
Int. J. Embedded Systems, Vol. 6, Nos. 2/3, 2014 95

Copyright © 2014 Inderscience Enterprises Ltd.

Buffered FUSE: optimising the Android IO stack for
user-level filesystem

Sooman Jeong and Youjip Won*
Hanyang University,
#507-2, Annex of Engineering Center,
17 Haengdang-dong, Sungdong-gu, Seoul, 133-791, South Korea
E-mail: 77smart@hanyang.ac.kr
E-mail: yjwon@hanyang.ac.kr
*Corresponding author

Abstract: In this work, we optimise the Android IO stack for user-level filesystem. Android
imposes user-level filesystem over native filesystem partition to provide flexibility in managing
the internal storage space and to maintain host compatibility. The overhead of user-level
filesystem is prohibitively large and the native storage bandwidth is significantly under-utilised.
We overhauled the FUSE layer in the Android platform and propose buffered FUSE (bFUSE) to
address the overhead of user-level filesystem. The key technical ingredients of buffered FUSE
are: 1) extended FUSE IO size; 2) internal user-level write buffer; 3) independent management
thread which performs time-driven FUSE buffer synchronisation. With buffered FUSE, we
examined the performances of five different filesystems and three disk scheduling algorithms in a
combinatorial manner. With bFUSE on XFS filesystem using the deadline scheduling, we
achieved the IO performance improvements of 470% and 419% in Android ICS and JB,
respectively, over the existing smartphone device.

Keywords: Android; storage; user-level filesystem; FUSE; write buffer; embedded systems.

Reference to this paper should be made as follows: Jeong, S. and Won, Y. (2014) ‘Buffered
FUSE: optimising the Android IO stack for user-level filesystem’, Int. J. Embedded Systems,
Vol. 6, Nos. 2/3, pp.95–107.

Biographical notes: Sooman Jeong received his BS degrees in Computer Science from Hanyang
University, Seoul, Korea, in 2003. He worked for Samsung Electronics as a Software Engineer.
He is currently working toward his MS degree in the Department of Computer Science, Hanyang
University, Seoul, Korea. His research interests include optimising I/O stack of smartphones.

Youjip Won received his BS and MS degrees in Computer Science from the Seoul National
University, Korea, in 1990 and 1992, respectively. He received his PhD in Computer Science
from the University of Minnesota, Minneapolis, in 1997. After receiving his PhD degree, he
joined Intel as a Server Performance Analyst. Since 1999, he has been with the Department
of Computer Science, Hanyang University, Seoul, Korea, as a Professor. His research interests
include operating systems, file and storage subsystems, multimedia networking, and network
traffic modelling and analysis.

1 Introduction

Smart devices have rapidly spread to the public and
expanded their territory into all home electronics including
phones, TVs, cameras, and game consoles. As they have
become so closely related to our everyday lives, improving
the performance of these smart devices will have a
significant impact on society. A recent study on Android
smartphones suggests that storage is the biggest
performance bottleneck (Kim et al., 2012a).

An Android-based device is no longer a simple media
player but has become a professional content creator.
One piece of clear evidence for this trend is a recent
introduction of an Android-based digital camera with a high
resolution sensor (up to 17 mega-pixels) (Galaxy Camera,
http://www.samsung.com/us/photography/galaxy-camera).
In the future, smart devices including phones, TVs, and
cameras are projected to acquire and play movies at
ultra-HD (3,840 × 2,160 @ 60 frames/sec) resolution.

96 S. Jeong and Y. Won

Android apps will require more IO bandwidth to handle
such high definition multimedia contents.

The Android platform partitions its storage into multiple
logical partitions. There are two main storage partitions in
the Android: data and sdcard. Data partition (/data) is used
to harbour text files, e.g., SQLite database tables, and sdcard
partition (/sdcard) harbours multimedia files, e.g.,
pictures, mp3 files and video clips. In recent smartphones,
both of these partitions share the same storage device.
Android storage has gone through several generations of
evolution. In the early models, as the partition names
suggest, data partition was at internal NAND storage device
(eMMC) and sdcard partition was at external sdcard (HTC
Dream, http://en.wikipedia.org/wiki/HTC_Dream). In the
later generation of Android-based smartphones (Samsung
Galaxy S2, http://www.samsung.com/global/microsite/
galaxys2/html/), data partition and sdcard partition resided
at the same physical device, internal NAND-based storage
and each was allocated a ‘fixed’ size logical partition. Until
this generation, the Android IO stack imposed EXT4
(Mathur et al., 2007) over data partition and VFAT
(Microsoft Corporation, 2000) filesystem over sdcard
partition. VFAT filesystem is de facto standard in embedded
multimedia devices, e.g., cameras, camcorders, TVs, etc.
Therefore, for PC compatibility, it is mandatory that sdcard
partition adopts VFAT filesystem despite its technical
deficiencies (Lim et al., 2013). However, this fixed
partition-based storage configuration causes a significant
underutilisation of the storage space.

Recent Android platform imposes user-level filesystem
(FUSE) for sdcard partition instead of VFAT. This allows
sdcard to freely manoeuvre between the two respective
partitions. The FUSE filesystem exists as a virtual
filesystem layer on top of EXT4, the native filesystem.
While this configuration provides flexibility in managing
the internal storage space, it causes significant overhead on
the FUSE, decreasing the performance of IO accesses to
user partition. For example, in Galaxy S3, sequential write
performance in FUSE imposed filesystem is one fourths of
that in native EXT4 filesystem partition.

The IO access to the Android storage can be categorised
into two types: data partition accesses and sdcard partition
accesses. While the IO accesses to both partitions suffer
from excessive overhead, the source of inefficiency differs
vastly. For data partition accesses, majority of IOs are
created by SQLite operation and the inefficiency lies in the
excessive filesystem journaling (Lee and Won, 2012; Jeong
et al., 2013b). In this work, we focus on optimising the
Android IO stack for handling multimedia files. Sdcard
partition is the default storage partition for mp3, video files,
photographs, and user-downloaded documents, e.g., pdf
files. We found that the IO accesses to sdcard partition
suffer from significant overhead and the apps utilise only
25% of the raw NAND storage bandwidth.

We examined the behaviour of FUSE, native filesystem,
buffer cache, and IO scheduler for user partition accesses
and found that FUSE layer is the dominant source of
overhead. FUSE entails significant overhead mostly due to
the following three reasons:

1 command fragmentation

2 excessive context switch

3 loss of access correlation.

We propose buffered FUSE (bFUSE) framework, which
effectively addresses the above mentioned three technical
issues. bFUSE framework consists of:

1 extended FUSE IO unit

2 FUSE buffer managed by independent thread

3 time driven FUSE buffer synchronisation.

The Android IO stack consists of FUSE, native filesystem
(EXT4), IO scheduler for block device (CFQ), and
underlying eMMC storage. We focus on finding the optimal
combination in the IO stack design choices. We examined
the behaviour of five filesystems (EXT4, XFS, F2FS,
BTRFS, and NILFS2) and three IO schedulers provided by
standard Linux kernel (CFQ, deadline, and NOOP) in a
combinatorial manner. By using bFUSE and deadline-based
IO scheduler and changing the filesystem to XFS, the IO
performance (storage throughput) increases by 470% over
the baseline (existing smartphone). With this optimisation,
we are able to achieve 38 Mbyte/sec sequential write
bandwidth and utilise 99% of the raw device bandwidth in
the Android storage stack.

The remainder of this paper is organised as follows.
Section 2 presents the background. The behaviour of the
Android IO stack is analysed in Section 3. bFUSE is
introduced in Section 4. Section 5 provides optimisations
for the Android IO stack. Section 6 presents the results of
our integration of the proposed schemes. Section 7 describes
other works related to the study, and Section 8 concludes
this paper.

2 Background

2.1 Storage partitions for android-based
smartphones

Android manages several filesystem partitions: /recovery,
/boot, /cache, /system, /data and /sdcard. The
/system partition contains Android-executable files and
pre-installed applications. The /cache partition is used for
updating firmware. The /boot and /recovery partitions
are used for maintaining boot image. There are two types of
main partition: ‘/data’ and ‘/sdcard’. /data partition

 Buffered FUSE: optimising the Android IO stack for user-level filesystem 97

harbours SQLite tables, SQLite journals, and apps. /sdcard
partition usually harbours pictures, video clips, and mp3
files, which are mostly user created contents. We call
/sdcard an ‘sdcard partition’ or a ‘user partition’.

Typical accesses to the data partition (/data) and the
user partition (/sdcard) are small (4 Kbyte) synchronous
writes and large buffered writes (> 64 Kbyte), respectively
(Lee and Won, 2012). The IOs to ‘/data’ partition are
mostly caused by SQLite database operation and excessive
number of IO operations are generated due to the
uncoordinated interactions between SQLite and EXT4 (Lee
and Won, 2012). Sdcard partition does not suffer from
journaling of journal anomaly (Jeong et al., 2013b), but its
performance is severely degraded by excessive overhead on
the FUSE.

Figure 1 Storage configuration for Android-based smartphones

There are two different approaches in configuring data and
user partitions. Earlier smartphone models locate data and
user partitions at different logical partitions (Google Nexus
S, http://www.google.com/nexus/s/; Samsung Galaxy S,
http://www.samsung.com/global/microsite/galaxys/index_2.
html; Samsung Galaxy S2, http://www.samsung.com/global
/microsite/galaxys2/html/). Configuration 1 in Figure 1
corresponds to this configuration. In this configuration, data

and user partitions are formatted with different filesystems,
EXT4 and VFAT, respectively. Recently, the Android
adopted FUSE to manage both data and user partitions
at the same physical partition (Google Galaxy Nexus,
http://www.google.com/nexus/4; Samsung Galaxy S3,
http://www.samsung.com/ae/microsite/galaxys3/en/
index.html). This is to dynamically adjust the partition size,
allowing more flexibility in utilising the storage space, and
to maintain host-compatibility to transfer files to and from
the host PC via multimedia transfer protocol (MTP)
(Osborne et al., 2010). In this configuration, /sdcard is
imposed with FUSE. FUSE imposed filesystem looks and
works like an independent logical partition, and VFS
mounts this partition with FUSE filesystem type. FUSE
imposed filesystem resides in the existing concrete
filesystem as a normal file (or a directory). Configuration 2
in Figure 1 illustrates this configuration. By mounting user
partition (/sdcard) with FUSE, the system allows the users
to freely manoeuvre a proportion of data and user partitions.
However, overhead caused by the FUSE virtualisation
service is prohibitively large.

Table 1 illustrates the information on data and user
partitions of six Android-based smartphones. The models
are sorted in chronological order. In earlier models, e.g.,
Nexus One, data partition uses raw NAND and is managed
by log structured filesystem such as YAFFS2. The more
recent smartphones, e.g., Nexus S (Google Nexus S,
http://www.google.com/nexus/s/), Galaxy S (Samsung
Galaxy S, http://www.samsung.com/global/microsite/
galaxys/index_2.html), and Galaxy S2 (Samsung Galaxy
S2, http://www.samsung.com/global/microsite/galaxys2/
html/), began to use FTL loaded NAND storage device such
as eMMC as their internal storage. In these models, data
partition and user partition reside in separate partitions. In
the most recent Android-based smartphones, such as Galaxy
Nexus and Galaxy S3, data and user partitions reside in the
same partition. User partition is mounted with FUSE and
resides in the data partition as a normal directory (and files).

Table 1 Storage configuration of various smartphone models

Internal storage Ext-storage
Model name Year

/data /sdcard /extSdCard

Nexus One (http://en.wikipedia.org/wiki/Nexus_One) 2010 YAFFS2 VFAT VFAT

Nexus S (http://www.google.com/nexus/s/) 2010 EXT4 VFAT -

Galaxy S (http://www.samsung.com/global/microsite/galaxys/index_2.html) 2010 RFS VFAT VFAT

Galaxy S2 (http://www.samsung.com/global/microsite/galaxys2/html/) 2011 EXT4 VFAT VFAT

Galaxy Nexus (http://www.google.com/nexus/4) 2011 EXT4 FUSE -

Galaxy S3 (http://www.samsung.com/ae/microsite/galaxys3/en/index.html) 2012 EXT4 FUSE VFAT

98 S. Jeong and Y. Won

2.2 Filesystem in user space

FUSE (File system in user space, http://fuse.sourceforge.net/)
is a widely used framework that has been created to enable
the filesystem to be developed in the user space without
modifying kernel source code. The FUSE framework is
especially helpful in realising virtual filesystems. FUSE
allows programmers to directly control filesystem operation
using simple application interface that is equivalent to
mount, open, read, or write in the legacy system calls. On
the other hand, FUSE causes additional context-switch and
memory copy, which lead to significantly low performance.
Some performance may be regained by increasing the speed
of processor, memory, and bus. Rajgarhia and Gehani
(2010) showed that FUSE exhibits similar performance to
the existing kernel level filesystem on a desktop PC.

Figure 2 Overhead of individual storage layers in eMMC on
Galaxy-S3

Notes: NOOP: raw device with NOOP scheduler,

BLK: raw device with CFQ scheduler,
EXT4: EXT4 filesystem with CFQ scheduler,
VFAT: VFAT filesystem with CFQ scheduler,
FUSE: FUSE with EXT4 and CFQ scheduler.

Table 2 Configuration options for each experiment

Label NOOP BLK EXT4 VFAT FUSE

IO scheduler NOOP CFQ CFQ CFQ CFQ
Filesystem EXT4 VFAT EXT4
FUSE Yes

2.3 Dissection of the IO stack overhead

We overhauled the IO stack for sdcard partition access and
analysed the overhead caused by each layer of the storage
stack. We conducted an experiment on a commercially
available smartphone model, Samsung Galaxy S3
(http://www.samsung.com/ae/microsite/galaxys3/en/index.h
tml) (Samsung Exynos 4412 1.4 GHz Quad-core, 2 GB
RAM, 32 GB eMMC1), running Android 4.0.4 (ICS) and
Android 4.1.2 (JB). The version of each of the Android
kernel is 3.0.15 and 3.0.30, respectively. The data partition
resides at internal flash storage and is formatted with EXT4
filesystem. The user partition is imposed with FUSE and
actually resides at the data partition. The default IO
scheduler in the Android is complete fair queuing (CFQ)
(Axboe, 2007).

We generated sequential write workloads with 512 KB
unit size and 512 MB file size using Mobibench (Jeong

et al., 2013a). First, we measured the performance of the
raw device. We ‘open()’ the /sdcard partition and
generated the workloads. To minimise interference on the
storage layers, we used the IO scheduler, ‘NOOP’, instead
of the default ‘CFQ’. CFQ is known to be more CPU
demanding than NOOP (Kim et al., 2009). This experiment
is labelled NOOP. Second, we changed the disk scheduler to
CFQ and still used the raw device. This is to measure the
overhead of disk scheduler. This is labeled BLK. In the third
experiment (EXT4), we measured the filesystem overhead.
We formatted the storage device with EXT4 filesystem and
measured the performance. In the fourth experiment
(VFAT), we used VFAT instead of EXT4. In the fifth
experiment (FUSE), we mounted the FUSE partition, which
resides on EXT4, and measured the IO performance. This is
the default configuration for the user partition in Galaxy S3.
Table 2 summarises the labels and the respective experiment
operations.

Figure 3 IO overhead breakdown

Figure 2 illustrates the results. The labels in the x-axis
denote the five experiments. In ICS and JB, the raw
device (NOOP) yielded sequential write bandwidth of
39 Mbyte/sec and 40 Mbyte/sec, respectively. The
performance decreased by 7% and 5% in ICS and JB,
respectively, when CFQ disk scheduler was used (BLK).
The performance decreased by 14% and 16%, respectively,
when EXT4 filesystem was used. In the default
configuration for the user partition of Galaxy S3, i.e., when
we imposed FUSE on the filesystem, we obtained sequential
write bandwidth of only 7 Mbyte/sec on both Android
versions. This is less than 20% of the physical bandwidth of
the raw device.

In the Android storage stack of JB version, the overhead
of FUSE, EXT4, and IO scheduler account for 79%, 16%,
and 5% of the total overhead, respectively (Figure 3), and
only 20% of the raw device performance is available to the
applications. The IO accesses to the user partition suffer
from excessive software overhead. The dominant fraction of
the overhead is caused by FUSE. The overhead of
filesystem, EXT4, is more significant in a mobile device
with NAND-based storage than in a desktop with an HDD.
In a desktop with an HDD, it is commonly accepted that the
filesystem overhead is 5% of the total overhead
(Giampaolo, 1998). When the Android platform adopts
FUSE instead of VFAT to manage the user partition, the IO
performance decreases by 50%. Based on these

 Buffered FUSE: optimising the Android IO stack for user-level filesystem 99

observations, we carefully conjecture that from Google’s
point of view, the flexible and efficient space management
must be more important than storage performance in current
smartphone models.

3 The Android IO stack for the user partition

3.1 IO characteristics of the user partition accesses

To design an IO subsystem, it is mandatory to acquire a
thorough understanding on the IO workload characteristics
for the respective storage partition. We selected the most
popular Android apps that use sdcard partition: camera,
camcorder, and gallery. For camera application, we took
pictures consecutively for one minute. For camcorder, we
recorded a video for one minute, with full HD resolution
(1,920 × 1,080 @ 30 fps). For gallery, we scrolled the
thumbnails and displayed each picture for one minute. We
ran the experiment on Galaxy S3 with the user partition
mounted with FUSE. We used mobile storage analysis tool
(MOST) (Jeong et al., 2013a) to collect and analyse the
trace. MOST can extract the file type (journal vs. data file)
and block type (data vs. metadata) information for a given
block access. In this study, we examined the IO size
distribution, spatial locality (random vs. sequential), fraction
of synchronous IO, and fraction of accesses for each
filesystem region (metadata, journal, and data) for a given
Android apps. This information provides an important
guideline in designing and optimising the filesystem and the
respective storage stack. The following summarises IO
characteristics of the IOs to the user partition.

• Most of IOs are over 256 Kbyte in size. In camera and
camcorder, 70% of the write requests to the block
device are larger than 256 Kbyte [Figure 4(a)]. This is
an important characteristic in designing the filesystem
as well as the storage device. In particular, the current
FUSE splits the incoming IO requests into 4 KB units.
When the incoming request is large, this splitting
behaviour of the FUSE causes significant overhead. For
the data partition accesses in Android, 64% of the write
operations is 4 Kbyte (Jeong et al., 2013b).

• Over 90% of the total IOs are sequential. For sdcard
partition accesses, sequential IOs account for over 90%
of the total IOs [Figure 4(b)]. The percentages were
near 100% for camera and camcorder. We have
observed an entirely different access characteristic
in the data partition accesses. In the data partition
accesses, random writes constitute a dominant fraction
(75%) of the entire write operations.

• Over 70% of the total IOs are buffered. Buffered
IOs accounted for over 70% of all IOs in all three
applications [Figure 4(c)]. The percentage of buffered
IOs reached 100% for camcorder application. This
is in direct contrast to the data partition access
characteristics (Jeong et al., 2013b). In the data
partition accesses, 70% of the writes are synchronous.
They are caused by SQLite database behaviour.

Figure 4 IO distribution of file types, block types, IO modes,
randomness, and IO size, (a) IO size (b) locality (c) IO
modes (d) block types

(a)

(b)

(c)

(d)

Note: The number at the end of each bar indicates the
number of respective block IO for R (read) and W
(write).

• Journal and metadata writes are negligible. We
categorised the IO accesses into three groups based on

100 S. Jeong and Y. Won

the type of filesystem region: data, metadata, and
journal. Accesses to the filesystem journal and
metadata are negligible. Data writes account for 95%
and 97% of the total IO counts for camera and
camcorder, respectively [Figure 4(d)]. In the case of
gallery, data reads account for almost 100% of the total
read counts and data writes account for 30% of the total
write counts.

3.2 Anatomy of the FUSE behaviour

We observed that 79% of all IO overhead, which is all IO
accesses to sdcard partition, is caused by FUSE (Figure 3).
We examined the call path of accessing the sdcard partition
to analyse the cause for this overhead. Figure 5
schematically illustrates the mechanism for a ‘write()’
system call. When the application makes a write system call
to the FUSE partition, VFS forwards the request to the
FUSE layer. The FUSE layer inserts this request to its own
request queue, which resides in the kernel. The OS hands
over the CPU to another thread after it inserts the write
request to the queue. User-level FUSE library reads the
FUSE request queue through VFS interface. FUSE library is
run by its own thread. The FUSE layer splits the IO request
in the request queue into 4 Kbyte units and returns them to
the FUSE library. The FUSE library translates the incoming
IOs into the filesystem operations appropriate for EXT4 (or
other existing concrete filesystem where FUSE resides) and
creates the request.

Figure 5 write() path of the FUSE framework (see online
version for colours)

We identified the main source of FUSE’s inefficiency to be
IO fragmentation. The FUSE library removes an IO request
from the FUSE mount filesystem in 4 Kbyte units, which
we call ‘FUSE IO units’. Since the default FUSE IO unit is
4 Kbyte, the FUSE library splits a large IO request from the
application into multiple IO requests. This IO fragmentation
increases the system call processing overhead and the
number of context switches. Also, IO fragmentation can
dismantle the spatial locality that the original IO stream
bears. Since large IO requests are split into multiple

requests, it is possible that a set of split requests are
interleaved with other IO streams, e.g., journal buffer flush
and metadata synchronisation. As a result, the aggregate
stream may look ‘more’ random. It is critical for
NAND-based flash storage to properly identify the
randomness and hotness of the underlying traffic (Lee et al.,
2008; Hsieh et al., 2006). Loss of access locality may
significantly aggravate the inefficiency of the underlying
storage behaviour.

In the Android IO stack, the side effect of IO
fragmentation amplifies dramatically because most of
sdcard accesses are large sized (> 256 Kbyte) and mobile
devices have relatively low CPU and memory copy
performance. Subsequently, the overhead of going through
the FUSE layer becomes prohibitively large. We physically
examined the overhead of IO fragmentation. We varied the
FUSE IO size from 4 Kbyte to 512 Kbyte and measured the
throughput for sequential write. IO size denotes the unit size
into which the FUSE library splits the IO request at the
request queue. Figure 6 illustrates the results. On both
Android versions, with 4 Kbyte FUSE IO unit size, the
internal storage yielded only 7 Mbyte/sec. With 512 Kbyte
IO unit size, the internal storage yielded 30 Mbyte/sec
sequential write throughput.

Figure 6 Throughput vs. FUSE IO unit size

Notes: Sequential buffered write, internal eMMC,

file: 512 Mbyte, record-size: 512 Kbyte.

Figure 7 Number of context switches vs. FUSE IO size
(see online version for colours)

Notes: Sequential buffered write, internal eMMC,

file: 512 Mbyte, record size: 512 Kbyte.

We examined the number of context switches for each
FUSE IO unit size using Mobibench (Jeong et al., 2013a).
Figure 7 illustrates the results. The total number of context
switches decreases as the IO unit size increases.

 Buffered FUSE: optimising the Android IO stack for user-level filesystem 101

4 Buffered FUSE

4.1 Design

We carefully examined the IO workload characteristics of
sdcard accesses in the Android platform and designed a
novel user-level file system mechanism, called bFUSE, to
effectively address the IO fragmentation issue of the
FUSE. bFUSE is specifically designed for the Android IO
stack where a dominant fraction of IOs are large sized
(> 256 Kbyte) sequential (and buffered) writes. bFUSE
practically eliminates all overhead of the FUSE layer and
increases the efficiency of the FUSE while preserving the
flexibility in the storage space management.

Figure 8 write() path of bFUSE framework (see online
version for colours)

Despite its dramatic performance impact, the design and
implementation of bFUSE are rather simple and straight
forward. bFUSE consists of the following key ingredients.
First is extended FUSE IO unit size. In bFUSE, the FUSE
IO unit increases from 4 Kbyte to 512 Kbyte. Note that
about 70% of the IO accesses are larger than 256 Kbyte
[Figure 4(a)]. Second, we introduce a FUSE buffer between
the FUSE library and VFS. Upon reading a request from
legacy FUSE request queue, the sdcard service immediately
issues the request to the underlying filesystem. In bFUSE,
the FUSE library takes incoming requests from request
queue in kernel and places them in the FUSE buffer. Third,
we introduce management thread for the FUSE buffer
which periodically flushes the FUSE buffer contents
to the underlying filesystem. Thread-based FUSE buffer
management enables the FUSE library, i.e., FUSE, to
process IO requests concurrently with the FUSE buffer
management exploiting multiple cores of modern mobile
CPU. Figure 8 illustrates the organisation of bFUSE
framework. The FUSE buffer resides at the user space
(within the FUSE library).We implemented FUSE buffer at
the user address space instead of the kernel space to reduce
the number of system calls and to dynamically adjust the
FUSE buffer size.

4.2 Implementation

A FUSE buffer is an array of fixed size entries. An entry
consists of buffer header and buffer data. Buffer header
contains file descriptor, offset, and size. Buffer data is a
fixed size region to hold data blocks for write operations. A
sufficiently large region, 2 Mbyte, is allocated to an entry so
that it can hold consecutive write requests in a single entry.
Figure 9 illustrates the structure of the buffer.

When the FUSE library inserts a request to the FUSE
buffer, it searches the FUSE buffer (write buffer) entries for
the same file descriptor. If the incoming request and the
existing FUSE buffer entry form a consecutive region of a
file, the FUSE library places the data blocks of the incoming
request in the data block region of the existing entry and
updates the size field. When the data region of the existing
entry is full, the FUSE library allocates a new entry in the
FUSE buffer.

Figure 9 Structure of bFUSE (see online version for colours)

Figure 10 Effect of separate thread management under various
FUSE buffer sizes (see online version for colours)

Notes: Sequential buffered write, internal eMMC, filesystem:

EXT4, file size: 512 Mbyte, record size: 512 Kbyte.

bFUSE may negatively affect the overall IO performance
due to memory copy overhead and increased latency to
flush IO requests to the filesystem. The size of the region is
user configurable. We performed a series of experiments to
determine the right size for the data region. We managed the
bFUSE with producer-consumer paradigm and allocated a
separate thread for flushing the buffer. Figure 9 illustrates
the structure.

The FUSE buffer manager regularly flushes buffer
entries. In addition, it flushes buffer entries for a given file
when the file is closed, or when the request reaches the end
of the file, or when fsync()/fdatasync() is called. The
performance of the user partition accesses relies heavily on
the interval at which the FUSE buffer manager flushes the

102 S. Jeong and Y. Won

contents. We examined the IO performance under various
flush intervals and found that 10 msec yields the best
performance. In all experiments, flush interval of FUSE
buffer manager was set to 10 msec. We measured the
throughput of sequential buffered writes (512 KB FUSE IO
unit size) both with and without the FUSE buffer manager.
Figure 10 illustrates the results. With single threaded
implementation of bFUSE, throughput actually decreases
with introduction of bFUSE, without the FUSE buffer
manager. With the FUSE buffer manager, we achieved 8%
increase in performance. Based on the detailed examination
of the process, we believe the reason for this performance
gain is reduced randomness in the incoming IOs. The
objective of the FUSE buffer is to coalesce multiple IO
requests into one so that we can reduce the aggregate system
call overhead and make the larger fraction of IOs sequential.
Most NAND flash storages are designed to exploit
sequentiality of the incoming IOs (Lee et al., 2005) to
improve the IO performance and to lengthen the storage life
time.

We examined the ratio of random IOs under various
FUSE buffer size. Figure 11 illustrates the results. We can
see that as the ratio of random IOs decreases, the throughput
increases. With 8 Mbyte FUSE buffer, the ratio of random
IOs to the entire IOs is the smallest.

Figure 11 Fraction of random IOs (IO count)

Notes: Sequential buffered write on internal eMMC

through FUSE with different size of FUSE IO unit.
File size: 512 Mbyte, record size (app): 512 Kbyte.

The FUSE buffer successfully reduces the number of
journal and metadata updates and the number of system
calls reducing the system call overhead. Also, by coalescing
multiple write requests into one, there is less chance that
sequential IOs issued by the application are inter-mixed
with other IO streams, e.g., journal flush. We examined the
block access trace for a sequential write of 512 Mbyte file
with and without FUSE buffer. Figure 12 illustrates the
results. Without the FUSE buffer, writing a file consists of
higher number of smaller write bursts [Figure 12(a)]. With
the FUSE buffer, writing a file consists of lower number of
larger write bursts. Also, with the write buffer, there are
fewer journal updates and metadata updates. Occasional
updates in the 0–0.5 × 103 LBA range and 2.5 × 103 range
are for metadata updates and journal updates, respectively.

The FUSE buffer in the FUSE layer brings a number of
improvements to the Android storage stack: reductions in
the number of write() system calls, the number of context
switches, randomness in the underlying IO traffic, and
filesystem journaling overhead.

Figure 12 Effect of FUSE buffer on randomness of the IO
accesses, (a) without FUSE buffer (b) with FUSE
buffer (see online version for colours)

(a)

(b)

Notes: Sequential buffered write on internal eMMC through
FUSE with/without bFUSE. Base filesystem: EXT4,
file size: 512 Mbyte, record size (app): 512 Kbyte.

Figure 13 Effect of IO scheduling policy

Notes: Sequential buffered write on internal eMMC

through FUSE with three different IO scheduler.
File size: 512 Mbyte, record size: 512 Kbyte.

5 Optimising the Android storage stack

In an effort to optimise the entire IO stack, we examined the
throughput of the user partition under five filesystems,
EXT4, XFS, F2FS, BTRFS, and NILFS2; and three IO
schedulers, NOOP, CFQ, and deadline; in a combinatorial
manner.

 Buffered FUSE: optimising the Android IO stack for user-level filesystem 103

5.1 IO scheduler

Linux kernel currently provides CFQ, NOOP, and deadline
IO schedulers, with CFQ being the default. These
schedulers are designed for HDDs and should be
reexamined in the context of NAND-based storage devices
(Wang et al., 2013; Shen and Park, 2013). We compared the
performance of CFQ, NOOP, and deadline as the IO
scheduler. Figure 13 shows the results. The default IO
scheduler, CFQ, yielded the worst performance among the
three, with deadline performing 6% better than CFQ. With
8 Mbyte FUSE buffer and deadline driven scheduling, the
sequential write throughput increases by 12% compared to
the CFQ IO scheduler.

5.2 Filesystem

We examined the performance of five widely used
filesystems in Linux: EXT4, BTRFS, NILFS, XFS, and
F2FS. We examined how well these filesystems match with
the FUSE framework. XFS (Sweeney et al., 1996) is a
journaling filesystem designed for enterprise class
storage systems. BTRFS (Rodeh et al., 2012) is
copy-on-write-based filesystem and is envisioned as the
future filesystem for Linux OS. NILFS2 is a log-structured
filesystem (Konishi et al., 2006). We included NILFS2 to
examine the effectiveness of the legacy log structured
filesystem on the Android platform. Flash Friendly
Filesystem, F2FS (F2FS Patch on LKML, https://lkml.org/
lkml/2012/10/5/205), is the youngest among the five,
specifically designed for flash-based storage.
mkfs tools for F2FS, NILFS2, and BTRFS are ported

for ARM processor. Since F2FS is recently merged into the
standard Linux kernel 3.8 (F2FS File-System Merged
Into Linux 3.8 Kernel, http://www.phoronix.com/scan.php?
page=news_item&px=MTI1OTU), we backported F2FS to
Linux 3.0.15 (Android ICS for Galaxy S3) and Linux 3.0.30
(Android JB for Galaxy S3), respectively. We measured the
performance of sequential writes (buffered IOs). IO size
was 512 Kbyte. FUSE IO unit size was 512 Kbyte and
FUSE buffer was not used. Figure 14 shows the throughput
for the different filesystems.

Figure 14 Throughput vs. fraction of sequential IO counts

Notes: Sequential buffered write on internal eMMC through

FUSE with five different base filesystems. File size: 512
Mbyte, record size: 512 Kbyte, FUSE IO Size: 512 Kbyte,
without FUSE buffer.

Without the FUSE buffer, XFS and F2FS exhibited
17% and 10% improvements, respectively, over EXT4
on both Android versions. BTRFS exhibited 5%
improvement over EXT4 on ICS while the performance
decreased by 20% on JB. NILFS2 performed significantly
worse than the rest. In addition to the write requests
to the storage device, there were occasional kernel
generated IO requests, such as journal updates and metadata
updates. These requests negatively affect the filesystem
performance because it breaks the sequentiality in the
underlying IO stream. Figure 14 also shows the fraction of
sequential IOs to all IO requests to the filesystem. The
filesystem’s performance coincides with the fraction of
sequential IOs.

5.3 Analysis

We analysed block level access patterns in these
filesystems. Figure 15 shows the time series of block
accesses in writing 512 Mbyte. X-axis is time and Y-axis is
the logical block address. It only shows write() operation.
Sequential write patterns are commonly observed in all
filesystem block traces. IO requests in the lower LBA
region (0~0.5 × 103) are for metadata updates.

The FUSE buffer and extended FUSE IO unit are
designed to mitigate or to remove the overhead caused by
IO fragmentation. We examined in detail how these features
contribute to minimising the overhead of FUSE. We
generated sequential write workloads and measured the
number of system calls, the number of block IO requests
issued to the NAND storage device, and the number of
metadata and journal updates. Without extended FUSE IO
unit, writing 512 Mbyte consists of 128,000 write system
calls since FUSE library splits the incoming IO requests into
4 Kbyte units. By increasing the FUSE IO unit size to
512 Kbyte, the number of write system calls decreases by
× 128 (from 128,000 to 1,000). With 8 Mbyte FUSE buffer,
we further reduce the number of system calls by × 4 (from
1,000 to 249). With bFUSE (extended FUSE IO and a
FUSE buffer), we are able to achieve sheer × 512 reduction
in the number of system calls (from 128,000 to 249). On
average, bFUSE coalesces four write system calls from the
application into one write system call with the help of the
FUSE buffer. IO requests shown in Table 3 are the requests
issued to the internal storage. Since the maximum IO size is
512 Kbyte in eMMC standard (e-MMC, 2011), the number
of IO requests remains the same regardless of FUSE buffer.
In data partition accesses, journal and metadata update
operations constitute a dominant fraction of all IO
operations (Lee and Won, 2012). We found that for the user
partition accesses, i.e., buffered writes, the journal and
metadata update overhead is negligible.

104 S. Jeong and Y. Won

Table 3 The number of system calls, IO operations and metadata/journal updates

Filesystem EXT4 XFS F2FS BTRFS NILFS2

FUSE 128,000 128,000 128,000 128,000 128,000
Nobuf 1,000 1,000 1,000 1,000 1,000

of pwrite()

bFUSE 249 249 249 249 249
FUSE 1,048 1,121 1,044 1,041 1,077
Nobuf 1,032 1,112 1,048 1,016 1,070

of IO request

bFUSE 1,030 1,099 1,049 1,011 1,059
FUSE 23 11 26 15 153
Nobuf 12 12 33 9 137

Metadata/journal

bFUSE 11 6 35 9 142

Note: FUSE: baseline, nobuf: bFUSE without FUSE buffer, bFUSE: bFUSE with 8 Mbyte FUSE buffer.

Figure 15 Block access pattern, sequential buffered write on internal eMMC through FUSE with five different base filesystems,
(a) EXT4 (b) XFS (c) F2FS (d) BTRFS (e) NILFS2 (see online version for colours)

(a) (b)

(c) (d)

(e)

Notes: File size: 512 Mbyte, record size: 512 Kbyte.

6 Combined study

We examined the performance of the user partition accesses
under each combination of storage stack options. There are
five different filesystems, EXT4, XFS, F2FS, BTRFS, and
NILFS2; and three IO schedulers, NOOP, CFQ, and
deadline. We tested the storage throughputs under 4 Kbyte
to 512 Kbyte FUSE IO unit sizes and 2 Mbyte to 64 Mbyte
FUSE buffer sizes. It is reported that IO characteristics of
Android-based smartphones are not sensitive to hardware
models (Kim et al., 2012a; Lee and Won). Galaxy S3 with

Android 4.0.4 (ICS) and Android 4.1.2 (JB) are used as
baseline. In the baseline configuration, FUSE IO unit size is
4 Kbyte, and the default IO scheduler is CFQ.

Figure 16 shows the performances of five filesystems.
Experiment for each filesystem was conducted in four steps:
First, we tested the baseline configuration, ‘base’, which is
CFQ IO scheduler with FUSE IO unit of 4 Kbyte. Second,
FUSE IO unit is increased to 512 Kbyte, shown as ‘512 KB
IO’. Third, the IO scheduler is changed to deadline, keeping
FUSE IO unit at 512 Kbyte. This step is labelled ‘deadline’.

 Buffered FUSE: optimising the Android IO stack for user-level filesystem 105

Fourth, the FUSE buffer is set at 8 Mbyte (with 512 Kbyte
FUSE IO and deadline IO scheduler). This step is labelled
‘bFUSE’.

In EXT4 filesystem on both Android versions, extended
IO size led to about 350% performance enhancement,
change of IO scheduler added about 5% enhancement, and
bFUSE added 12% more enhancement. Performance
enhancements in XFS, F2FS, and BTRFS for each step were
similar. It is worth noting that a FUSE buffer needs to be
managed by a separate thread so as not to block the caller.
Otherwise, the performance gain becomes less significant.

Figure 16 Effect of individual optimisation options, (a) ICS
(b) JB

(a)

(b)

Notes: Sequential buffered write on internal eMMC with
different filesystem. File size: 512 Mbyte, record
size (app): 512 Kbyte.

Figure 17 Throughput of optimised android storage stack for
user partition accesses

Notes: Sequential buffered write on internal eMMC. IO

scheduler: deadline, file size: 512 Mbyte, record
size (app): 512 Kbyte.

Finally, we combine and summarise the results of all
experiments (Figure 17). For ease of comparison, the
throughput was normalised to the raw device throughput,

MAX (38.6 Mbyte/s and 39.8 Mbyte/s for ICS and JB,
respectively). In EXT4 with bFUSE (512 Kbyte FUSE IO
size and 8 Mbyte FUSE buffer), we achieved 95% and 91%
of the raw device bandwidth for ICS and JB, respectively.
With XFS filesystem and the bFUSE (512 Kbyte FUSE IO
unit, 8 Mbyte FUSE buffer, deadline scheduler), we
eliminated most of the software overhead and achieved 99%
and 91% of the raw device throughput for ICS and JB,
respectively. This corresponds to spectacular improvement
of 470% and 419% from the original baseline configuration
for ICS and JB, respectively.

7 Related work

In the past few years, many studies have examined the
performance of NAND flash-based storage devices. Kim
et al. (2012a) showed that the determinant of mobile device
performance is not the network speed but storage, which is
contrary to popular belief.

Kim et al. (2012b) conducted a study on improving
buffer cache management in order to improve IO
performance of smartphones using low-cost flash memory.
They developed a new buffer cache replacement scheme,
spatial clock, which addresses the issue of spatial locality
that has been neglected in other algorithms. These
algorithms, including LRU, clock (Bensoussan et al.,
1972)], Linux2Q (Bovet and Cesati, 2005), CFLRU (Park
et al., 2006), LRUWSR (Jung et al., 2008), FOR (Lv et al.,
2011), and FAB (Jo et al., 2006), focused only on reducing
write cycles. Spatial clock is based on the clock algorithm,
but page frame is aligned with the logical sector number.
Alignment was achieved using AVL tree (Adelson-Velskii
and Landis, 1963).

Lee and Won (2012) performed comprehensive analysis
on the Android IO workload. They performed trace driven
analysis on 14 apps from various categories, e.g., contact,
calendar, gallery, camera, twitter, etc. They found that
typical IOs to data partition (/data) and sdcard partition
(/sdcard) are 4 Kbyte write followed by fsync() and
large size buffered write (> 64 Kbyte), respectively. They
also found that SQLite and EXT4 interact in an unexpected
way and put significant stress on the underlying storage. On
the other hand, Chiang and Lo (2006) proposed a
component-based VFAT file system on embedded system,
which improved performance of VFAT by supporting
RAM-based storage and disk-based storage. They not only
saved system memory but also improved performance of
read and write operation on resource-limited embedded
system environment.

Studies have been done on the relationship between the
actions of FTL and the unnecessary writes generated by the
EXT4 journal. Jang and Lim (2012) asserted that FTL
should be located on the host side instead of NAND
controller to be more efficient, taking into account the
resource constraints (RAM and CPU) for page mapping
table and redundant writing by the journal. They modified
MTD and JBD of Linux 2.6.35 and compared the
performance of host-side FTL to that of controller-side FTL

106 S. Jeong and Y. Won

on NANDsim. Random write IOPS improved about 20% to
30%. Although this study is significant in that it presents a
solution to overcoming hardware limitations of FTL as well
as performance reduction caused by excess journaling, it
does not provide specific instructions on implementing the
proposed method nor explains the cause for performance
enhancement. Falaki et al. (2010) analysed various
smartphone usage patterns. On top of the performance
increases achieved by these earlier works (Kim et al.,
2012a; Lee and Won, 2012), bFUSE provides an effective
solution to further enhance the performance of the Android
IO stack.

8 Conclusions

The role of smartphones is changing from a simple office
assistant, which handles contact management, schedule
management, and e-mails, to a professional device for
creating various types of multimedia contents, replacing
cameras and camcorders. There is a significant demand for
higher performance storage subsystem to harbour better
quality pictures and videos. The Android storage stack
allocates a separate storage partition for user-created
multimedia files. The Android storage stack for the user
partition, as it currently stands, is an uncoordinated
collection of software layers with excessive overhead. It can
draw only 20% of the storage performance. In this study, we
focus our efforts on optimising the Android IO stack for
sdcard partition accesses. We characterised the IO workload
to sdcard partition, examined the overhead of individual
software layers, and found the optimal storage configuration
for sdcard partition accesses. We found that a dominant
fraction of software overhead is caused by FUSE. We
propose bFUSE, bFUSE, to address the performance issues
of the legacy FUSE. We examined the performances of five
filesystems and three disk schedulers to find the best match
for the bFUSE framework. After applying 512 Kbyte FUSE
IO unit and 8 Mbyte FUSE buffer in bFUSE, and with XFS
in the deadline scheduling mode, the proposed Android IO
stack achieved 470% and 419% performance improvements
in Android 4.0.4 (ICS) and Android 4.1.2 (JB), respectively,
over the existing state of the art smartphone model with the
default options. The observed performance corresponds to
99% and 91% of the raw device bandwidth in ICS and JB,
respectively. The proposed Android IO stack opens up a
new opportunity for the existing smartphone storage to
handle higher definition multimedia contents such as
ultra-high definition quality video recording (3,840 × 2,160
@ 60 frames/sec).

Acknowledgements

This work is sponsored by IT R&D programme
MKE/KEIT. [No. 10035202, Large Scale hyper-MLC SSD
Technology Development], and by IT R&D programme
MKE/KEIT. [No. 10041608, Embedded system Software
for New-memory-based Smart Device].

References
Adelson-Velskii, M. and Landis, E.M. (1963) An Algorithm for the

Organization of Information, Vol. 146, pp.263–266, Defense
Technical Information Center, in Russian, English translation
by Myron J. Ricci in Soviet Math. Doklady, Vol. 3,
pp.1259–1263, 1962.

Axboe, J. (2007) ‘CFQ IO scheduler’, in Presentation at Linux.
Conf. AU, January.

Bensoussan, A., Clingen, C.T. and Daley, R.C. (1972)
‘The multics virtual memory: concepts and design’,
Communications of the ACM, Vol. 15, No. 5, pp.308–318.

Bovet, D. and Cesati, M. (2005) Understanding the Linux Kernel,
O’Reilly Media, Incorporated, Sebastopol, CA, USA.

Chiang, M-L. and Lo, C-J. (2006) ‘Lyrafile: a component-based
vfat file system for embedded systems’, International Journal
of Embedded Systems, Vol. 2, No. 3, pp.248–259.

Embedded Multi-Media Card (e-MMC) (2011) Electrical Standard
(4.5 Device), June.

F2FS File-System Merged into Linux 3.8 Kernel [online]
http://www.phoronix.com/scan.php?page=news_item&px=
MTI1OTU (accessed 8 November 2013).

F2FS Patch on LKML [online]
https://lkml.org/lkml/2012/10/5/205 (accessed 8 November
2013).

Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D.,
Govindan, R. and Estrin, D. (2010) ‘Diversity in smartphone
usage’, in Proc. of the 8th International Conference on
Mobile Systems, Applications, and Services, ACM,
pp.179–194.

File system in user space [online] http://fuse.sourceforge.net/
(accessed 8 November 2013).

Galaxy Camera [online]
http://www.samsung.com/us/photography/galaxy-camera
(accessed 8 November 2013).

Galaxy S2 [online]
http://www.samsung.com/global/microsite/galaxys2/html/
(accessed 8 November 2013).

Giampaolo, D. (1998) Practical File System Design with the
Be File System, Morgan Kaufmann Publishers Inc.,
San Francisco, CA.

Google Galaxy Nexus [online] http://en.wikipedia.org/wiki/
Nexus_4 (accessed 8 November 2013).

Google Nexus S [online] http://en.wikipedia.org/wiki/Nexus_S
(accessed 8 November 2013).

Hsieh, J-W., Kuo, T-W. and Chang, L-P. (2006) ‘Efficient
identification of hot data for flash memory storage systems’,
TOS, Vol. 2, No. 1, pp.22–40.

HTC Dream [online] http://en.wikipedia.org/wiki/HTC_Dream
(accessed 8 November 2013).

Jang, B. and Lim, S-H. (2012) ‘Storage subsystem implementation
for mobile embedded devices’, in Park, J.H., Jeong, Y-S.,
Park, S.O. and Chen, H-C. (Eds.): Embedded and Multimedia
Computing Technology and Service, Lecture Notes in
Electrical Engineering, Vol. 181, pp.197–204, Springer,
Netherlands.

Jeong, S., Lee, K., Hwang, J., Lee, S. and Won, Y. (2013a)
‘AndroStep: Android storage performance analysis tool’, in
ME13: In Proceedings of the First European Workshop on
Mobile Engineering, Lecture Notes in Electrical Engineering,
Aachen, Germany, 66 February, Vol. 215.

 Buffered FUSE: optimising the Android IO stack for user-level filesystem 107

Jeong, S., Lee, K., Lee, S., Son, S. and Won, Y. (2013b) ‘I/O stack
optimization for smartphones’, in Proc. of the USENIX
Annual Technical Conference.

Jo, H., Kang, J.U., Park, S.Y., Kim, J.S. and Lee, J. (2006) ‘FAB:
flash-aware buffer management policy for portable media
players’, IEEE Trans. on Consumer Electronics, Vol. 52,
No. 2, pp.485–493.

Jung, H., Shim, H., Park, S., Kang, S. and Cha, J. (2008)
‘LRU-WSR: integration of LRU and writes sequence
reordering for flash memory’, IEEE Transactions on
Consumer Electronics, Vol. 54, No. 3, pp.1215–1223.

Kim, H., Agrawal, N. and Ungureanu, C. (2012a) ‘Revisiting
storage for smartphones’, in Proc. of the 10th USENIX
Conference on File and Storage Technologies, San Jose, CA,
USA, February.

Kim, H., Ryu, M. and Ramachandran, U. (2012b) ‘What is a good
buffer cache replacement scheme for mobile flash storage?’,
in Proceedings of the 12th ACM SIGMETRICS/Performance
joint international conference on Measurement and Modeling
of Computer Systems, ACM, pp.235–246.

Kim, J., Oh, Y., Kim, E., Choi, J., Lee, D. and Noh, S.H. (2009)
‘Disk schedulers for solid state drives’, in EMSOFT 2009: 7th
ACM Conf. on Embedded Software, pp.295–304.

Konishi, R., Amagai, Y., Sato, K., Hifumi, H., Kihara, S. and
Moriai, S. (2006) ‘The Linux implementation of a
log-structured file system’, SIGOPS Oper. Syst. Rev., July,
Vol. 40, No. 3, pp.102–107.

Lee, K. and Won, Y. (2012) ‘Smart layers and dumb result: IO
characterization of an android-based smartphone’, in
EMSOFT 2012: In Proc. of International Conference on
Embedded Software, Tampere, Finland, 7–12 October.

Lee, S., Shin, S., Kim, Y-J. and Kim, J. (2008) ‘LAST:
locality-aware sector translation for NAND flash
memory-based storage systems’, SIGOPS Oper. Syst. Rev.,
Vol. 42, No. 6, pp.36–42.

Lee, S.W., Park, D.J., Chung, T.S., Lee, D.H., Park, S.W. and
Songe, H.J. (2005) ‘FAST: a log-buffer based ftl scheme with
fully associative sector translation’, The UKC, August.

Lim, S-H., Lee, S. and Ahn, W-H. (2013) ‘Applications IO
profiling and analysis for smart devices’, Journal of Systems
Architecture, October, Vol. 59, No. 9, pp.740–747.

Lv, Y., Cui, B., He, B. and Chen, X. (2011) ‘Operation-aware
buffer management in flash-based systems’, in Proceedings of
the 2011 International Conference on Management of Data,
ACM, New York, NY, USA, pp.13–24.

Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A. and
Vivier, L. (2007) ‘The new ext4 filesystem: current status and
future plans’, in Proc. of the Linux Symposium, Ottawa.

Microsoft Corporation (2000) FAT32 File System Specification
[online] http://microsoft.com/whdc/system/platform/
firmware/fatgen.mspx (accessed 8 November 2013).

Nexus One (Google/HTC)
http://en.wikipedia.org/wiki/Nexus_One (accessed
8 November 2013).

Osborne, R., Van Zoest, A., Robinson, A., Fudge, B.,
Srinivasan, M., Fry, K. et al. (2010) Media Transfer Protocol,
16 February, US Patent 7,664,872.

Park, S., Jung, D., Kang, J., Kim, J. and Lee, J. (2006) ‘CFLRU: a
replacement algorithm for flash memory’, in Proc. of the
2006 International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, ACM, New York, NY,
USA, pp.234–241.

Rajgarhia, A. and Gehani, A. (2010) ‘Performance and extension
of user space file systems’, in Proceedings of the 2010 ACM
Symposium on Applied Computing, Sierre, Switzerland, SAC
‘10, ACM, New York, NY, USA, pp.206–213.

Rodeh, O., Bacik, J. and Mason, C. (2012) ‘BTRFS: the Linux
B-tree filesystem’, IBM Research Report, July.

Samsung Galaxy S [online] http://www.samsung.com/global/
microsite/galaxys/index_2.html (accessed 8 November 2013).

Samsung Galaxy S3 [online] http://www.samsung.com/ae/
microsite/galaxys3/en/index.html (accessed 8 November
2013).

Shen, K. and Park, S. (2013) ‘FlashFQ: a fair queueing I/O
scheduler for flash-based SSDs’, in Proc. of the USENIX
Annual Technical Conference.

Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M.
and Peck, G. (1996) ‘Scalability in the XFS file system’, in
Proc. of the USENIX Annual Technical Conference, USENIX
Association, Berkeley, CA, USA, p.1.

Wang, H., Huang, P., He, S., Zhou, K. and Li, C. (2013) ‘A novel
I/O scheduler for SSD with improved performance and
lifetime’, in Mass Storage Systems and Technologies (MSST).

