
Dynamic File System Migration for Energy Efficient Storage Management

Inuk You
youinuk@hanyang.ac.kr

Youjip Won
yjwon@ece.hanyang.ac.kr

Department of Electronics & Computer Engineering, Hanyang University
Seoul, Korea

Abstract— Existing computer systems do not allow the user to
access the system when turning off the disk containing the OS
for saving energy. Thus existing studies have focused on
devising effective disk spin up/down schemes. This paper
proposes the scheme to keep on providing limited services as
well as to improve the energy consumption in computer
system. To do so, we employ the method that moves the root
file system of the HDD to a RAM disk, in order to be able to
access the system even in the case of a power-down of the disk
containing the OS. Also, we realize the autonomic system
migration by judging the system activity – the CPU and user
activity. By doing so the power management system can reduce
the power more remarkably than in existing systems, and in
experimental evaluation we could save power consumption of
8.1 - 14.4%.

Keywords: Energy-aware, File System Migration, Storage
System

I. INTRODUCTION

A. Background
Of modern electr ic products, computers occupy

significant power consumption. According to [1], there are
currently more than 180 million computers in use which
consume approximately 2% of the annual power in the U.S.
Servers and data centers consume about 61 billion kWh, that
is, 1.5% annually and imaging products of 260 million to
around 3% of annual power spent in the U.S. Though the
power consumption that storages occupy varies with the
computer system and the number of drives, general desktop
computers in idle consume around 10.7% for hard disks [1].
However, the systems using plenty of storage like data
centers consume approximately 26% of power only for the
hard drives, and the percentage is expected to increase as we
demand faster and larger capacity ones requiring more
power [2-7]. Recent TPC-C benchmarks represent the disks
consume the largest power – 63% of the total power – and
the storage subsystem occupies 79.1% of all power in entire
system [8].

While the capabilities of modern computer components
are rapidly advancing, power consumption is also increasing
accordingly. In the case of computer servers, in order to
achieve higher performance more CPUs and memory are
required. Because these server components (monitors
excluded) consume the most power, their power

management becomes more important than before and there
are many related studies. Hard disks consume less power
than CPUs and memory, however, in case of the storage
servers equipped with multiple HDD, they can have the
highest power consumption of all the components in the
system. In this case, HDD power saving becomes an
important factor. We can also contribute to power saving by
effective management of hard disks in single HDD systems.

B. Related study
Modern HDD has a variety of states and power

consumption can be reduced by changing the state to make
the HDD inactive by spinning down. To access the hard
disks, however, requires transition back to an active state
which consumes too much time and energy. As such,
existing disk power management methods focus on
achieving the most effective disk spin up/down. In [9], the
disk spin down algorithm was implemented by a Linux
kernel, demonstrating reduced spin up latency.

In the case of mass storage systems, a technique of
grouping disks and spinning down the areas responsible for
lighter workloads is introduced. [10] suggests that spinning
down many drive groups with reducing performance-down
of system. In a similar study [11], extra drives are spun
down while maintaining system performance. [5] introduces
power management for RAID making it possible to process
requests from the system while turning down part of disks
and therefore reducing the power consumption of the HDD.

Recently, a new technology was introduced which
enables the disk spin-down to last for a longer time by using
non-volatile memory instead of disk to service I/O requests
[12]. Called NV cache, it makes it possible to reduce disk
activity to save HDD energy, and to ensure data reliability
in spite of unexpected system shut downs. NV cache
consists of read-cache and write-cache, and is similar to
normal cache in terms of how it works; if the data exists in
NV cache when a read request occurs, it will be serviced by
the NV cache, otherwise it will be serviced by the disk. In
which case, the hard disk should spin-up if in a spin-down
state, that is, requires much power and latency. When a
write request occurs during disk spin-down, it is simply
redirected to NV cache, and disk spin-up would be required
if the write buffer is full.

In this work, we explore the method of minimizing
power consumption in the commodity server. There are two
main constraints we aim to address in this study. First, the

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference
on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE
DOI 10.1109/GreenCom-CPSCom.2010.104

412

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference
on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE
DOI 10.1109/GreenCom-CPSCom.2010.104

412

2010 IEEE/ACM International Conference on Green Computing and Communications & 2010 IEEE/ACM International Conference
on Cyber, Physical and Social Computing

978-0-7695-4331-4/10 $26.00 © 2010 IEEE
DOI 10.1109/GreenCom-CPSCom.2010.104

412

idea should be able to be realized on the existing server
organization without any hardware modification. We do not
introduce new hardware layer, e.g. NAND flash, SSD, or
other types of large scale NVRAM. Second, users should be
able to access the system even in the case of a power-down
of the disk containing the OS. In addressing these
constraints, we exploit characteristics of the modern server
system: main memory is abundant resource and storage
subsystem constitutes dominant fraction of power
consumption. We propose to turn off the hard disk drive
when server is idle. This idea is not new. More importantly,
to keep on providing limited services, we dynamically
migrate the frequently accessed objects at the storage
system, e.g. objects in the root file system in UNIX, to
memory. To maintain consistency in accessing objects
independent of whether the object is in memory or in
storage, we establish a block device on main memory and
move the objects from the storage system to main memory.

The following Chapter describes the concept of power
management using file system migration utilizing a RAM
disk. Chapter 3 depicts the autonomic scheduling for file
system transition. Lastly this system is evaluated in Chapter
4.

II. FILE SYSTEM MIGRATION FOR ENERGY EFFICIENT
STORAGE MANAGEMENT

This study aims to reduce power consumption of hard
disks in system using HDD. We propose a method of
transferring the storage state in order to conserve energy.
This is achieved by turning the HDD off and starting the
RAM disk during times of no disk access. We evaluate the

Figure 1. System access according to power management method
possible reduction in power consumption by comparing this
system with others that operate hard disks for 24 hours.

A. System overview
If a user turns a disk off for power saving in a single

HDD system, user is therefore unable to access the system
(see figure 1.(a)). It is the disk spin-down that offers a
method to reduce power consumption without turning off
the hard disk. Despite this, if there is no access to the hard
disk for a long time, disk power-down becomes more
effective for power management. We can save disk power
and also keep the system active by moving the root file
system from the HDD to RAM disk. This keeps the system
running while the HDD is in power-down mode (see figure
1.(b)).
This paper proposes a method which moves the root file
system to a RAM disk. This method provides a solution of a
problem being unable to access the system when turning
HDD off in order to reduce power consumption. This
method consists of the following four components; (i)
Power manager module: performs the processes preparing
the system to turn the HDD off, move the real root file
system to the RAM disk, and start the root file system on
the RAM disk. (ii) Real root file system: a root file system
operating on a hard disk. (iii) RAM root file system: a root
file system operating on a RAM disk after HDD power-
down. This can be created by copying the real root file
system dynamically, or can be built in advance as a single
tiny root file system such as initrd. and (iv) Kernel and each
driver: same as with the general OS.

Figure 2 overviews the system structure. Figure 2.(a)
depicts the internal flow of normal tasks and power
management tasks (PM task) in the normal state (disk
power-on state). Normal tasks are operated as processes of
the root file system - same as with the general OS. When a
PM task is executed, the hard disk is turned off after the
following tasks are completed by the power manager

Moving root file system
to RAM disk

Possible to access the
system

HDD OFF,
Starting RAM file system

(b) Power management using variable file system

initrd rootfs

hard drive

load unmount

mount

(a) HDD root filesystem (b) RAM root filesystem

Normal task

PM task

Hdd rootfs

tasks PM task

Kernel

H/W
Hdd off

Ram rootfs

tasks PM task

PM Module

Kernel

H/W
Hdd on

PM
Module

System (HDD and
memory) OFF

Impossible to
access the system

Moving memory
data and state to

disk partition
(a) Power management using hibernation

413413413

Figure 2. Overview of system structure
module (PM module) - unmounting each file system on the
disk, moving the root file system to the RAM disk, and
starting the RAM disk as root file system. Figure 2.(b)
depicts the internal flow of normal and PM tasks in the
RAM disk when in the power-off state.

B. Storage State Transition
Since the root file system is operating on a hard disk in a

system based on a HDD, it is prohibited to turn off the hard
disk while running the root file system. As such, it is not
possible to transfer the storage state while the HDD is
running. If the root file system is first copied to the RAM
disk and then started, it is possible to turn off the hard disk.
However, because the capacity of a root file system is
generally large and that programs requiring disk access
cannot be used after HDD power-off, it is logical to use
Initrd (or, if not Linux, the RAM disk image corresponding
to the particular OS) rather than to copy the whole real root
file system. Most Linux distributions provide a single
generic kernel image for booting in a variety of H/W.
Device drivers of the kernel image consist of loadable
kernel modules. The kernel image is minimized so it is
possible to boot from limited capacity storage such as
embedded systems. The required module in the root file
system should be detected and loaded in advance for
mounting the root file system at boot.

To achieve this, code is not added to the kernel but the
temporary root file system, which is Initrd, is utilized at the
initial boot stage. It detects the H/W, loads modules, and
discovers the devices necessary to mount the real root file
system [13]. The Initrd image forms a single tiny integrated
root file system for those jobs, and many embedded systems
employ it as a real root file system. We can place an Initrd
image within a specific partition in a hard disk, e.g. boot
partition, or flash memory if a system provides it.

C. File System Migration
In preparation for hard disk power-off for power saving,

it is necessary to first copy the Initrd image to the RAM
disk. In legacy UNIX Operating System, after a boot loader,
e.g. GRUB in Linux, copies Initrd and the kernel image to
memory the following tasks are performed; the kernel is
invoked, several kernel initializing tasks are performed, and
init process is executed. Since this study does not consider a
system boot stage, it is only necessary to mount the RAM
disk area loaded to memory. Specifically, this entails the
preparation of a namespace to mount a device file system
like /dev/ram/, and checks the magic number to determine a
format of the image (i.e. if it is ext2, gzip or romfs etc).
Also, it allocates the area for the RAM disk, and
uncompresses and loads RAM disk image to memory after
CRC checks. At this point the Initrd image becomes a
mountable block device.
Next, some file systems in the HDD need to be unmounted.
Since it is not possible to unmount if there are processes
running in the current hard disk, all running processes

should be terminated. This can be performed by a batch file
like rcDown in Linux. rcDown performs the tasks for

Figure 3. Process which moves the root file system from HDD to
RAM disk

system shutdown in batch processing; terminating system
processes, user processes and daemons, and unmounting
each file system.

Furthermore, the user should be given the choice
whether to force termination or terminate after the process is
finished. When the unmount process completes, the system
unmounts each file system on the disk, and also swaps off
after unmounting proc file system. The root file system
which has been written to RAM should then be mounted to
make a new root file system. The block device can be
mounted as root file system directly, or by changing Initrd
to a root file system using a program such as pivot_root or
chroot after the RAM disk has been mounted to a certain
point (e.g. /mnt/ram/).

Between mounting the RAM disk and changing it to a
root file system, if configuration files are being copied in the
real root file system to corresponding directories in the
RAM root file system, major user and system tasks can be
performed (excluding those requiring HDD access). This
can be achieved through a scheduling program like cron
periodically. Of course, necessary tasks may be performed
by executing commands directly in sleep state (i.e. HDD
power-off state). Figure 3 shows a series of processes which
power-off the hard disk after moving the root file system
from the HDD to a RAM disk.

III. AUTONOMIC SCHEDULING OF FILE SYSTEM
MIGRATION

The point of time for switching hard disk states can be
determined by two ways, that is, static state transition and
dynamic state transition. Static state transition is performed
according to user settings, where a user sets the times for
HDD power-off (and starting of the RAM disk) and power-
on of the HDD (and the resumption of the actual root file
system). Monitoring the system clock periodically, if the
time/date a user sets coincides with that of the system, the
corresponding command will be executed. In this paper, the
monitoring is performed as a default every minute. This can
be realized by a scheduling program like cron.

Also, a user may switch the disk state immediately by
directly running a command. Dynamic state transition is

rootfs

Initrd image

load

rootfs

unmount

copy

mount

HDD off

rootfs

414414414

performed according to current system activity; based on
monitoring periodically whether users are using the system
or not, file system will be migrated automatically if no one
uses the system. The system’s activities monitored in this
paper are User activity and System resource activity.

The user information of the kernel can be used to
determine user activity. The kernel periodically puts the
information for current and other users of the system in
specific locations as binary files (i.e. /var/run/utmp etc). It is
possible to get this information by commands such as w and
who. The required information is the user IDs of those
connected to the current system and the idle time for each
user. Considering this information periodically, if the idle
time for all users exceeds a certain value, we regard the user
activity as inactive. This means that there is no input (of
keyboards and mouse) for all users including root during the
certain term. If tasks executed by a user (for example,
copying mass files, playing multimedia files, etc.) are
running without user input, it is not desirable to regard the
system as inactive. Therefore it is necessary to examine the
activity of each system resource as well. The CPU activity
can be monitored, and state information of the resource can
be obtained by monitoring the corresponding directory (i.e.
/proc/stat) in the proc file system. Alternatively, it may be
more convenient to monitor the activity state for each
resource by using system monitoring tools such as top,
collectl, sar, and so on.

It would be better to set a period of examining the CPU

TABLE 1. ALGORITHM FOR MONITORING THE SYSTEM
RESOURCE ACTIVITY AND THE USER ACTIVITY STATE
while (TRUE)
{
/* watching system resource activity */
 for (user activity period/PERIOD) { /* user activity
period is 1 min. so looping 12 times */
 Reading the current state information of CPU
 if (CPU usage < CPU_IDLE_LIMIT) { /*
CPU_IDLE_LIMIT is 5 by default */
 COUNT++
 if (COUNT*PERIOD > INACT_TIME) { /*
PERIOD is 5 sec. by default */
 system_inact=1 /* CPU is inactive */
 break
 } else
 system_inact=0
 } else
 COUNT=0
 sleep PERIOD
 }
/* watching user activity */
 Reading the user IDs being connected to current
system and the idle time for each user
 if (Idle time for all user IDs > INACT_TIME)
 user_inact=1 /* All users are inactive */
 else
 user_inact=0

 if (system_inact && user_inact)

 return /* State transition of hard disk */
}
activity more shortly than of examining the user activity,
because usage of the system resource is fluctuated much
more frequently and significantly than rate of the user
connection is. The CPU is considered to be in an idle state
when its usage is less than a minimum value. This
represents the CPU s maximum usage for performing tasks
when in the idle state. This may be determined by the user
or at system design. The CPU activity can be monitored
periodically and if CPU idle state exceeds a certain term, the
system is regarded as inactive. Table 1 shows the algorithm
used to determine the point of time for switching the
hard disk state automatically. The certain term of system
inactivity necessary for system transition is defined as a
default 45 minutes.

IV. PERFORMANCE EVALUATION

This Chapter evaluates the reduction in power
consumption by using the power management system,
compared with the system operating the hard disk 24 hours
a day. The experiments cover two scenarios. In the first
scenario, backup is run everyday, i.e. heavy disk workloads
for a certain period of time, and the second scenario only
runs default system tasks. In each scenario, we measure the
power consumption for the system which transitions to sleep
state for 6 hours everyday and for otherwise system.

A. Experimental environments
This work has been implemented to the Kurobox/pro

[14] and the power consumption of the system itself has
been measured by using a power measurement tool [15]. For
convenience, we denote the system using power
management as PMS (Power Management System), and the
normal system as NS (Normal System). Both systems each
use a 3.5 inch, 7200 rpm, SATA II, 250 GB hard disk.

B. Power consumption when running only default
system tasks
Figure 4 shows the power consumption for the PMS and NS
over a week duration. The PMS is set to be in the sleep state
from 12:00 AM to 6:00 AM everyday. No user tasks runs in
either system.
As can be observed in Figure 4, while in the sleep state, the
system consumes only 41.2~43.7% of the power of the
normal system. Using these results, the average power
consumption rate for the PMS can be determined. If the
power consumption rate of NS is equal to 100, the average
Power Consumption Rate (PCR) of the PMS for a day is
given by the following formula.

5.42
24

100
24

24 tt
PCRPMS

 (1)

where t is the time per day (in hours) spent in the sleep state.
In these experiments t = 6, therefore

415415415

6.855.42
24
6100

24
624

PMSPCR

These results demonstrate that when compared with the NS
m, the PMS saves an average of 14.4% of power a day.

0

4

8

12

16

20

W
at

ts

Time

Power consumption with or without using
power management

PMS NS

(a) time series comparison (for a week)
Normal mode Sleep mode

Voltage RMS value 100.0 Vrms 100.0 Vrms
Current RMS value 0.31-0.34 Arms 0.16 Arms
Effective power 16-17 W 7 W
Apparent power 32-34 VA 16 VA
Reactive power 27-29 var 14 var
Load power factor 0.51-0.52 -
Load crest factor 3.77-4.02 -

(b) numerical comparisons
Figure 4. Power consumption with or without power management

C. Power consumption when running backup tasks
daily

The backup for both systems was scheduled at 1:00 AM
daily. The backup size is 10 GB consisting of more than
50,000 files. Aside from the backup tasks, other
experimental configurations are the same as in the previous
section. The PMS transitioned to the sleep state at 12:00
AM, and returned to the normal state at 12:45 AM for daily
back up at 1:00 AM. Then, once the backup had finished
(around 2:30 AM) it transitioned to the sleep state again.
The NS also performs backup staying in the normal state
from 1:00 AM everyday.

Figure 5 shows the power consumption when running
backup. The usage is 100~105.9% of the power
consumption of the normal state without backup. As
discussed in the previous section the average power
consumption rate for a day using the PMS (with running
backup) can be calculated. If the power consumption rate of
NS is set to 100, then

103
24

5.42
24

100
24

bsn
PCR PMS

 (2)

where n is the time spent in normal state with no heavy disk
workload, s is the time in sleep state, and b is the time spent
running the daily backup, and each unit is in hours. As n =
15.5, s = 6, and b = 2.5 from the results of experiments, then

9.91103
24

5.25.42
24

5.3100
24
18

PMSPCR

Therefore, using the PMS while running backup saves an
average 8.1% of power daily compared to the NS.

D. FS Migration and other power saving schemes
FS Migration is the scheme for users to be able to use

0

4

8

12

16

20

W
at

ts

Time

power consumption in case of running backup
everyday

PMS NS

 (a) time series comparison (for a week)
Backup running

Voltage RMS value 100.0 Vrms
Current RMS value 0.31-0.35 Arms
Effective power 16-18 W
Apparent power 32-35 VA
Reactive power 27-30 var
Load power factor 0.51-0.53
Load crest factor 3.77-4.32

(b) power consumption when running backup
Figure 5. Power consumption with or without using power

management when running backup everyday

the system in spite of disk power-down other than existing
standby or hibernation, with saving the energy consumption
due to disk power-off. Available services after FS Migration
are as follows:

Each device related services besides hard disk
(Network, USB, PCMCIA, etc), so that USB Portable
Storage also available
Basic system utilities (mount, cp, rm, ls, ln, ps, etc)
Network utilities (telnet, ping, wget, netstat, etc)
Editor utilities (vi, etc)
Shell programming (bash, sh, etc)
Compress programs (gzip, gunzip, tar, etc)
Other Core Utility programs (file utilities, text utilities,
shell utilities, etc)

Table 2.(a) compares the power on/off state in each
hardware component for standby, hibernation, shutdown, FS
Migration each. Also, table 2.(b) compares the service
availability, boot up or resume time, and energy saving for
each of them.

V. CONCLUSION
In systems using multiple disks, e.g. storage servers,

significant energy savings can be achieved by reducing the
power consumption of hard disks. This paper proposes a
power management system which saves system energy by
turning off disks and starting a RAM disk while the system

416416416

is inactive. The achievable reduction in power consumption
is evaluated compared with a system operating a hard disk
all day long.

The power management system makes it possible to
perform major tasks regularly by using a scheduling

TABLE 2. COMPARISON FOR EACH POWER MANAGEMENT
SCHEME

 standby hibernatio
n

shutdown FS
Migration

CPU Off Off Off On
Memory On Off Off On

HDD Off Off Off Off
NIC Off Off Off On
USB Off Off Off On

(a) Power on/off state

(b) Service availability, boot up or resume time, and
energy saving

program even after entering the sleep state. The user can
also perform necessary tasks by interacting with the shell
directly. These characteristics make it distinctly different
from the sleep state of existing power management systems.

The experimental performance evaluation demonstrates
a saving of around 14.4% of power consumption when
using power management for 6 hours a day in a one HDD
system. Power reductions of around 8.1% a day can
achieved even when running backup daily. Moreover, we
can see that the backup management enables transition back
to the sleep state after waking up at the scheduled time to
perform backup. This occurs even if the backup task is
scheduled while in the sleep state.

ACKNOWLEDGMENT

This work is based on the project of developing the NAS
(Network Attached Storage) firmware in Buffalo, Inc. We

would like to thank the NAS Development Group in Buffalo,
Inc. Also, This work is funded by Center for Large Scale
Hyper-MLC SSD Technology Development(Grant No.
1003520) at Hanyang University by KEIT and Ministry of
Knowledge and Economy of Korea.

REFERENCES

[1] (2009). ENERGY STAR* Version 5.0 System Implementation.
Available: http://www.intel.com/Assets/PDF/whitepaper/321556.pdf

[2] E. Otoo, et al., "Analysis of trade-off between power saving and
response time in disk storage systems," IPDPS, 2009.

[3] K. Greenan, et al., "A Spin-Up Saved is Energy Earned: Achieving
Power-Efficient, Erasure-Coded Storage," HotDep08, 2008.

[4] R. Garg, et al., "Markov Model Based Disk Power Management for
Data Intensive Workloads," in CCGRID, 2009, pp. 76-83.

[5] C. Weddle, et al., "PARAID: A gear-shifting power-aware RAID,"
ACM Transactions on Storage (TOS), vol. 3, p. 13, 2007.

[6] X. Li, et al., "Performance directed energy management for main
memory and disks," ACM Transactions on Storage (TOS), vol. 1, p.
380, 2005.

[7] Q. Zhu, et al., "Reducing energy consumption of disk storage using
power-aware cache management," HPCA, 2004.

[8] M. Poess and R. Nambiar, "Energy cost, the key challenge of today's
data centers: a power consumption analysis of TPC-C results,"
Proceedings of the VLDB Endowment, vol. 1, pp. 1229-1240, 2008.

[9] T. Bisson and S. Brandt, "Adaptive disk spin-down algorithms in
practice," 2004.

[10] L. Ganesh, et al., "Optimizing Power Consumption in Large Scale
Storage Systems," In Proceedings of the 11th Workshop on Hot
Topics in Operating Systems (HotOS XI), 2007.

[11] E. Pinheiro, et al., "Exploiting redundancy to conserve energy in
storage systems," ACM SIGMETRICS Performance Evaluation
Review, vol. 34, p. 26, 2006.

[12] (2007). Overcoming disk drive access bottlenecks with Intel Turbo
Memory. Available:
http://download.intel.com/design/flash/nand/turbomemory/article.pdf

[13] W. Almesberger, "Booting linux: The history and the future," in
Proceedings of the Ottawa Linux Symposium, 2000.

[14] KUROBOX/PRO Product Specifications. Available:
http://downloads.buffalo.nas-
central.org/KBPro_ARM9/GPL/English-
Documentation/Product%20Specifications.pdf

[15] Available:
http://www.elgar.com/products/EC1000S/downloads/EC1000S_User
_Manual_4994-974.pdf

 standby hibernati
on

shutdown FS
Migration

Service Unavaila
ble

Unavaila
ble

Unavaila
ble

Available

Boot up
time

Short Normal Long Normal

Power
saving

Good Very
good

Very
good

Normal

417417417

