

Real-Image-Based Distributed Virtual Reality System
with Java3D

Seung-Woo Keum, Jong-Il Park, Youjip Won, Yong-Jin Park

swkeum@mr.hanyang.ac.kr, jipark@hanyang.ac.kr, yjwon@ece.hanyang.ac.kr, park@hyuee.hanyang.ac.kr

Division of Electrical and Computer Engineering,
Hanyang University, Haengdang-dong, Sungdong-gu, Seoul, 133-791, Korea

Abstract

In this paper, we propose a distributed VR system based
on transmission of real-time video. One can join the
virtual environment as a form of real video as well as an
avatar. The background of the participant is removed
with the chroma-key technique so that a more immersive
virtual environment can be constructed. A server-client
platform capable of handling time-based-media is
implemented on a network environment with Java Media
Framework and Java3D. A non-contacting interaction
scheme is also proposed for the system. One can freely
navigate the environment by a vision-based interaction in
a personal space.

 Key words: Distributed Virtual Reality, Real Image,
Java3D, Computer Vision, Human-Computer Interaction.

1. Introduction

Recently, virtual reality is emerging as a practical
approach for realistic human communications with the
rapid progress in all aspects of VR technology during the
last 20 years. It now provides pretty good interaction
environments between human and computer far beyond
the conventional desktop computer systems. High-speed
networks become available with the advance of network
technologies. The topic of this paper is on realizing a
highly realistic 3D distributed virtual environment(DVE)
on a high-speed network.

One of the main contributions of the paper lies in the
implementation of a real-image-based DVE. The
proposed 3D VR system can handle 2-types of users.
One can participate in the DVE as a form of either a
conventional avatar or a real video. Backgrounds of the
real video are effectively eliminated to enhance the sense
of reality. A user can select his/her own type of
participation based on the system capability. Users with
capture board and camera may select a video avatar
while others select a conventional CG-based avatar.

Another contribution of the paper is a vision-based
interaction system where users can freely navigate the
virtual environment without a keyboard or control
devices. A personal-space viewer is designed to control
the system and to navigate the virtual environment.

There are some systems that use 2D image in 3D VR
system. Mcintyre et al.[1] developed a Video Actor
framework where they integrate 2D video actors into a
3D AR(Augmented Reality) narrative system. The
system puts 2D image into a 3D scene along with other
3D objects. However, their compositing does not cover
explicit keying technique. The Renderware[2] uses a gif-
format picture in 3D VR systems. However, transmission
issues over networks are not considered.

We will overview our system in Section 2. In Section 3,
time-base media handling is described as well as our 2
kinds of java classes. Vision-based user interaction is
described in Section 4.

2. Overview of DVE

The virtual reality system is designed with
Java3D(Fig.2), and the media is transmitted with Java
Media Framework(JMF) [3].

Our purpose in this paper is to construct a virtual world
capable of handling time-based media, so that a user can
join with his real image instead of an avatar. Users may
feel more immersive and also comfortable when looking
at real people. And the background of a user’s video is
removed and set transparent so that only the participant’s
body can be naturally shown in the 3D virtual world. To
be more interactive, a simple vision-based interaction is
set up, so that users can navigate the virtual world
without conventional input devices.

Avatar Information (Position and Motion)

Video Information (RTP Stream)

Scene Graph
Information
: combined
avatar and

video
information

Client 1
- Avatar -

Client 1
- Avatar -

Client 2
- Video -

Client 2
- Video -

Scene Information
Position | Control | RTP Stream

Fig. 1 Concept of the server-client model

December 5-7, Tokyo, JAPAN
ICAT 2001

In setting up a real-image object into 3D scene, we have
two choices : IBR on 3D models[4] on high-end system
and real video itself as texture on low-end. The first one
may be more flexible, but it is difficult to create and
animate in a networked VR. As mentioned in
introduction, using 2D image in 3D world is a common
technique in 3D graphics, and by virtue of the Java
Media Framework, we can encode and transmit a
reasonably sized video stream on network. Our prototype
uses 2D video by texture mapping, and it’s quality is set
to 320x240, 15fps and H.263 encoded for network
transmission.

2.1 Server-Client Design

The current version of the DVE is a server-client
implementation. It is basically based on IP multicasting.
Clients send data correspond to the user type, and the
server multicasts it to all users. Since this system deals
with time-based media, synchronization is very
important. Here, the synchronization is done at the server
side. The data from all clients are multiplexed at the
server and transmitted to each client. When a client
receives the multiplexed data stream, it will demultiplex
the data into objects, and construct a 3D scene by using
them. The data from each user-type is as follows:

 Conventional Avatar: Control and location
information of avatar.

 Video Avatar: motion picture (time-based media)
and location information.

We will focus on transmission of video avatar in this
paper.

2.2 Video Stream Processing

The live video from the participant with video avatar
should satisfy following specifications.

1. Good for network transmission : the video is encoded
in H.263 in real-time with JMF.

2. Background elimination : It means that the
background should be made transparent. Therefore,
we first remove background by a generalized chroma-
keying[5], and fill it with specific color(black here).

3. Vision-based user interaction : a custom effect class
(MenuEffect) will detect the position of hand and fire
corresponding event.

Thus, the video should do two jobs : chroma-keying and
menu activation. We set up 2 JMF processors for these
purposes, and implement ChromaEffect and MenuEffect
for each job, respectively (Fig.3) .

SceneGraph

Streaming
Object

Transform
Group

Transform
Group

 UDP Control Pakcet RTP Stream Packet

Network

Avatar
Object

View
Object

KeyEvent
from

MenuEffect

Fig. 2 Virtual world with Java3D

3 Handling Time-Based Media

Time-based media handling is done in 3 steps. First, the
sender client generates media streams with chroma-keyed
data. Then, the server multiplexes all of the client’s data
into one stream and retransmits them to each client.
Finally, each client receives and demultiplexes the
stream and renders it as a 3D scene.

When sending a live video of a participant, we use a
chroma-key technique to eliminate backgrounds from the
2D image and then render it on a transparent 3D object
with billboard property. To do this job, we build two
kinds of Java class: TransmitVideo and ObjectBG.

The TransmitVideo class at the sender eliminates
backgrounds using a chroma-key technique and sends it
to the server as a video stream with JMF. As seen in
Fig.3, this class has two Effect plug-ins. Class
ChromaEffect is for chroma-keying. Chroma-keying can
be done at either TransmitVideo or ObjectBG. We put it
in TransmitVideo, because of the following reasons : (1)
if the chroma-key is done in ObjectBG, computation
burden at receiver client will be heavier as the number of
users increases. (2) When ObjectBG class gets the
stream, the background can be removed easily by setting
transparency if color is black. In this way, we can save
computation on receiver client. (3) Since there is no
video format that supports transparency, we set the
background color as black(color can be changed). The
bit-saving by using constant background instead of
adding transparency channel or using original
background is significant.

Fig. 3 Class TransmitVideo and Effects : this class has
two output (shadowed box), one is chroma-keyed data
for network transmission and the other for user
interaction on user screen. Each has its own Effect plug-
in. KeyPressed event is processed in KeyNavagation-
Behavior in Java3D.

The ObjectBG class at the receiver is capable of
receiving time-based media, and renders it on a 3Dobject
with background-removal. By texture-mapping the 2D
video on a transparent 3D object, we put background-
removed 2D video in the 3D virtual world. As shown in
Fig 6, the video input is textured in virtual world
perfectly with a reasonable time delay due to encoding
and network latency.

4. User Interaction

For a participant with real video, it is not easy to use a
mouse or keyboards since he/she may not be so close to
the computer. Moreover, users want to interact with
computers without using cumbersome devices. Thus, a
passive recognition system is requested. Our system
employs a simple computer-vision technique. A separate
window called personal-space viewer shows his/her
body for a natural interaction(Fig.5). The image is
mirrored one of the user image in Fig.6, which is seen
from other clients. The mirror-type interaction scheme is
very comfortable for human.

The interaction is based on position of user’s hand.
When user put his hand on top-left corner of his view,
the menu will be activated. Currently, menu consists of
navigation events. When navigation menu is activated, he
can control his movement by positioning his hand. This
is done by custom effect (MenuEffect in Fig.3). The
MenuEffect class uses chroma-keyed video as an input,
and detects the hand in the video.

As shown in Fig. 5 and Fig. 6, our system renders the
video stream in virtual world well, and personal space
viewer works correctly. But since H.263 encoding is
done by software, it consumes too much computation of
the system. When a client was not sending its camera
input to the network, full 15fps stream was successfully
decoded and textured in virtual world, but when video
transmit start, 15fps was hardly accomplished.

ObjectBG

 Java Media Framework

Image
Buffer
(RBGA

Format)

RTP
Stream
(RGB

Format)

Texture2D
Texture2D Process()

: sets
transparency

Billboard
Apperance

Fig. 4 Class ObjectBG : since chroma-key is done on
class TransmitVideo, process() is just setting the trans-
parency level.

5. Concluding Remarks

We introduced a prototype of a virtual world system with
video avatar. It is capable of handling 320x240 sized
15fps media stream in H.263 format in real-time, and
video is rendered as background-removed by chroma-
keying. But since camera capture and H.263 encoding is
heavy, the overall system performance was a little short
of video-rate application.

There are several things to be explored in the future. The
latency problem should be investigated intensively.
Moreover, although the transmission is based on a
server-client model at the current implementation, it
should be changed to a peer-to-peer system to
accommodate a large number of participants.
Furthermore, we are going to add one more type of users
where users can enjoy looking at an arbitrary view
generated by image-based rendering[4].

Fig.5 Personal Space Viewer : User can navigate virtual
world by positioning his/her hand on each colored box at
the top of the image.

Fig. 6 Client Program : 3 Users are in virtual space
with video avatar. Note that space around user is
transparent. They can navigate either PSV or keyboard.

Acknowledgement

This work was supported by grant No. R01-1999-00232
from the Korea Science & Engineering Foundation

5. References

1. Macintyre et., al, “Ghosts in the machine :
Integrating 2D video actors into a 3D AR system”,
Proc. 2nd ISMR, pp83-80, March 2001.

2. Renderware, http://www.renderware.com

3. Java Media Framework http://java.sun.com

4. Jong-Il Park and S. Inoue, “Arbitrary view
generation using multiple cameras”. Proc. IEEE
ICIP ’97, vol.1, pp.149-153, 1997.

5. Hyuk-Rae Park and Jong-Il Park, “Real-time vision-
based virtual advertisement system”, to appear in Proc.
2001 Annual Conference of KOSBE, Nov. 2001
(Korean)

