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Abstract: 

As the number of smartphone users increases, so do the computational power of the smartphone 

devices and the number of applications that exploit network and storage; however, as multiple applications are 

running concurrently, fighting for limited resources such as CPU and storage, it is becoming more difficult to 

satisfy users’ everyday needs. Although smartphone manufacturers and application developers are striving to 

improve the efficiency and the performance of applications, their effort seems to fall far behind in solving low 

IO performance problem. In this paper, we captured and analyzed IO traces of two users who exhibit different 

IO patterns; user1 mostly used the smartphone to listen to music and read postings on Facebook application 

and user2 used Digital Multimedia Broadcasting (DMB) or Internet Protocol Television (IPTV) to watch videos. 

From this experiment, we found the following: about 28% of all traffic was generated during 11:00 to 12:00 and 

21:00 to 22:00; /data partition received 37% of all IO traffic; the number of write IOs was 12 times higher than 

the number of read IOs; about 33% of all IOs accessed miscellaneous files; and SQLite and SQLite-journal 

accesses constitute about 21% and 26% of all IOs, respectively. 
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I.  INTRODUCTION 

As smartphones dominate mobile phone market and are becoming a part of our everyday lives, smart devices 

have replaced many of the special purpose handheld devices such as feature phones, cameras, and MP3 players. 

The smartphones are now capable of making phones calls, taking pictures, playing music, and even checking 

security camera installed in a house from anywhere and anytime. Release of wearable devices, such as smart 

watch and Google glass, is ever diversifying the use of smartphones. Many of recent market analysis show that 

sales of handheld smart devices have overwhelmed the sales of desktop computers [21]. 

As the technology trends and interests of research community shifted, researches in the field of IO 

characterization have also touched various sections of computing environments from enterprise servers [1, 2], 

web servers [3, 4], and OLTP servers [5] to desktop PCs [6, 7]. Researchers are now actively analyzing 

smartphones with respect to IO patterns [8, 9] and IO performance analysis [10], as well as optimizing the mobile 

IO stack [11] and improving the IO performance [12-14]. Although smartphone manufacturers are pushing the 

performance of their hardware to its limit, users’ requirements are not yet satisfied by their effort. 



Since smart devices are prone to power failures, reliability and integrity of data are the most important issues 

in smartphones. The only way to ensure data integrity is to store the data in a persistent and nonvolatile storage 

medium. Applications and kernel exploit database as a solution to store not only user sensitive data but also 

managerial information to recover from software and hardware failures. Since storage devices are known as one 

of the main causes of performance degradation [10], we believe understanding the IO pattern of smart devices 

gives us insight into designing efficient IO stack in smartphones as well as improving ways to implement 

software. 

In this work, we analyze the IO patterns observed in everyday use of smartphones. We recruited two 

volunteers to use Nexus5 from 19:00 on April 26, 2014 to 19:00 on April 27, 2014 and acquired IO traces 

generated by them. After acquiring user IO traces, we analyzed IO frequency, the number of IOs on different 

partitions, the number of IOs per file type, and the ratio of synchronous IOs to buffered IOs. Some of our findings 

are as follows: 28% of all traffic was generated during 11:00 to 12:00 and 21:00 to 22:00; /data partition received 

approximately 37% of all IO traffic; the number of write IOs was 12 times higher than the number of read IOs; 

33% of all IOs accessed miscellaneous files; and IOs from SQLite and SQLite-journal constitute about 21% and 

26% of total IOs, respectively. 

II. BACKGROUND 

A. IO Stack of Android  

Android is Linux based mobile platform developed by Google and is the most popular mobile platform [15]. 

Since Android is open source project, users may change it freely to improve its performance and customize 

various features. Recently, as Android is penetrating areas other than smartphones, understanding how Android 

IO stack works is becoming more important than before. Android has already entered the TV market and it is 

expanding its domain to watches and cars. 

 

Figure 1. Android Architecture and Storage Partitions 

Figure 1 shows the architecture of Android which has three major layers: application, Android platform, and 

block device layer. All Android applications are written in Java and packaged as .apk (Android application 

package) files. Android platform provides many libraries, such as SQLite, media framework, and libc, which are 



exploited by applications and system components. Also, there is Dalvik virtual machine that runs application code 

and processes just-in-time compilation to run .dex (Dalvik executable) files. Linux kernel is at the core of 

Android platform and manages memory, processes, security, and networking. 

B. Device: Nexus5 

In order to acquire real time IO traces of smartphone users, we recruited two volunteers to use Nexus5. Before 

handing out the devices, we modified the Android kernel to allow tracing of IO activities. Nexus5 is Google’s 

fifth reference phone that runs KitKat, which was introduced on October 31, 2013 [16, 17]. KitKat is based on 

Linux kernel 3.4.0. Nexus5 has 16GB storage with Quad-core 2.26Ghz Krait 400 and 2GB Ram. Android has 

five different partitions: /boot, /recovery, /data, /system, and /cache. Most of the IOs are observed on three of 

the partitions: /data, /system, and /cache. Of 16GB in the test device, 13GB is used for /data partition which 

stores user installed applications and user data; approximately 1GB is used for /system partition which stores 

read-only system files; about 700MB is used for /cache partition which stores temporary files and updates to files 

downloaded from Android Market; the rest is used for /recovery and /boot partitions. All the partitions are 

formatted with EXT4 journaling file system. 

III. DESIGN 

MOST (Mobile Storage Analyzer) [18-20] is an IO trace analysis tool for smartphones. Compared to blktrace 

in Linux, MOST provides three new features: LBA-to-file mapping, LBA-to-process mapping, and retrospective 

mapping which keeps track of deleted files while IO tracing. Although MOST provides useful information to 

understand captured IO traces, its analysis speed needs much improvement. MOST is not the optimal solution in 

analyzing IO traces captured over a long time period nor is it suitable for real time analysis. To analyze the 

captured IO traces from the users in our experiment, we modified the Android kernel to enable the features of 

MOST; the kernel not only acquires IO traces of the underlying block device but also analyzes the IO traces in a 

time efficient way. 

A. IO Trace Acquisition 

The essence of IO tracing capability lies in collecting the information provided by submit_bio() function in 

general block device layer. The kernel module then processes received information and extracts files. User 

daemon provides interface for acquiring IO traces and storing the information. 

 
Figure 2. IO Trace Acquisition Process 



submit_bio() function is a function in general block device layer that is called when file system approaches 

block layer. We modified this function and added procedures to extract information on each IO and to store IO 

traces in a buffer. When the acquired IO information fills the buffer, submit_bio() function stores IO traces in 

binary format [18, 19]. Table I describes format of collected information. 

TABLE I.  RAW DATA FORMAT 

Variable 

Name 

Collected information 

Type Size(byte) Description 

time long long 8 IO occurrence time(year, month, day, hour, min, sec) 

usec long long 8 IO occurrence time(us) 

Ext char 1 File type(refer to table II) 

rwbs char 1 Flags for read, write, readsync, writesync 

sector unsigned int 4 Sector address 

block_num unsigned int 4 Number of blocks 

Pid unsigned int 4 Process ID 

pname char Max 16 Process name 

When the system boots, it loads kernel module, which acquires IO traces, and runs user daemon, which 

flushes the data to the device. As soon as the kernel module is loaded to the system, it creates three 4KB buffers 

in the main memory. We use two of the buffer spaces for producer and consumer model. The third buffer is used 

only when the primary producer buffer is filled up before the contents in the consumer buffer is flushed down to 

storage. If the primary producer buffer gets full, the third buffer acts as next in line producer buffer to receive IO 

data from submit_bio(). The kernel module is responsible for checking the buffer space to see if it is full and 

notifying the user daemon that the buffer is ready for flush. Upon receiving the notification from the kernel, user 

daemon flushes the buffer to designated location in storage.  

We grouped the files extracted by the kernel module into seven categories depending on file extension name. 

We briefly describe them in Table II. Using the file types, we further analyzed the patterns and characteristics of 

the collected IOs. 

TABLE II.  FILE TYPE CATEGORIES 

File Extension Description 

db SQLite file 

db-journal SQLite journal file 

db-mjxxxx, db-wal SQLite-temp file 

jpg, 3gp, mp3, thumb, local Multimedia file 

so, dex, odex, apk Executable file 

localstorage, dat, xml, thumbdata3, cache Resource file 

including directory entry Miscellaneous file 

IV. EVALUATION 

The two volunteers in our experiment used modified Nexus5 kernel with IO tracing feature from 19:00 on 

April 26, 2014 to 19:00 on April 27, 2014. With acquired IO traces from the users, we measured the following: 

the frequency of IO requests per every hour, IO counts per file category for seven different file categories, and the 

number of IOs for each application used. By measuring the frequency of IO requests per hour, we learn when the 



users use the smartphones the most. The number of IOs per file category tells us which file categories to optimize 

to improve the overall IO performance. Also, Nexus5 allows analyzing the application usage patterns based on IO 

frequency. 

A. IO Trace Analysis 

 
Figure 3. Number of Generated IOs by the Hour 

Figure 3 illustrates the number of IOs generated per every hour (the graphs on the left side are for user1 and 

ones on the right are for user2). The result shows clear sign of diurnal pattern; there are no significant IO 

activities between 02:00 and 12:00 for user1 and between 02:00 and 09:00 for user2. Although there were no 

significant IO activities observed from midnight to dawn, some applications synchronized with the application 

server, along with the phone and message modules, during this time; in fact, a small number of read IOs observed 

at 06:00 for user2 was triggered when Google Plus synchronized with the server. 

The peak IO activity for user1 is observed during night hours whereas user2 used the device actively just 

before lunch and dinner times. We found that Mini T world application, which accesses phone and SMS activities, 

account for 33% of all read IOs in user1. For user2, however, web browser app generated about 14% of all read 

IOs. After analyzing write IOs, we found that for user1, using Facebook generated 21% of all write IOs. For user2, 

installing and updating database of a subway route application generated 16% of all write IOs. User1 mostly used 

media player to listen to music and to watch VODs and Facebook application to read postings. User2 mostly used 

the device to watch streaming data using DMB or IPTV services. We also observed that write IOs account for 

92% of all IOs traced. 



B. IO Distribution on Each Partition 

Since /system, /data, and /cache are the three largest partitions that receive most of IOs, we mainly focus on 

these partitions and analyze how many IOs are directed to each of them. /boot and /recovery partitions rarely 

receive any IOs compared to /system, /data, and /cache partitions. We denote /etc to represent /boot and 

/recovery partitions. We are especially interested in the IO counts for read, write, and writesync issued in each 

partition. The result is shown in Figure 4. 

 
Figure 4. IO Distribution on Each Partition 

On user1’s device, /data partition received 57% of all IOs. For user2, about 41% of all IOs were targeted to 

/cache partition. We see that there are a lot of write and writesync IOs on the devices; write and writesync IOs 

account for about 94% and 91% of all IOs for user1 and user2, respectively. In other words, the number of write 

IOs was 16 times higher than the number of read IOs for user1 and 10 times higher for user2. 

We analyzed our experiment result to find applications that generated the most IOs for each user. For user1, 

running Facebook and updating the application generated 34% of all IOs. Of the 34%, 12% were stored on 

/system partition and another 12% were stored on /data partition. The process that generated the second highest 

number of IOs for user1 was voice system application, with 30% of all IOs, all of which were stored on /cache 

partition. For user2, web browser, e-mail, and gallery application generated the most IOs. About 15% on /system, 

10% on /data, 5% on /cache, and 13% on /etc of all IOs are for processing subway route application, mail service, 

web browser, and gallery application, respectively.  

 
Figure 5. Distribution of write and writesync in Each Partition 

Figure 5 shows the ratio of write and writesync IOs in each partition. It shows that 69% of all IOs were 

writesync for both users. /system and /cache partitions on user1’s device received the most writesync IOs. On 



user2’s device, /data and /etc partitions received the most writesync IOs. For user1, Facebook application created 

the highest number of IOs. IOs created by Facebook accounted for 36% of all IOs on /cache partition and 34% of 

all IOs on /system partition. On the other hand, for user2, about 12% of IOs on /data partition were from e-mail 

service and 29% of IOs on /etc partition were from processing streaming based music player. 

C. IO Distribution on File Type Categories 

As described in Table II, we categorized the files extracted by the kernel module into seven categories 

depending on their extension names. Figure 6 shows the distribution of read, write, and writesync IOs for each 

file type category. Note that we separated SQLite data type from SQLite-journal data type based on recent work 

on Android IO characterization [19] which identified SQLite-journal as the main cause of excessive synchronous 

IOs in smartphones. 

 
Figure 6. IO Distribution of Each File Type 

For user1, accesses to multimedia and executable files constitute about 20% and 40% of all read IO, 

respectively, and resource and miscellaneous files generated 35% and 62% of all write IOs, respectively. For 

user2, accesses to executable and miscellaneous files constitute about 78% and 10% of all read IOs, respectively, 

and SQLite and miscellaneous files received about 20% and 69% of all write IOs, respectively. Also, SQLite and 

SQLite-journal files generated 21% and 26% of all IOs, respectively. It implies that optimizing SQLite and 

SQLite-journal will reduce the number of IOs to storage. 

 
Figure 7. IO Counts for Each File Type 

Figure 7 shows the number of read and write IOs for each file type category for both user1 and user2. Note 

that write IO count includes write and writesync IOs. For the two users, executable files constitute 64% of all 

read IOs on average. SQLite files, SQLite-journal files, and miscellaneous files constitute 22%, 28%, and 34% of 



all write IOs, respectively. As a result, of all generated write IOs 22% and 28% of all IOs are for SQLite and 

SQLite-journal, respectively. 

Also, the number of write IOs is 10 to 16 times higher than that of read IOs depending on the user. Read IOs 

for user1 and user2 account for about 6% and 9% of all IOs, respectively. It is interesting to see that SQLite did 

not make any read accesses to temporary database files, even though SQLite writes them to the device.  

Figure 8 illustrates the ratios of accessed file types in each partition. It shows that there are a lot of accesses to 

SQLite files (SQLite, SQLite-journal, and SQLite-temp) on all partitions for both user1 and user2 and indicates 

that SQLite files cannot be taken lightly. Of all the IOs received on /cache partition of user1’s device, about 74% 

were SQLite files. On user2’s device, 65% of the IOs received on /data partition were SQLite files. 

 
Figure 8. Ratio of Accessed File Types on Each Partition 

Table III shows the most frequently accessed applications. The result shows that Facebook application 

generated the most IOs for user1. The application that generated the most IOs for user2 is subway route finding 

application. Although the run time of the subway application was short, around one minute, it generated the most 

IOs because it downloaded and updated its database. Ringtone is an application to create a ringtone and alarm for 

the device and Naver Music is streaming based music player. 

TABLE III.  MOST FREQUENTLY ACCESSED PROCESSES  

 User1 User2 

Rank Application Name Application Name 

1 Facebook Subway application 

2 Ringtone Naver Music 

3 Android push alarm IPTV 

V. CONCLUSION AND FUTURE WORK 

In this paper, we analyzed IO traces of two Nexus5 users from 19:00 on April 26, 2014to 19:00 on April 27, 

2014. We modified general block device layer and implemented kernel module and user process to capture user 

generated IO activities. Some of our findings from analyzing acquired IO traces are as follows. IO traces show 

distinct diurnal pattern, where most of IO accesses are observed from 11:00 to 12:00 and from 21:00 to 22:00; 

sum of all IOs during these two time slots accounts for about 28% of all IOs on the devices. Sum of write and 

writesync IOs is approximately 10 to 16 times higher than the number of read IOs depending on the user. About 

47% of all IOs are SQLite and SQLite-journal files; SQLite and SQLite-journal received 21% and 26% of all IOs, 



respectively. This shows that optimizing SQLite and SQLite-journal IO activities is important in improving the 

overall IO performance.  

This paper shows IO pattern information of smartphone users. However, since the experiment only included 

two users, it is hard to generalize our findings. Henceforward, we plan to collect and analyze data of many 

smartphone users using the techniques presented in this paper. 
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