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Abstract: In this work, we optimise the Android IO stack for user-level filesystem. Android 
imposes user-level filesystem over native filesystem partition to provide flexibility in managing 
the internal storage space and to maintain host compatibility. The overhead of user-level 
filesystem is prohibitively large and the native storage bandwidth is significantly under-utilised. 
We overhauled the FUSE layer in the Android platform and propose buffered FUSE (bFUSE) to 
address the overhead of user-level filesystem. The key technical ingredients of buffered FUSE 
are: 1) extended FUSE IO size; 2) internal user-level write buffer; 3) independent management 
thread which performs time-driven FUSE buffer synchronisation. With buffered FUSE, we 
examined the performances of five different filesystems and three disk scheduling algorithms in a 
combinatorial manner. With bFUSE on XFS filesystem using the deadline scheduling, we 
achieved the IO performance improvements of 470% and 419% in Android ICS and JB, 
respectively, over the existing smartphone device. 
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1 Introduction 

Smart devices have rapidly spread to the public and 
expanded their territory into all home electronics including 
phones, TVs, cameras, and game consoles. As they have 
become so closely related to our everyday lives, improving 
the performance of these smart devices will have a  
significant impact on society. A recent study on Android 
smartphones suggests that storage is the biggest 
performance bottleneck (Kim et al., 2012a). 
 
 
 
 
 

An Android-based device is no longer a simple media 
player but has become a professional content creator.  
One piece of clear evidence for this trend is a recent  
introduction of an Android-based digital camera with a high 
resolution sensor (up to 17 mega-pixels) (Galaxy Camera, 
http://www.samsung.com/us/photography/galaxy-camera). 
In the future, smart devices including phones, TVs, and 
cameras are projected to acquire and play movies at  
ultra-HD (3,840 × 2,160 @ 60 frames/sec) resolution.  
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Android apps will require more IO bandwidth to handle 
such high definition multimedia contents. 

The Android platform partitions its storage into multiple 
logical partitions. There are two main storage partitions in 
the Android: data and sdcard. Data partition (/data) is used 
to harbour text files, e.g., SQLite database tables, and sdcard 
partition (/sdcard) harbours multimedia files, e.g., 
pictures, mp3 files and video clips. In recent smartphones, 
both of these partitions share the same storage device. 
Android storage has gone through several generations of 
evolution. In the early models, as the partition names 
suggest, data partition was at internal NAND storage device 
(eMMC) and sdcard partition was at external sdcard (HTC 
Dream, http://en.wikipedia.org/wiki/HTC_Dream). In the 
later generation of Android-based smartphones (Samsung  
Galaxy S2, http://www.samsung.com/global/microsite/ 
galaxys2/html/), data partition and sdcard partition resided 
at the same physical device, internal NAND-based storage 
and each was allocated a ‘fixed’ size logical partition. Until 
this generation, the Android IO stack imposed EXT4 
(Mathur et al., 2007) over data partition and VFAT 
(Microsoft Corporation, 2000) filesystem over sdcard 
partition. VFAT filesystem is de facto standard in embedded 
multimedia devices, e.g., cameras, camcorders, TVs, etc. 
Therefore, for PC compatibility, it is mandatory that sdcard 
partition adopts VFAT filesystem despite its technical 
deficiencies (Lim et al., 2013). However, this fixed 
partition-based storage configuration causes a significant 
underutilisation of the storage space. 

Recent Android platform imposes user-level filesystem 
(FUSE) for sdcard partition instead of VFAT. This allows 
sdcard to freely manoeuvre between the two respective 
partitions. The FUSE filesystem exists as a virtual 
filesystem layer on top of EXT4, the native filesystem. 
While this configuration provides flexibility in managing 
the internal storage space, it causes significant overhead on 
the FUSE, decreasing the performance of IO accesses to 
user partition. For example, in Galaxy S3, sequential write 
performance in FUSE imposed filesystem is one fourths of 
that in native EXT4 filesystem partition. 

The IO access to the Android storage can be categorised 
into two types: data partition accesses and sdcard partition 
accesses. While the IO accesses to both partitions suffer  
from excessive overhead, the source of inefficiency differs 
vastly. For data partition accesses, majority of IOs are 
created by SQLite operation and the inefficiency lies in the 
excessive filesystem journaling (Lee and Won, 2012; Jeong 
et al., 2013b). In this work, we focus on optimising the 
Android IO stack for handling multimedia files. Sdcard 
partition is the default storage partition for mp3, video files, 
photographs, and user-downloaded documents, e.g., pdf 
files. We found that the IO accesses to sdcard partition 
suffer from significant overhead and the apps utilise only 
25% of the raw NAND storage bandwidth. 

 
 
 

We examined the behaviour of FUSE, native filesystem, 
buffer cache, and IO scheduler for user partition accesses 
and found that FUSE layer is the dominant source of 
overhead. FUSE entails significant overhead mostly due to 
the following three reasons: 

1 command fragmentation 

2 excessive context switch 

3 loss of access correlation. 

We propose buffered FUSE (bFUSE) framework, which 
effectively addresses the above mentioned three technical 
issues. bFUSE framework consists of: 

1 extended FUSE IO unit 

2 FUSE buffer managed by independent thread 

3 time driven FUSE buffer synchronisation. 

The Android IO stack consists of FUSE, native filesystem 
(EXT4), IO scheduler for block device (CFQ), and 
underlying eMMC storage. We focus on finding the optimal 
combination in the IO stack design choices. We examined 
the behaviour of five filesystems (EXT4, XFS, F2FS, 
BTRFS, and NILFS2) and three IO schedulers provided by 
standard Linux kernel (CFQ, deadline, and NOOP) in a 
combinatorial manner. By using bFUSE and deadline-based 
IO scheduler and changing the filesystem to XFS, the IO 
performance (storage throughput) increases by 470% over 
the baseline (existing smartphone). With this optimisation, 
we are able to achieve 38 Mbyte/sec sequential write 
bandwidth and utilise 99% of the raw device bandwidth in 
the Android storage stack. 

The remainder of this paper is organised as follows. 
Section 2 presents the background. The behaviour of the 
Android IO stack is analysed in Section 3. bFUSE is 
introduced in Section 4. Section 5 provides optimisations 
for the Android IO stack. Section 6 presents the results of 
our integration of the proposed schemes. Section 7 describes 
other works related to the study, and Section 8 concludes 
this paper. 

2 Background 

2.1 Storage partitions for android-based 
smartphones 

Android manages several filesystem partitions: /recovery, 
/boot, /cache, /system, /data and /sdcard. The 
/system partition contains Android-executable files and 
pre-installed applications. The /cache partition is used for 
updating firmware. The /boot and /recovery partitions 
are used for maintaining boot image. There are two types of 
main partition: ‘/data’ and ‘/sdcard’. /data partition  
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harbours SQLite tables, SQLite journals, and apps. /sdcard 
partition usually harbours pictures, video clips, and mp3 
files, which are mostly user created contents. We call 
/sdcard an ‘sdcard partition’ or a ‘user partition’. 

Typical accesses to the data partition (/data) and the 
user partition (/sdcard) are small (4 Kbyte) synchronous 
writes and large buffered writes (> 64 Kbyte), respectively 
(Lee and Won, 2012). The IOs to ‘/data’ partition are 
mostly caused by SQLite database operation and excessive 
number of IO operations are generated due to the 
uncoordinated interactions between SQLite and EXT4 (Lee 
and Won, 2012). Sdcard partition does not suffer from 
journaling of journal anomaly (Jeong et al., 2013b), but its 
performance is severely degraded by excessive overhead on 
the FUSE. 

Figure 1 Storage configuration for Android-based smartphones 

 

There are two different approaches in configuring data and 
user partitions. Earlier smartphone models locate data and 
user partitions at different logical partitions (Google Nexus 
S, http://www.google.com/nexus/s/; Samsung Galaxy S, 
http://www.samsung.com/global/microsite/galaxys/index_2.
html; Samsung Galaxy S2, http://www.samsung.com/global 
/microsite/galaxys2/html/). Configuration 1 in Figure 1 
corresponds to this configuration. In this configuration, data 

and user partitions are formatted with different filesystems, 
EXT4 and VFAT, respectively. Recently, the Android 
adopted FUSE to manage both data and user partitions  
at the same physical partition (Google Galaxy Nexus, 
http://www.google.com/nexus/4; Samsung Galaxy S3, 
http://www.samsung.com/ae/microsite/galaxys3/en/ 
index.html). This is to dynamically adjust the partition size, 
allowing more flexibility in utilising the storage space, and 
to maintain host-compatibility to transfer files to and from 
the host PC via multimedia transfer protocol (MTP) 
(Osborne et al., 2010). In this configuration, /sdcard is 
imposed with FUSE. FUSE imposed filesystem looks and 
works like an independent logical partition, and VFS 
mounts this partition with FUSE filesystem type. FUSE 
imposed filesystem resides in the existing concrete 
filesystem as a normal file (or a directory). Configuration 2 
in Figure 1 illustrates this configuration. By mounting user 
partition (/sdcard) with FUSE, the system allows the users 
to freely manoeuvre a proportion of data and user partitions. 
However, overhead caused by the FUSE virtualisation 
service is prohibitively large. 

Table 1 illustrates the information on data and user 
partitions of six Android-based smartphones. The models 
are sorted in chronological order. In earlier models, e.g., 
Nexus One, data partition uses raw NAND and is managed 
by log structured filesystem such as YAFFS2. The more 
recent smartphones, e.g., Nexus S (Google Nexus S, 
http://www.google.com/nexus/s/), Galaxy S (Samsung 
Galaxy S, http://www.samsung.com/global/microsite/ 
galaxys/index_2.html), and Galaxy S2 (Samsung Galaxy 
S2, http://www.samsung.com/global/microsite/galaxys2/ 
html/), began to use FTL loaded NAND storage device such 
as eMMC as their internal storage. In these models, data 
partition and user partition reside in separate partitions. In 
the most recent Android-based smartphones, such as Galaxy 
Nexus and Galaxy S3, data and user partitions reside in the 
same partition. User partition is mounted with FUSE and 
resides in the data partition as a normal directory (and files). 

Table 1 Storage configuration of various smartphone models 

Internal storage  Ext-storage 
Model name Year 

/data /sdcard  /extSdCard 

Nexus One (http://en.wikipedia.org/wiki/Nexus_One) 2010 YAFFS2 VFAT  VFAT 

Nexus S (http://www.google.com/nexus/s/) 2010 EXT4 VFAT  - 

Galaxy S (http://www.samsung.com/global/microsite/galaxys/index_2.html) 2010 RFS VFAT  VFAT 

Galaxy S2 (http://www.samsung.com/global/microsite/galaxys2/html/) 2011 EXT4 VFAT  VFAT 

Galaxy Nexus (http://www.google.com/nexus/4) 2011 EXT4 FUSE  - 

Galaxy S3 (http://www.samsung.com/ae/microsite/galaxys3/en/index.html) 2012 EXT4 FUSE  VFAT 
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2.2 Filesystem in user space 

FUSE (File system in user space, http://fuse.sourceforge.net/) 
is a widely used framework that has been created to enable 
the filesystem to be developed in the user space without 
modifying kernel source code. The FUSE framework is 
especially helpful in realising virtual filesystems. FUSE 
allows programmers to directly control filesystem operation 
using simple application interface that is equivalent to 
mount, open, read, or write in the legacy system calls. On 
the other hand, FUSE causes additional context-switch and 
memory copy, which lead to significantly low performance. 
Some performance may be regained by increasing the speed 
of processor, memory, and bus. Rajgarhia and Gehani 
(2010) showed that FUSE exhibits similar performance to 
the existing kernel level filesystem on a desktop PC. 

Figure 2 Overhead of individual storage layers in eMMC on 
Galaxy-S3 

 
Notes: NOOP: raw device with NOOP scheduler,  

BLK: raw device with CFQ scheduler,  
EXT4: EXT4 filesystem with CFQ scheduler, 
VFAT: VFAT filesystem with CFQ scheduler, 
FUSE: FUSE with EXT4 and CFQ scheduler. 

Table 2 Configuration options for each experiment 

Label NOOP BLK EXT4 VFAT FUSE 

IO scheduler NOOP CFQ CFQ CFQ CFQ 
Filesystem   EXT4 VFAT EXT4 
FUSE     Yes 

2.3 Dissection of the IO stack overhead 

We overhauled the IO stack for sdcard partition access and 
analysed the overhead caused by each layer of the storage 
stack. We conducted an experiment on a commercially 
available smartphone model, Samsung Galaxy S3 
(http://www.samsung.com/ae/microsite/galaxys3/en/index.h
tml) (Samsung Exynos 4412 1.4 GHz Quad-core, 2 GB 
RAM, 32 GB eMMC1), running Android 4.0.4 (ICS) and 
Android 4.1.2 (JB). The version of each of the Android 
kernel is 3.0.15 and 3.0.30, respectively. The data partition 
resides at internal flash storage and is formatted with EXT4 
filesystem. The user partition is imposed with FUSE and 
actually resides at the data partition. The default IO 
scheduler in the Android is complete fair queuing (CFQ) 
(Axboe, 2007). 

We generated sequential write workloads with 512 KB 
unit size and 512 MB file size using Mobibench (Jeong  

et al., 2013a). First, we measured the performance of the 
raw device. We ‘open()’ the /sdcard partition and 
generated the workloads. To minimise interference on the 
storage layers, we used the IO scheduler, ‘NOOP’, instead 
of the default ‘CFQ’. CFQ is known to be more CPU 
demanding than NOOP (Kim et al., 2009). This experiment 
is labelled NOOP. Second, we changed the disk scheduler to 
CFQ and still used the raw device. This is to measure the 
overhead of disk scheduler. This is labeled BLK. In the third 
experiment (EXT4), we measured the filesystem overhead. 
We formatted the storage device with EXT4 filesystem and 
measured the performance. In the fourth experiment 
(VFAT), we used VFAT instead of EXT4. In the fifth 
experiment (FUSE), we mounted the FUSE partition, which 
resides on EXT4, and measured the IO performance. This is 
the default configuration for the user partition in Galaxy S3. 
Table 2 summarises the labels and the respective experiment 
operations. 

Figure 3 IO overhead breakdown 

 

Figure 2 illustrates the results. The labels in the x-axis 
denote the five experiments. In ICS and JB, the raw  
device (NOOP) yielded sequential write bandwidth of  
39 Mbyte/sec and 40 Mbyte/sec, respectively. The 
performance decreased by 7% and 5% in ICS and JB, 
respectively, when CFQ disk scheduler was used (BLK). 
The performance decreased by 14% and 16%, respectively, 
when EXT4 filesystem was used. In the default 
configuration for the user partition of Galaxy S3, i.e., when 
we imposed FUSE on the filesystem, we obtained sequential 
write bandwidth of only 7 Mbyte/sec on both Android 
versions. This is less than 20% of the physical bandwidth of 
the raw device. 

In the Android storage stack of JB version, the overhead 
of FUSE, EXT4, and IO scheduler account for 79%, 16%, 
and 5% of the total overhead, respectively (Figure 3), and 
only 20% of the raw device performance is available to the 
applications. The IO accesses to the user partition suffer 
from excessive software overhead. The dominant fraction of 
the overhead is caused by FUSE. The overhead of 
filesystem, EXT4, is more significant in a mobile device 
with NAND-based storage than in a desktop with an HDD. 
In a desktop with an HDD, it is commonly accepted that the 
filesystem overhead is 5% of the total overhead 
(Giampaolo, 1998). When the Android platform adopts 
FUSE instead of VFAT to manage the user partition, the IO 
performance decreases by 50%. Based on these 
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observations, we carefully conjecture that from Google’s 
point of view, the flexible and efficient space management 
must be more important than storage performance in current 
smartphone models. 

3 The Android IO stack for the user partition 

3.1 IO characteristics of the user partition accesses 

To design an IO subsystem, it is mandatory to acquire a 
thorough understanding on the IO workload characteristics 
for the respective storage partition. We selected the most 
popular Android apps that use sdcard partition: camera, 
camcorder, and gallery. For camera application, we took 
pictures consecutively for one minute. For camcorder, we 
recorded a video for one minute, with full HD resolution 
(1,920 × 1,080 @ 30 fps). For gallery, we scrolled the 
thumbnails and displayed each picture for one minute. We 
ran the experiment on Galaxy S3 with the user partition 
mounted with FUSE. We used mobile storage analysis tool 
(MOST) (Jeong et al., 2013a) to collect and analyse the 
trace. MOST can extract the file type (journal vs. data file) 
and block type (data vs. metadata) information for a given 
block access. In this study, we examined the IO size 
distribution, spatial locality (random vs. sequential), fraction 
of synchronous IO, and fraction of accesses for each 
filesystem region (metadata, journal, and data) for a given 
Android apps. This information provides an important 
guideline in designing and optimising the filesystem and the 
respective storage stack. The following summarises IO 
characteristics of the IOs to the user partition. 

• Most of IOs are over 256 Kbyte in size. In camera and 
camcorder, 70% of the write requests to the block 
device are larger than 256 Kbyte [Figure 4(a)]. This is 
an important characteristic in designing the filesystem 
as well as the storage device. In particular, the current 
FUSE splits the incoming IO requests into 4 KB units. 
When the incoming request is large, this splitting 
behaviour of the FUSE causes significant overhead. For 
the data partition accesses in Android, 64% of the write 
operations is 4 Kbyte (Jeong et al., 2013b). 

• Over 90% of the total IOs are sequential. For sdcard 
partition accesses, sequential IOs account for over 90% 
of the total IOs [Figure 4(b)]. The percentages were 
near 100% for camera and camcorder. We have 
observed an entirely different access characteristic  
in the data partition accesses. In the data partition 
accesses, random writes constitute a dominant fraction 
(75%) of the entire write operations. 

• Over 70% of the total IOs are buffered. Buffered  
IOs accounted for over 70% of all IOs in all three 
applications [Figure 4(c)]. The percentage of buffered 
IOs reached 100% for camcorder application. This  
is in direct contrast to the data partition access 
characteristics (Jeong et al., 2013b). In the data 
partition accesses, 70% of the writes are synchronous. 
They are caused by SQLite database behaviour. 

Figure 4 IO distribution of file types, block types, IO modes, 
randomness, and IO size, (a) IO size (b) locality (c) IO 
modes (d) block types 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Note: The number at the end of each bar indicates the 
number of respective block IO for R (read) and W 
(write). 

• Journal and metadata writes are negligible. We 
categorised the IO accesses into three groups based on 
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the type of filesystem region: data, metadata, and 
journal. Accesses to the filesystem journal and 
metadata are negligible. Data writes account for 95% 
and 97% of the total IO counts for camera and 
camcorder, respectively [Figure 4(d)]. In the case of 
gallery, data reads account for almost 100% of the total 
read counts and data writes account for 30% of the total 
write counts. 

3.2 Anatomy of the FUSE behaviour 

We observed that 79% of all IO overhead, which is all IO 
accesses to sdcard partition, is caused by FUSE (Figure 3). 
We examined the call path of accessing the sdcard partition 
to analyse the cause for this overhead. Figure 5 
schematically illustrates the mechanism for a ‘write()’ 
system call. When the application makes a write system call 
to the FUSE partition, VFS forwards the request to the 
FUSE layer. The FUSE layer inserts this request to its own 
request queue, which resides in the kernel. The OS hands 
over the CPU to another thread after it inserts the write 
request to the queue. User-level FUSE library reads the 
FUSE request queue through VFS interface. FUSE library is 
run by its own thread. The FUSE layer splits the IO request 
in the request queue into 4 Kbyte units and returns them to 
the FUSE library. The FUSE library translates the incoming 
IOs into the filesystem operations appropriate for EXT4 (or 
other existing concrete filesystem where FUSE resides) and 
creates the request. 

Figure 5 write() path of the FUSE framework (see online 
version for colours) 

 

We identified the main source of FUSE’s inefficiency to be 
IO fragmentation. The FUSE library removes an IO request 
from the FUSE mount filesystem in 4 Kbyte units, which 
we call ‘FUSE IO units’. Since the default FUSE IO unit is 
4 Kbyte, the FUSE library splits a large IO request from the 
application into multiple IO requests. This IO fragmentation 
increases the system call processing overhead and the 
number of context switches. Also, IO fragmentation can 
dismantle the spatial locality that the original IO stream 
bears. Since large IO requests are split into multiple 

requests, it is possible that a set of split requests are 
interleaved with other IO streams, e.g., journal buffer flush 
and metadata synchronisation. As a result, the aggregate 
stream may look ‘more’ random. It is critical for  
NAND-based flash storage to properly identify the 
randomness and hotness of the underlying traffic (Lee et al., 
2008; Hsieh et al., 2006). Loss of access locality may 
significantly aggravate the inefficiency of the underlying 
storage behaviour. 

In the Android IO stack, the side effect of IO 
fragmentation amplifies dramatically because most of 
sdcard accesses are large sized (> 256 Kbyte) and mobile 
devices have relatively low CPU and memory copy 
performance. Subsequently, the overhead of going through 
the FUSE layer becomes prohibitively large. We physically 
examined the overhead of IO fragmentation. We varied the 
FUSE IO size from 4 Kbyte to 512 Kbyte and measured the 
throughput for sequential write. IO size denotes the unit size 
into which the FUSE library splits the IO request at the 
request queue. Figure 6 illustrates the results. On both 
Android versions, with 4 Kbyte FUSE IO unit size, the 
internal storage yielded only 7 Mbyte/sec. With 512 Kbyte 
IO unit size, the internal storage yielded 30 Mbyte/sec 
sequential write throughput. 

Figure 6 Throughput vs. FUSE IO unit size 

 
Notes: Sequential buffered write, internal eMMC,  

file: 512 Mbyte, record-size: 512 Kbyte. 

Figure 7 Number of context switches vs. FUSE IO size  
(see online version for colours) 

 
Notes: Sequential buffered write, internal eMMC,  

file: 512 Mbyte, record size: 512 Kbyte. 

We examined the number of context switches for each 
FUSE IO unit size using Mobibench (Jeong et al., 2013a). 
Figure 7 illustrates the results. The total number of context 
switches decreases as the IO unit size increases. 
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4 Buffered FUSE 

4.1 Design 

We carefully examined the IO workload characteristics of 
sdcard accesses in the Android platform and designed a 
novel user-level file system mechanism, called bFUSE, to 
effectively address the IO fragmentation issue of the  
FUSE. bFUSE is specifically designed for the Android IO 
stack where a dominant fraction of IOs are large sized  
(> 256 Kbyte) sequential (and buffered) writes. bFUSE 
practically eliminates all overhead of the FUSE layer and 
increases the efficiency of the FUSE while preserving the 
flexibility in the storage space management. 

Figure 8 write() path of bFUSE framework (see online 
version for colours) 

 

Despite its dramatic performance impact, the design and 
implementation of bFUSE are rather simple and straight 
forward. bFUSE consists of the following key ingredients. 
First is extended FUSE IO unit size. In bFUSE, the FUSE 
IO unit increases from 4 Kbyte to 512 Kbyte. Note that 
about 70% of the IO accesses are larger than 256 Kbyte 
[Figure 4(a)]. Second, we introduce a FUSE buffer between 
the FUSE library and VFS. Upon reading a request from 
legacy FUSE request queue, the sdcard service immediately 
issues the request to the underlying filesystem. In bFUSE, 
the FUSE library takes incoming requests from request 
queue in kernel and places them in the FUSE buffer. Third, 
we introduce management thread for the FUSE buffer  
which periodically flushes the FUSE buffer contents  
to the underlying filesystem. Thread-based FUSE buffer 
management enables the FUSE library, i.e., FUSE, to 
process IO requests concurrently with the FUSE buffer 
management exploiting multiple cores of modern mobile 
CPU. Figure 8 illustrates the organisation of bFUSE 
framework. The FUSE buffer resides at the user space 
(within the FUSE library).We implemented FUSE buffer at 
the user address space instead of the kernel space to reduce 
the number of system calls and to dynamically adjust the 
FUSE buffer size. 

4.2 Implementation 

A FUSE buffer is an array of fixed size entries. An entry 
consists of buffer header and buffer data. Buffer header 
contains file descriptor, offset, and size. Buffer data is a 
fixed size region to hold data blocks for write operations. A 
sufficiently large region, 2 Mbyte, is allocated to an entry so 
that it can hold consecutive write requests in a single entry. 
Figure 9 illustrates the structure of the buffer. 

When the FUSE library inserts a request to the FUSE 
buffer, it searches the FUSE buffer (write buffer) entries for 
the same file descriptor. If the incoming request and the 
existing FUSE buffer entry form a consecutive region of a 
file, the FUSE library places the data blocks of the incoming 
request in the data block region of the existing entry and 
updates the size field. When the data region of the existing 
entry is full, the FUSE library allocates a new entry in the 
FUSE buffer. 

Figure 9 Structure of bFUSE (see online version for colours) 

 

Figure 10 Effect of separate thread management under various 
FUSE buffer sizes (see online version for colours) 

 
Notes: Sequential buffered write, internal eMMC, filesystem: 

EXT4, file size: 512 Mbyte, record size: 512 Kbyte. 

bFUSE may negatively affect the overall IO performance 
due to memory copy overhead and increased latency to 
flush IO requests to the filesystem. The size of the region is 
user configurable. We performed a series of experiments to 
determine the right size for the data region. We managed the 
bFUSE with producer-consumer paradigm and allocated a 
separate thread for flushing the buffer. Figure 9 illustrates 
the structure. 

The FUSE buffer manager regularly flushes buffer 
entries. In addition, it flushes buffer entries for a given file 
when the file is closed, or when the request reaches the end 
of the file, or when fsync()/fdatasync() is called. The 
performance of the user partition accesses relies heavily on 
the interval at which the FUSE buffer manager flushes the 
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contents. We examined the IO performance under various 
flush intervals and found that 10 msec yields the best 
performance. In all experiments, flush interval of FUSE 
buffer manager was set to 10 msec. We measured the 
throughput of sequential buffered writes (512 KB FUSE IO 
unit size) both with and without the FUSE buffer manager. 
Figure 10 illustrates the results. With single threaded 
implementation of bFUSE, throughput actually decreases 
with introduction of bFUSE, without the FUSE buffer 
manager. With the FUSE buffer manager, we achieved 8% 
increase in performance. Based on the detailed examination 
of the process, we believe the reason for this performance 
gain is reduced randomness in the incoming IOs. The 
objective of the FUSE buffer is to coalesce multiple IO 
requests into one so that we can reduce the aggregate system 
call overhead and make the larger fraction of IOs sequential. 
Most NAND flash storages are designed to exploit 
sequentiality of the incoming IOs (Lee et al., 2005) to 
improve the IO performance and to lengthen the storage life 
time. 

We examined the ratio of random IOs under various 
FUSE buffer size. Figure 11 illustrates the results. We can 
see that as the ratio of random IOs decreases, the throughput 
increases. With 8 Mbyte FUSE buffer, the ratio of random 
IOs to the entire IOs is the smallest. 

Figure 11 Fraction of random IOs (IO count) 

 
Notes: Sequential buffered write on internal eMMC 

through FUSE with different size of FUSE IO unit. 
File size: 512 Mbyte, record size (app): 512 Kbyte. 

The FUSE buffer successfully reduces the number of 
journal and metadata updates and the number of system 
calls reducing the system call overhead. Also, by coalescing 
multiple write requests into one, there is less chance that 
sequential IOs issued by the application are inter-mixed 
with other IO streams, e.g., journal flush. We examined the 
block access trace for a sequential write of 512 Mbyte file 
with and without FUSE buffer. Figure 12 illustrates the 
results. Without the FUSE buffer, writing a file consists of 
higher number of smaller write bursts [Figure 12(a)]. With 
the FUSE buffer, writing a file consists of lower number of 
larger write bursts. Also, with the write buffer, there are 
fewer journal updates and metadata updates. Occasional 
updates in the 0–0.5 × 103 LBA range and 2.5 × 103 range 
are for metadata updates and journal updates, respectively. 

 
 

The FUSE buffer in the FUSE layer brings a number of 
improvements to the Android storage stack: reductions in 
the number of write() system calls, the number of context 
switches, randomness in the underlying IO traffic, and 
filesystem journaling overhead. 

Figure 12 Effect of FUSE buffer on randomness of the IO 
accesses, (a) without FUSE buffer (b) with FUSE 
buffer (see online version for colours) 

 

(a) 

 

(b) 

Notes: Sequential buffered write on internal eMMC through 
FUSE with/without bFUSE. Base filesystem: EXT4, 
file size: 512 Mbyte, record size (app): 512 Kbyte. 

Figure 13 Effect of IO scheduling policy 

 
Notes: Sequential buffered write on internal eMMC 

through FUSE with three different IO scheduler. 
File size: 512 Mbyte, record size: 512 Kbyte. 

5 Optimising the Android storage stack 

In an effort to optimise the entire IO stack, we examined the 
throughput of the user partition under five filesystems, 
EXT4, XFS, F2FS, BTRFS, and NILFS2; and three IO 
schedulers, NOOP, CFQ, and deadline; in a combinatorial 
manner. 
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5.1 IO scheduler 

Linux kernel currently provides CFQ, NOOP, and deadline 
IO schedulers, with CFQ being the default. These 
schedulers are designed for HDDs and should be 
reexamined in the context of NAND-based storage devices 
(Wang et al., 2013; Shen and Park, 2013). We compared the 
performance of CFQ, NOOP, and deadline as the IO 
scheduler. Figure 13 shows the results. The default IO 
scheduler, CFQ, yielded the worst performance among the 
three, with deadline performing 6% better than CFQ. With  
8 Mbyte FUSE buffer and deadline driven scheduling, the 
sequential write throughput increases by 12% compared to 
the CFQ IO scheduler. 

5.2 Filesystem 

We examined the performance of five widely used 
filesystems in Linux: EXT4, BTRFS, NILFS, XFS, and 
F2FS. We examined how well these filesystems match with 
the FUSE framework. XFS (Sweeney et al., 1996) is a 
journaling filesystem designed for enterprise class  
storage systems. BTRFS (Rodeh et al., 2012) is  
copy-on-write-based filesystem and is envisioned as the 
future filesystem for Linux OS. NILFS2 is a log-structured 
filesystem (Konishi et al., 2006). We included NILFS2 to 
examine the effectiveness of the legacy log structured 
filesystem on the Android platform. Flash Friendly 
Filesystem, F2FS (F2FS Patch on LKML, https://lkml.org/ 
lkml/2012/10/5/205), is the youngest among the five, 
specifically designed for flash-based storage. 
mkfs tools for F2FS, NILFS2, and BTRFS are ported 

for ARM processor. Since F2FS is recently merged into the 
standard Linux kernel 3.8 (F2FS File-System Merged  
Into Linux 3.8 Kernel, http://www.phoronix.com/scan.php? 
page=news_item&px=MTI1OTU), we backported F2FS to 
Linux 3.0.15 (Android ICS for Galaxy S3) and Linux 3.0.30 
(Android JB for Galaxy S3), respectively. We measured the 
performance of sequential writes (buffered IOs). IO size 
was 512 Kbyte. FUSE IO unit size was 512 Kbyte and 
FUSE buffer was not used. Figure 14 shows the throughput 
for the different filesystems. 

Figure 14 Throughput vs. fraction of sequential IO counts 

 
Notes: Sequential buffered write on internal eMMC through 

FUSE with five different base filesystems. File size: 512 
Mbyte, record size: 512 Kbyte, FUSE IO Size: 512 Kbyte, 
without FUSE buffer. 

Without the FUSE buffer, XFS and F2FS exhibited  
17% and 10% improvements, respectively, over EXT4  
on both Android versions. BTRFS exhibited 5% 
improvement over EXT4 on ICS while the performance 
decreased by 20% on JB. NILFS2 performed significantly 
worse than the rest. In addition to the write requests  
to the storage device, there were occasional kernel 
generated IO requests, such as journal updates and metadata 
updates. These requests negatively affect the filesystem 
performance because it breaks the sequentiality in the 
underlying IO stream. Figure 14 also shows the fraction of 
sequential IOs to all IO requests to the filesystem. The 
filesystem’s performance coincides with the fraction of 
sequential IOs. 

5.3 Analysis 

We analysed block level access patterns in these 
filesystems. Figure 15 shows the time series of block 
accesses in writing 512 Mbyte. X-axis is time and Y-axis is 
the logical block address. It only shows write() operation. 
Sequential write patterns are commonly observed in all 
filesystem block traces. IO requests in the lower LBA 
region (0~0.5 × 103) are for metadata updates. 

The FUSE buffer and extended FUSE IO unit are 
designed to mitigate or to remove the overhead caused by 
IO fragmentation. We examined in detail how these features 
contribute to minimising the overhead of FUSE. We 
generated sequential write workloads and measured the 
number of system calls, the number of block IO requests 
issued to the NAND storage device, and the number of 
metadata and journal updates. Without extended FUSE IO 
unit, writing 512 Mbyte consists of 128,000 write system 
calls since FUSE library splits the incoming IO requests into 
4 Kbyte units. By increasing the FUSE IO unit size to  
512 Kbyte, the number of write system calls decreases by  
× 128 (from 128,000 to 1,000). With 8 Mbyte FUSE buffer, 
we further reduce the number of system calls by × 4 (from 
1,000 to 249). With bFUSE (extended FUSE IO and a 
FUSE buffer), we are able to achieve sheer × 512 reduction 
in the number of system calls (from 128,000 to 249). On 
average, bFUSE coalesces four write system calls from the 
application into one write system call with the help of the 
FUSE buffer. IO requests shown in Table 3 are the requests 
issued to the internal storage. Since the maximum IO size is 
512 Kbyte in eMMC standard (e-MMC, 2011), the number 
of IO requests remains the same regardless of FUSE buffer. 
In data partition accesses, journal and metadata update 
operations constitute a dominant fraction of all IO 
operations (Lee and Won, 2012). We found that for the user 
partition accesses, i.e., buffered writes, the journal and 
metadata update overhead is negligible. 
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Table 3 The number of system calls, IO operations and metadata/journal updates 

Filesystem EXT4 XFS F2FS BTRFS NILFS2 

FUSE 128,000 128,000 128,000 128,000 128,000 
Nobuf 1,000 1,000 1,000 1,000 1,000 

# of pwrite() 

bFUSE 249 249 249 249 249 
FUSE 1,048 1,121 1,044 1,041 1,077 
Nobuf 1,032 1,112 1,048 1,016 1,070 

# of IO request 

bFUSE 1,030 1,099 1,049 1,011 1,059 
FUSE 23 11 26 15 153 
Nobuf 12 12 33 9 137 

Metadata/journal 

bFUSE 11 6 35 9 142 

Note: FUSE: baseline, nobuf: bFUSE without FUSE buffer, bFUSE: bFUSE with 8 Mbyte FUSE buffer. 

Figure 15 Block access pattern, sequential buffered write on internal eMMC through FUSE with five different base filesystems,  
(a) EXT4 (b) XFS (c) F2FS (d) BTRFS (e) NILFS2 (see online version for colours) 

  
(a)       (b) 

  
(c)       (d) 

 
(e) 

Notes: File size: 512 Mbyte, record size: 512 Kbyte. 
 

6 Combined study 

We examined the performance of the user partition accesses 
under each combination of storage stack options. There are 
five different filesystems, EXT4, XFS, F2FS, BTRFS, and 
NILFS2; and three IO schedulers, NOOP, CFQ, and 
deadline. We tested the storage throughputs under 4 Kbyte 
to 512 Kbyte FUSE IO unit sizes and 2 Mbyte to 64 Mbyte 
FUSE buffer sizes. It is reported that IO characteristics of 
Android-based smartphones are not sensitive to hardware 
models (Kim et al., 2012a; Lee and Won). Galaxy S3 with 

Android 4.0.4 (ICS) and Android 4.1.2 (JB) are used as 
baseline. In the baseline configuration, FUSE IO unit size is 
4 Kbyte, and the default IO scheduler is CFQ. 

Figure 16 shows the performances of five filesystems. 
Experiment for each filesystem was conducted in four steps: 
First, we tested the baseline configuration, ‘base’, which is 
CFQ IO scheduler with FUSE IO unit of 4 Kbyte. Second, 
FUSE IO unit is increased to 512 Kbyte, shown as ‘512 KB 
IO’. Third, the IO scheduler is changed to deadline, keeping 
FUSE IO unit at 512 Kbyte. This step is labelled ‘deadline’. 



 Buffered FUSE: optimising the Android IO stack for user-level filesystem 105 

Fourth, the FUSE buffer is set at 8 Mbyte (with 512 Kbyte 
FUSE IO and deadline IO scheduler). This step is labelled 
‘bFUSE’. 

In EXT4 filesystem on both Android versions, extended 
IO size led to about 350% performance enhancement, 
change of IO scheduler added about 5% enhancement, and 
bFUSE added 12% more enhancement. Performance 
enhancements in XFS, F2FS, and BTRFS for each step were 
similar. It is worth noting that a FUSE buffer needs to be 
managed by a separate thread so as not to block the caller. 
Otherwise, the performance gain becomes less significant. 

Figure 16 Effect of individual optimisation options, (a) ICS  
(b) JB 

 
(a) 

 
(b) 

Notes: Sequential buffered write on internal eMMC with 
different filesystem. File size: 512 Mbyte, record 
size (app): 512 Kbyte. 

Figure 17 Throughput of optimised android storage stack for 
user partition accesses 

 
Notes: Sequential buffered write on internal eMMC. IO 

scheduler: deadline, file size: 512 Mbyte, record 
size (app): 512 Kbyte. 

Finally, we combine and summarise the results of all 
experiments (Figure 17). For ease of comparison, the 
throughput was normalised to the raw device throughput, 

MAX (38.6 Mbyte/s and 39.8 Mbyte/s for ICS and JB, 
respectively). In EXT4 with bFUSE (512 Kbyte FUSE IO 
size and 8 Mbyte FUSE buffer), we achieved 95% and 91% 
of the raw device bandwidth for ICS and JB, respectively. 
With XFS filesystem and the bFUSE (512 Kbyte FUSE IO 
unit, 8 Mbyte FUSE buffer, deadline scheduler), we 
eliminated most of the software overhead and achieved 99% 
and 91% of the raw device throughput for ICS and JB, 
respectively. This corresponds to spectacular improvement 
of 470% and 419% from the original baseline configuration 
for ICS and JB, respectively. 

7 Related work 

In the past few years, many studies have examined the 
performance of NAND flash-based storage devices. Kim  
et al. (2012a) showed that the determinant of mobile device 
performance is not the network speed but storage, which is 
contrary to popular belief. 

Kim et al. (2012b) conducted a study on improving 
buffer cache management in order to improve IO 
performance of smartphones using low-cost flash memory. 
They developed a new buffer cache replacement scheme, 
spatial clock, which addresses the issue of spatial locality 
that has been neglected in other algorithms. These 
algorithms, including LRU, clock (Bensoussan et al., 
1972)], Linux2Q (Bovet and Cesati, 2005), CFLRU (Park  
et al., 2006), LRUWSR (Jung et al., 2008), FOR (Lv et al., 
2011), and FAB (Jo et al., 2006), focused only on reducing 
write cycles. Spatial clock is based on the clock algorithm, 
but page frame is aligned with the logical sector number. 
Alignment was achieved using AVL tree (Adelson-Velskii 
and Landis, 1963). 

Lee and Won (2012) performed comprehensive analysis 
on the Android IO workload. They performed trace driven 
analysis on 14 apps from various categories, e.g., contact, 
calendar, gallery, camera, twitter, etc. They found that 
typical IOs to data partition (/data) and sdcard partition 
(/sdcard) are 4 Kbyte write followed by fsync() and 
large size buffered write (> 64 Kbyte), respectively. They 
also found that SQLite and EXT4 interact in an unexpected 
way and put significant stress on the underlying storage. On 
the other hand, Chiang and Lo (2006) proposed a 
component-based VFAT file system on embedded system, 
which improved performance of VFAT by supporting 
RAM-based storage and disk-based storage. They not only 
saved system memory but also improved performance of 
read and write operation on resource-limited embedded 
system environment. 

Studies have been done on the relationship between the 
actions of FTL and the unnecessary writes generated by the 
EXT4 journal. Jang and Lim (2012) asserted that FTL 
should be located on the host side instead of NAND 
controller to be more efficient, taking into account the 
resource constraints (RAM and CPU) for page mapping 
table and redundant writing by the journal. They modified 
MTD and JBD of Linux 2.6.35 and compared the 
performance of host-side FTL to that of controller-side FTL 
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on NANDsim. Random write IOPS improved about 20% to 
30%. Although this study is significant in that it presents a 
solution to overcoming hardware limitations of FTL as well 
as performance reduction caused by excess journaling, it 
does not provide specific instructions on implementing the 
proposed method nor explains the cause for performance 
enhancement. Falaki et al. (2010) analysed various 
smartphone usage patterns. On top of the performance 
increases achieved by these earlier works (Kim et al., 
2012a; Lee and Won, 2012), bFUSE provides an effective 
solution to further enhance the performance of the Android 
IO stack. 

8 Conclusions 

The role of smartphones is changing from a simple office 
assistant, which handles contact management, schedule 
management, and e-mails, to a professional device for 
creating various types of multimedia contents, replacing 
cameras and camcorders. There is a significant demand for 
higher performance storage subsystem to harbour better 
quality pictures and videos. The Android storage stack 
allocates a separate storage partition for user-created 
multimedia files. The Android storage stack for the user 
partition, as it currently stands, is an uncoordinated 
collection of software layers with excessive overhead. It can 
draw only 20% of the storage performance. In this study, we 
focus our efforts on optimising the Android IO stack for 
sdcard partition accesses. We characterised the IO workload 
to sdcard partition, examined the overhead of individual 
software layers, and found the optimal storage configuration 
for sdcard partition accesses. We found that a dominant 
fraction of software overhead is caused by FUSE. We 
propose bFUSE, bFUSE, to address the performance issues 
of the legacy FUSE. We examined the performances of five 
filesystems and three disk schedulers to find the best match 
for the bFUSE framework. After applying 512 Kbyte FUSE 
IO unit and 8 Mbyte FUSE buffer in bFUSE, and with XFS 
in the deadline scheduling mode, the proposed Android IO 
stack achieved 470% and 419% performance improvements 
in Android 4.0.4 (ICS) and Android 4.1.2 (JB), respectively, 
over the existing state of the art smartphone model with the 
default options. The observed performance corresponds to 
99% and 91% of the raw device bandwidth in ICS and JB, 
respectively. The proposed Android IO stack opens up a 
new opportunity for the existing smartphone storage to 
handle higher definition multimedia contents such as  
ultra-high definition quality video recording (3,840 × 2,160 
@ 60 frames/sec). 
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