0

M
B

5
1

5
M

B
3

2
M

B

%
 o

f
to

ta
l

Figure 7: IO size distribution. At the top is the
distribution by IO count, and at the bottom, the
distribution by Byte count.

for 40% and at least 65% of read and write operations, re-
spectively. Even in Camera and Camcorder, which handle
large data files such as video clips and pictures, 4KB consti-
tutes more than 60% of writes. We find two reasons for this
phenomenon. The first is excessive journaling, explained
above. The second, which is very interesting and impor-
tant, is the updates on the File Allocation Table (FAT) of
the /sdcard partition. While multimedia applications nor-
mally deal with large IO (e.g. copying images, mp3 files,
video files), the FAT32 filesystem updates its FAT object
very frequently when a new block is allocated. Therefore,
via a reduction of the number of FAT synchronization op-
erations (e.g. delayed write or periodic synchronization),
we can greatly prolong the cell lifetime. This approach is
even more useful in dealing with the sdcard, since sdcard
normally uses an inexpensive MLC (or TLC, Tri-Level Cell)
flash device, due to its strict cost requirements. These de-
vices have a very limited Erase/Write cycle. The success
of the storage and filesystem of Android-based smartphones
critically relies on efficient handling of small random writes.

The bottom graph in Figure 7 shows the Byte count statis-
tics. For read, whereas 4KB IO constitutes the dominant
fraction of all IO requests (40%), the resultant IO volume
is not significant (less than 5%). For write, 4KB IOs ac-
count for 35% and 17% of text-based applications (Browser,
SMS, and SNS) and multimedia applications (Camera, Me-
dia player, Gallery), respectively. Contrary to our expecta-
tion, 4-64KB IOs constitute a significant fraction of entire
IO volumes. The reason for this is the EXT4 Journal IO size
(Figure 8). Half of Journal writes are accessed in 4KB units,
but the rest are accessed in much larger sizes (8-50KB). In
Camera and Camcorder, IOs larger than 256KB constitute
60% and 80% of the entire writes, respectively. These ap-
plications create new video (or image) files; the maximum
write IO is as large as 512KB.

We examine the IO size distribution as subject to indi-
vidual file types and EXT4 Journal. Figure 8 illustrates
the cumulative IO size distribution, which we determine by

0

20

40

60

80

100

0 20 40 60 80 100 120

C
D

F
(%

)

SQLite
Multimedia

READ

Executable

0

20

40

60

80

100

0 10 20 30 40 50

C
D

F
(%

)

IO SIZE (KB)

... 100 200 300 400 500

SQLite
Multimedia

Journal
SQLite-temp

WRITE Executable

Figure 8: Cumulative IO size distribution

aggregating IO traces from the 14 Android applications. Re-
sources and other files show a pattern similar to SQLite, and
so are not shown in the Figure. In read, the 4KB IOs are
dominant in SQLite. There are no read accesses to SQLite
temporary files, because those files are accessed only to re-
cover from a crash. Executable and multimedia files are
accessed in much larger units. One interesting phenomenon
is that among all of the file types, the maximum read IO
is 128KB; the eMMC interface has a maximum IO size of
512KB, which is four times larger than that of the SAT inter-
face. Few applications exploit this larger IO size in reading
files.

In write, half of Journal writes are accessed in 4KB units,
but the rest are accessed in much larger sizes (8-50KB).
SQLite and its temporary files are accessed in 4KB units.
The actual updated data in SQLite and its temporary files
are much smaller than 4KB (not shown in the graph). Most
SQLite files request data updates of 1KB size. Half of the
IOs from SQLite temporary files are for updating about 3KB
of data, but the rest are only for updating 12Bytes commit
logs. This throws light on an important design guideline for
future mobile storage design: the FTL mapping unit should
be smaller than a page. This mapping technique generally
is called sub-page mapping.

5.6 Access Characteristics: Spatial Aspect
We examine IO randomness for individual smartphone ap-

plications. Random writes are considered to be very harmful
to NAND flash storage in the performance and reliability as-
pects, and thus in-depth investigation is required. The top
half of Figure 9 illustrates the sequential and random IO
volume of read operations for all types of blocks (A) and for
only Data blocks (D). For all of the applications, reads are
mostly sequential, which is to say that 80% of read opera-
tions are sequential. We find that most read operations are
for executable files or multimedia files, and that the read
operations for these files are mostly fully loaded (128KB).

The bottom half of Figure 9 shows the spatial charac-
teristics of write operations. In the 14 applications except-
ing Multimedia applications (Camera, Camcorder, Media
player, and Gallery), most of the Data block writes (60-80%)
are random. These accesses are for SQLite database tables

29

 0

 20

 40

 60

 80

 100

A
Br

D A
Con

D A
Sms

D A
Twi

D A
Kt

D A
Fb

D A
C

D A
Cc

D A
Me

D A
Mus

D A
Gal

D A
You

D A
Ins

D A
Gam

D

4
0

M
B

4
0

M
B

5
8

M
B

5
7

M
B

4
1

M
B

4
0

M
B

1
3

4
M

B
1

3
1

M
B

4
0

M
B

3
9

M
B

1
3

0
M

B
1

2
5

M
B

1
5

3
M

B
7

2
M

B

7
2

M
B

3
2

M
B

2
9

3
M

B
2

9
0

M
B

6
1

M
B

5
9

M
B

2
0

0
M

B
1

9
4

M
B

6
8

M
B

6
4

M
B

4
5

3
M

B
4

2
9

M
B

5
1

4
M

B
5

0
3

M
B

%
 o

f
to

ta
l

Sequential Random

 0

 20

 40

 60

 80

 100

A
Br

D A
Con

D A
Sms

D A
Twi

D A
Kt

D A
Fb

D A
C

D A
Cc

D A
Me

D A
Mus

D A
Gal

D A
You

D A
Ins

D A
Gam

D

1
2

3
M

B
4

1
M

B

6
M

B
2

M
B

1
2

M
B

2
M

B

5
2

M
B

2
1

M
B

2
5

M
B

7
M

B

3
0

M
B

8
M

B

5
3

M
B

4
0

M
B

1
0

5
M

B
1

0
2

M
B

1
4

M
B

1
1

M
B

5
M

B
1

M
B

1
6

M
B

1
3

M
B

5
M

B
1

M
B

1
0

0
M

B
7

5
M

B

3
2

M
B

7
M

B

%
 o

f
to

ta
l

Figure 9: Randomness of IO traffic: Read (top) and
Write (bottom). A denotes all blocks; D denotes
Data blocks.

and their temporary files. If we consider all of the block
types, sequential write constitutes rather a significant por-
tion. This is because more than half of all Journal writes in
the EXT4 filesystem fall in the 10-50KB range. This analy-
sis provides us with important guidelines for performing IO
characterization studies. If the spatial pattern of write is
examined without consideration of the block type, the dom-
inant fraction of writes will be sequential, which result can
be misleading. When we focus our analysis on Data block
accesses, writes are mostly (more than 60% in terms of vol-
ume) random. These Data block IOs are not only random,
but also are frequently accessed and forced to storage.

5.7 Buffered write vs. Synchronous write
Buffered IO and synchronous IO stress the system in dif-

ferent ways, and thus their optimization should be approached
from different perspectives. We examine the fraction of
writes that are buffered and synchronous IO from appli-
cations, respectively. Journal and Metadata IOs are not
included in this case study. We find that a buffered IO is
rare. Most smartphone applications are found to update
data in a synchronous manner, due to the fact that they use
SQLite to manage information. However, multimedia ap-
plications such as Media player, Music player, and Gallery
exploit buffered IO to download contents.

Synchronous write is no longer a supplemental option for
updating data. In Android-based smartphones, synchronous
write constitutes a significant portion of all write IO, and
thus efficient handling of it is critical. IO subsystems of
the modern Operating System adopt interrupt-driven IO to
effectively share CPU cycles among multiple threads and,
thereby, cope with the large IO latency (longer than a few
msec) of a storage device. Polling-based IO is being revis-
ited for IO subsystems for high-end SSD and storage class
memory [25]. We argue that polling-based IO subsystems
should be carefully studied as an alternative IO subsystem
for future smartphone storage.

 0

 20

 40

 60

 80

 100

Br Con Sms Twi Kt Fb C Cc Me Mus Gal You Ins Gam

70
20

53
1

76
1

29
30

17
25

18
28

17
13

14
25

14
68

36
3

18
57

44
4

25
13

18
52

%
 o

f t
ot

al

Synchronous Buffered

Figure 10: Buffered write IO distribution. The num-
ber at the end of each bar indicates the number of
Data block IOs.

6. ANALYSIS OF NORMAL DAILY USAGE
It is important to verify that the IO characteristics we

have observed in the individual applications properly in-
corporate the IO characteristics of the normal daily use of
Android-based devices. Accordingly, we installed a Mobile
Storage Analyzer in a volunteer’s smartphone (Nexus S) and
collected IO traces for seven periods of 24 hours each. The
objective of this user study is not to perform any extensive
user survey on smartphone usage; rather, the purpose is to
verify that the IO characteristics we have observed from in-
dividual applications are not groundless but have practical
implications.

Figure 11 plots the results. We examine both IO count
and Byte count characteristics. In summary, the IO charac-
teristics observed from daily usage are very similar (if not
identical) to what we observed in an IO characteristics study
for individual applications.

• Partition Accesses: From the IO count point of view,
90% of the writes are for /data and 60% of the reads are
for /system. The IOs for each partition exhibits very dif-
ferent characteristics. This phenomenon suggests that the
FTL of NAND-based storage should be able to effectively
handle IOs for both write-dominant partitions and read-
dominant partitions, which requires precise hot/cold detec-
tion and support for multiple-address-mapping granularity.

• Block types: The EXT4 Journal IO accounts for more
than 60% of all writes. In contrast, Metadata write consti-
tutes only 10% of all writes. The overhead of Journal IOs,
significantly, are very expensive.

• File types: SQLite and its temporary files constitute
70% of write IOs. Most applications maintain their persis-
tent data using SQLite. Accesses to the executable files are
mostly read.

• IO SIZE: 4KB IO is dominant in both read and write.
It accounts for 40% and 50% of the IO counts for read and
write, respectively. The 4KB IO does not constitute a sig-
nificant fraction of IO volume. However, overall system per-
formance will critically rely on the performance of 4KB IO,
since 4KB is mostly synchronous IO, which blocks the ap-
plication until it completes.

• Randomness: Sequential IO constitutes 80% of all
writes. This is because IOs from multimedia files and half
of EXT4 Journal are of very large IO size.

• Buffered write: Synchronous IOs from applications
account for 70% of all writes. However, buffered IOs are
much larger, because these usually are IO accesses of large
multimedia files.

30

 0

 20

 40

 60

 80

 100

R W RB WB

19
74

74

14
23

36

54
74

M
B

18
17

M
B

P1
P2
P3

 0

 20

 40

 60

 80

 100

R W RB WB
19

74
74

14
23

36

54
74

M
B

18
17

M
B

METADATA
JOURNALING
DATA

Partition Block types File types IO Size Randomness Buffered

 0

 20

 40

 60

 80

 100

R W RB WB

18
75

70

38
13

7

53
04

M
B

57
4M

B

Executable
SQLite
SQLite-temp
Multimedia
Resource
Others

 0

 20

 40

 60

 80

 100

W WB

37
72

9

54
6M

B

Synchronous
Buffered

 0

 20

 40

 60

 80

 100

RB WB

18
37

M
B

Sequential
Random

 0

 20

 40

 60

 80

 100

R W RB WB

19
74

74

14
23

36

54
74

M
B

18
17

M
B

<=4KB
<=16KB
<=64KB
<=256KB
>256KB

%
 o

f t
ot

al

Figure 11: Daily block IO characteristics. The numbers at the R and W bars indicate the number of IOs,
and the numbers at the RB and WB bars indicate the total bytes accessed for R (Read) and W (Write),
respectively.

7. DISCUSSION
We summarize the technical issues relevant to the current

IO subsystems and possible directions for improvement of
future Android-platform filesystem and storage design.

Smart layers and Dumb result: SQLite adopts jour-
naling to preserve the integrity of information. It creates
a temporary journal file for each transaction. The EXT4
filesystem adopts journaling to maintain filesystem consis-
tency and to achieve fast crash recovery. Each of these
techniques is sophisticated and mature. However, as we
observed, when these two are combined, they interact in
unexpected ways, generating excessive EXT4 Journal block
accesses. SQLite and EXT4 should be integrated in a ratio-
nal manner so that duplicate operations can be eliminated.

Efficient handling of Synchronous write is critical:
To improve IO performance, a number of cache-replacement
algorithms have been developed for NAND flash storage de-
vices [18, 14]. These algorithms work via exploitation of the
temporal locality and asynchronous nature of IO operations.
In the Android platform, however, neither of these hold:
Reads are mostly for cold blocks, and writes are mostly syn-
chronous. Further, write is at least ten times slower than
read. In the Android platform, efficient handling of syn-
chronous write operation, certainly, demands more atten-
tion. The recent proposal for a polling-driven IO [25] repre-
sents a good alternative for improvement of synchronous IO
performance.

IO access pattern in smartphone is potpourri: The
smartphone is a multi-purpose device. In addition to legacy
phone functions, which include management of contacts,
schedules and text messaging, it is used as a camera, music
player, web browser and game console, among others. Ac-
cordingly, the IO access pattern in smartphones is a mixture
of a wide variety of different access characteristics. IO ac-
cesses to the /system are mostly read, while IO accesses to
the /data are mostly write. Accesses to the /sdcard entails
large IOs, which accompany significant numbers of random
writes caused by FAT updates.

File type information should be exploited by un-
derlying storage and filesystem: Different types of files
have unique characteristic accesses. Accesses to executable
files are mostly large reads. Accesses to SQLite are mostly
4KB random. SQLite temporary files are only written with

4KB IO, and are short-lived. By examining the file type,
that is, the extension, we can easily predict the characteris-
tics of incoming IO. This information can be effectively ex-
ploited by prefetch strategies [15]. Interestingly, the recently
proposed eMMC interface standard [9] allows the host to in-
form the eMMC of details on data blocks being transferred.

8. RELATED WORK
IO characterization studies in desktop and enterprise server

environments have been conducted for several decades and
have attained sufficient maturity. Despite the fact that some
papers are now decades old, they still provide important
guidelines to the understanding the intrinsic behavior of IO
workloads. Riska et al. [20] studied the characteristics of
disk-drive workloads in three different computing environ-
ments: enterprise, desktop, and consumer electronics. They
showed that the access pattern for an enterprise server is
more random than for a desktop one. Zhou et al. [26] found
that the read/write ratio in the filesystem is 80%/20%, and
that the majority of IO operations are random. Ruemm-
ler et al. [22] analyzed disk IO in three different HP-UX
systems. Their research showed that a majority of IO oper-
ations are writes and that the majority of writes (67-78%)
are to Metadata, user-data IOs representing only 13-41% of
all accesses. Roselli et al. [21] analyzed filesystem traces in a
variety of different environments, including both UNIX and
NT systems. They found that file access has a bimodal dis-
tribution pattern: some files are written repeatedly without
being read, whereas other files are almost exclusively read.

The recent and rapid proliferation of NAND flash-based
storage devices necessitates thorough understanding of the
block level access characteristics of SSD [19, 12]. The follow-
ing studies examined the temporal, spatial, and frequency
aspects of the block-access trace, and exploited findings for
devising various FTL algorithms (e.g. hot/cold identifica-
tion, wear-leveling, a hybrid FTL log block management
scheme, etc.).

Harter et al. [13] studied the IO behavior of the Mac
OS filesystem. They showed that due to the complex XML-
based document format, sequential IO on a file rarely results
in sequential IO on a block device. Whereas it has gener-
ally been believed that in smartphones, the speed of the air
link interface is a bottleneck to overall performance, it was

31

recently found that the performance of smartphone applica-
tions are governed not by the communication speed of the
air link but rather by storage performance [16]. It is of the
utmost importance that a firm understanding of the ways in
which newly emerging applications in smartphones use stor-
age devices, which is to say, application-specific block-access
characteristics. The result of our study provide explanations
for the phenomenon observed in Kim et al. [16] and an im-
portant direction for the future filesystem development for
smartphones.

9. CONCLUSIONS
We studied the Android smartphone’s storage IO charac-

teristics using Mobile Storage Analyzer (MOST). Our anal-
ysis revealed unique smartphone IO characteristics. These
include the partition management strategy, the dominance
of SQLite files, the excessiveness of Journal block accesses,
the limited number of file types incurring block IO, and the
low usage of buffered IO. We discovered that the IO sub-
system and filesystem designs of the current state-of-the-
art smartphone leave much to be desired in terms of fully
exploiting the potential of the underlying NAND storage.
Guaranteeing integrity from SQLite and EXT4 is a very
complex undertaking. However, they need to be optimized
in an integrated manner, so that redundant efforts are elim-
inated. The filesystem affords in-depth knowledge on the
access characteristics of individual block IOs, which can be
effectively exploited by the NAND storage controller. It is
important that any modern NAND storage controller inter-
face adopts a rich set of interfaces for sharing of valuable
information between host and storage devices.

10. ACKNOWLEDGEMENTS
This work was supported by IT R&D programMKE/KEIT

[No. 10035202, Large Scale hyper-MLC SSD Technology De-
velopment] and [No. 10041608, Embedded System Software
for New-memory based Smart Device].

11. REFERENCES
[1] Mobile storage analyzer (most).

http://dmclab.hanyang.ac.kr/sub/main_most.htm.

[2] Nexus one (google/htc).
http://en.wikipedia.org/wiki/Nexus_One.

[3] Nexus s (google/samsung).
http://www.google.com/phone/detail/nexus-s.

[4] Samsung galaxy s2. http://www.samsung.com/
global/microsite/galaxys2/html/.

[5] Sqlite’s use of temporary disk files.
http://www.sqlite.org/tempfiles.html.

[6] Universal flash storage (ufs).
http://www.jedec.org/standards-documents/

focus/flash/universal-flash-storage-ufs.

[7] What is android? http://developer.android.com/

guide/basics/what-is-android.html.

[8] World mobile phone market 2010 to 2011.
http://www.yanoresearch.com/press/pdf/709.pdf.

[9] Embedded multi-media card(e-mmc), electrical
standard (4.5 device), June 2011.

[10] M. Arlitt and C. Williamson. Internet web servers:
Workload characterization and performance
implications. IEEE/ACM Trans. on Networking
(ToN), 5(5):631–645, 1997.

[11] J. Axboe and A. D. Brunelle. Blktrace user guide,
2007.

[12] F. Chen, D. Koufaty, and X. Zhang. Understanding
intrinsic characteristics and system implications of
flash memory based solid state drives. In Proc. of the
eleventh international joint conference on
Measurement and modeling of computer systems,
pages 181–192. ACM, 2009.

[13] T. Harter, C. Dragga, M. Vaughn, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. A file is
not a file: understanding the I/O behavior of apple
desktop applications. In T. Wobber and P. Druschel,
editors, SOSP, pages 71–83. ACM, 2011.

[14] H. Jo, J. Kang, S. Park, J. Kim, and J. Lee. Fab:
Flash-aware buffer management policy for portable
media players. Consumer Electronics, IEEE Trans.
on, 52(2):485–493, 2006.

[15] Y. Joo, J. Ryu, S. Park, and K. G. Shin. FAST: Quick
application launch on solid-state drives. In Proc. of the
9th USENIX Conference on File and Storage
Technologies, San Jose, CA, USA, February, 2011.

[16] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting
storage for smartphones. In Proc. of the 10th USENIX
Conference on File and Storage Technologies, San
Jose, CA, USA, February, 2012.

[17] S. Lee, B. Moon, and C. Park. Advances in flash
memory ssd technology for enterprise database
applications. In Proc. of the 35th SIGMOD
international conference on Management of data,
pages 863–870. ACM, 2009.

[18] S. Park, D. Jung, J. Kang, J. Kim, and J. Lee. Cflru:
a replacement algorithm for flash memory. In Proc. of
the 2006 international conference on Compilers,
architecture and synthesis for embedded systems, pages
234–241. ACM, 2006.

[19] M. Polte, J. Simsa, and G. Gibson. Comparing
performance of solid state devices and mechanical
disks. In Petascale Data Storage Workshop, 2008.
PDSW ’08. 3rd, pages 1 –7, 17-17 2008.

[20] A. Riska and E. Riedel. Disk drive level workload
characterization. In Proc. of the USENIX Annual
Technical Conference, General Track, pages 97–102.
USENIX, 2006.

[21] D. Roselli, J. R. Lorch, and T. E. Anderson. A
comparison of file system workloads. In Proc. of the
2000 USENIX Annual Technical Conference, pages
41–54, Berkeley, CA, June 18–23 2000.

[22] C. Ruemmler and J. Wilkes. Unix disk access patterns.
In Proc. of Winter USENIX, pages 405–20, 1993.

[23] K. Sovani. Linux: The journaling block device.
http://kerneltrap.org/node/6741, June 20, 2006.

[24] T. Ts’o. Debugfs.
http://linux.die.net/man/8/debugfs.

[25] J. Yang, D. Minturn, and F. Hady. When poll is
better than interrupt. In Proc. of the 10th USENIX
Conference on File and Storage Technologies, San
Jose, CA, USA, February, 2012.

[26] M. Zhou and A. Smith. Analysis of personal computer
workloads. In Proc. of the 7th International
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems,
MASCOTS, pages 208 –217, 1999.

32

