
IMPROVING I/O PERFORMANCE IN WEB BROWSER

ENGINE OF SMART TV PLATFORM

Cheolhee Lee, Youjip Won

Department of Computer Software Hanyang University, Seoul, Korea

lch6719@hanyang.ac.kr, youjip.won@gmail.com

Abstract: Smart TV applications use a web browser to

execute xml, html, css, javascripts, images, and videos,

which are stored in NAND flash, and load them into

memory. The applications also convert resources into a

tree data structure. This converted data structure is

placed in the heap area and is removed from memory

when the application is ended. Therefore, when the

application is restarted, this converting process is

performed again which slows the speed of a web

browser. This paper suggests a technique called fast IO

to add persistency to the data tree so that it can be saved

and reused when the application is restarted. With fast

IO, a persistency area is called an object. It is created the

object file and the data file is saved and reused. Storing a

tree-data structure in an object adds persistency to the

data structure which means it can be reused when the

application is restarted after being ended. Applying fast

IO in the web browser reduced the time it took to open

web pages by up to 68% by omitting the processing of

re-forming the tree data structure.

Keywords: smart TV application, web browser engine,

DOM Tree, memory mapped file, persistency object

1 Introduction

A smart TV is composed of CPU, DRAM, and NAND
flash. Web based smart TVs execute applications that are
loaded by a web browser engine [1], e.g., video player,
web browser, games, etc. In web browser engines, html
files are parsed to build a tree [2] (Fig. 1). A web browser
engine displays a web page on smart TV’s screen and the
nodes of a tree contain information on the web page’s
location, size, and colors of each elements [3]. When the
application is terminated, the tree is removed from
memory. When the application is restarted, resources
stored in NAND flash need to be converted to a tree form
again.

`

Figure 1 Deserialization process in legacy web browser

This study suggests a technique of adding persistency to
selective memory data dynamically allocated from a
smart TV. Persistency in this study means that data in
process address space can be conserved and reused even
after the corresponding application is eliminated. To add
persistency to memory data, an object is presented in
persistent area. An object exists in process address space
and is mapped to a file through mmap () system call. The
mapped file is called an object file. By mapping object
files to process address space through mmap () system
call, the objects can be reused when the application is
restarted.

Every time a process is executed, the object file is

mapped to a random location in the process address

space. When the data structure is saved in a file, pointer

validation between nodes composing the data structure of

process address space is lost. To ensure that pointer

validation is not lost, persistency object file is mapped to

fixed process address space. An object provides

allocation/removal interface in byte unit. It is

implemented based on malloc () algorithm of glibc. To

reuse an object, naming system is implemented for its

memory data structure. Each object has a name and the

names are managed through naming system. In order to

store naming system information, metadata object file is

created and used.

2 Related work

In ordinary systems composed of CPU, DRAM, and

block device, data are conserved by saving them in

files and when the data need to be reused, the files are

read by memory. This process is conducted through

file system. Ext2 [8] is the file system of Linux. FAT

[9] was designed for floppy disks and is a file system

used in DOS or Windows 9x. Persistency can be

added in data through database in which data existing

in memory is saved in the disk and is used by read by

memory when needed. Data in disk and data structure

of memory are different. Therefore, method adding

persistency in data using file system and data base

requires deserialization. SoftPM [10] automatically

adds persistency to data structure connected with the

root node. NVRAM can be used as storage, replacing

existing HDDs and SSDs, and it can also be used as

main memory instead of DRAM. Mnemosyne [11]

and NV-Heaps [12] are studies on adding persistency

to data structure. These provide process address space

978-1-4799-4734-8 /14/$31.00 ©2014 IEEE

490

that has persistency and selectively add persistency to

data to be reused without deserialization process.

3 Design

This chapter demonstrates how to provide persistency to
the tree data structure and how to reuse it when a web
browser application is restarted after being ended. In
order to add persistency to a memory object, a file is
created to store the memory object and this file is saved
in the process address space by mmap () system call. This
creates a persistent storage space which is called an
object. An object is mapped to a file called an object file
(Fig. 2). In addition, an interface that allocates memory,
in bytes, within the object is created.

Figure 2 Object and object file

3.1 Pointer validation problem

To reuse an object, its object file should be placed in the
address space of the process using mmap () system call.
However, when the application is ended, the value of the
pointer address showing the connection between the
nodes becomes invalid. There are two ways to solve this
problem. The first method is to use a relative address
without fixing the address of an object, instead of using
an absolute address. The second method is always using
the same address space to map an object. The first
method requires swizzling [4] process because an object
does not use an absolute address. Since this incurs
additional overhead, this study uses the second method to
ensure pointer validation.

3.2 The shared library and collisions between

objects

When an application is executed, the address space of the
application is generated. At this time, shared library used
by the application, such as libc, is loaded into the mmap
area. On Linux, shared library is assigned to an address
called the mmap_base. mmap_base is the starting address
of mmap area and is determined by adding a random
value to 0xB7701000. When address space layout
randomization [5, 13] is applied, mmap_base changes
with every run of a process and the address to which
shared library is loaded also changes. As the location of
shared library changes, one needs to calculate where the
library is loaded and assign any objects created in this
area to a fixed address to solve any conflicts between
shared library and the objects. To prevent objects from
being created in the same space as shared library,
addresses around shared library is reserved.

3.3 Namespace for re-mapping memory object

An object file is accessible via the file system’s
namespace. However, it is impossible to know the
location of the object to which the file is mapped. Thus, a
namespace to manage objects is provided and it remaps
objects to object files, using objects’ names. The address
of an object can be identified by the object’s name and
the object can be accessed via this address. Metadata
object file, which maintains and stores the name space
information, is generated in the file system.

3.4 Object reservation

An object places its object file in the address space of the
process in mmap area using the mmap () system call.
Each object, to ensure its validity, should always be
positioned in the same address space. However, if the
address space is already in use for other usage, it is
impossible to place the object in its address space. In
order to prevent this, the object’s address space needs to
be reserved. Therefore, when the program is started, all
namespaces are visited and address spaces that are used
by an object are reserved so that they are not used for
other purposes.

3.5 Node allocation

Allocating nodes in an object is based on memory
allocation algorithm of glibc. There is metadata in the
beginning region of each object and it manages the free
chunk by size. When memory allocation is requested, in
bytes, it searches the namespace, finds metadata of the
object, checks the free chunk in the object, and allocates
memory according to the requested size. If this request is
not satisfied because of insufficient empty space, system
allocates new region, ramps up the object, and allocates
memory. In a heap, increases in address space are
continuous. However, for an object, increases may be
discontinuous because continued address space may
already be in use.

4 Evaluation

This chapter explains performance evaluation of fast IO
in smart TVs. The experiment measured the time it took
to execute a simple web browser, Dillo2.2 [6], before and
after applying fast IO technique. The test environment
was AMD Phenom X4 925 Processor and DDR3 DRAM
4GB. For storage, an SSD (60 GB OCZ VERTEX2
SATA2), RAM disk, and 500 GB, 720 RPM hard disk
were used.

Research on web browsing pattern shows that web users
frequently visit the same site [7]. This makes cache a
great influence on the performance of a web browser.
With fast IO method, the cache mechanism of the web
browser was modified. In the past, the web browser
(Legacy Dillo) downloaded html and images from the
web and saved them in the disk cache. Then, a tree was
composed with html. The web page was displayed on the
screen via the tree and the tree data structure disappeared
when the web browser was ended. When web pages were
re-accessed, resources saved in the disk were loaded into
memory and the processes described above were
performed again. fast IO web browser (F-Dillo) in smart

491

TVs acquires an html when accessing a web page. It
applies fast IO technology and caches the data tree
structure. Therefore, when the web browser is restarted
and the web page is re-accessed, it is possible to omit the
tree building process by reusing the data structure tree.
The performance was measured by the time from starting
a web browser to displaying the web pages on the screen.

Figure 3 Execution time

Fig. 3 shows disk IO time, parsing time, and drawing
time for opening four different web pages. For each page,
two methods were used to open the website: an existing
web browser, marked as Dillo, and a web browser with
fast IO, marked as F-Dillo. The experiment was also
performed using a variety of storage devices such as
RAM disk, an SSD, and an HDD. Fig. 3 is the case using
a hard disk as storage. Using fast IO technique removed
parsing time for all web pages. However, disk IO time
increased significantly when using a hard disk as storage.
This is due to the overhead caused by saving a tree data
structure which can be 10 times larger than the file size
of an html. Since hard disks have slow IO speed, the
increased overhead in disk IO is greater than the effect of
omitting parsing process. From this result, it can be
confirmed that fast IO approach is not appropriate when
using a hard disk for storage. When the experiment used
an SSD as storage, it omitted the parsing time and
increased disk IO time, as with an HDD. However,
because SDDs have fast IO speed, performance
improvement by omitting parsing time is larger than the
overhead increase in disk IO. Using RAM disk also
eliminated parsing time while reducing overhead increase
in disk IO compared to when using an SSD. The overall
performance improvement by using fast IO technique
was most significant in the SSD environment with
running time reduction of up to 68%.

Figure 4 Normalized execution time

Fig. 4 shows execution time of F-Dillo, normalized
against that of the legacy Dillo. In case of the HDD,
some web pages showed degraded performance due to
the increased overhead in disk IO. On the other hand, in
an SSD environment, all web pages showed performance
enhancement with F-Dillo with the maximum of 61%
improvement than HDD.

5 Conclusions

This paper proposes using a fast IO technique in smart
TV environment. It is possible to impart persistency to
selected memory data that have been allocated
dynamically by using the techniques of fast IO. With fast
IO technique, smart TV application caches the tree form
data and reuses it when the application is restarted. This
eliminates the process of converting data into the tree
format when the application is restarted. However, as
shown in the experimental results, storing tree data
structures increases the overhead in disk IO. Therefore,
applying fast IO technique is not appropriate when using
storage with slow input/output speed, such as hard disk
drives, because performance decrease from increased
overhead in disk IO more than offsets performance
improvement gained by reusing tree form data. On the
other hand, when using storage with fast input/output
features, such as SSDs, overhead increase in disk IO
becomes relatively small and applying fast IO technology
will result in overall performance gain. Since smart TVs
use NAND flash memory, which guarantees high
input/output speed, applying fast IO technology is
expected to bring performance improvement.

Acknowledgements

New Memory: This work was supported by IT R&D program
MKE/KEIT (No. 10041608, Embedded System Software for
New-memory based Smart Device).

References

[1] Antero Taivalsaari, Tommi Mikkonen, Dan Ingalls, and

Krzysztof Palacz. “Web Browser as an Application

Platform: The Lively Kernel Experience.” Technical

Report. Sun Microsystems, Inc., Mountain View, CA,

USA. 2008.

[2] T. Lam, J. Ding, and J.C. Liu. Xml document parsing:

Operational and performance characteristics. IEEE

Computer, 41(9):30–37, Sept. 2008.

[3] K. Zhang, L. Wang, A. Pan, and B.B. Zhu. Smart caching

for web browsers. In Proc. of the 19th international

conference on World wide web, Raleigh, NC, USA, Apr.

2010. 24

[4] J. Eliot, B. Moss. Working with persistent objects: To

swizzle or not to swizzle. Software Engineering, IEEE

Transactions on, 18(8):657–673, Aug. 1992

[5] H. Shacham, M. Page, B. Pfaff, E.J. Goh, N. Modadugu,

and D. Boneh. On the effectiveness of addressspace

randomization. In Proc. of the 11th ACM conference on

Computer and communications security, Washington. DC.

USA, Oct. 2004.

[6] J. Arellano-Cid and Von Brand H.H. Network

programming internals of the dillo web browser. In

Computer Science Society, 2000. SCCC’00. Proceedings.

XX International Conference of the Chilean, Santiago,

Nov. 2000.

492

[7] E. Adar, J. Teevan, and S.T. Dumais. Resonance on the

web: web dynamics and revisitation patterns. In Proc. of

the 27th international conference on Human factors in

computing systems, Boston, MA, USA, Apr. 2009.

[8] Card, Remy, Theodore Ts’o, and Stephen Tweedie.

"Design and implementation of the second extended

filesystem." Proceedings of the first Dutch international

symposium on Linux. 1994.

[9] Mitchell, Stan. Inside the Windows 95 file system.

O'Reilly & Associates, Inc., 1997

[10] J. Guerra, L. M ármol, D. Campello, C. Crespo, R.

Rangaswami, and J. Wei. Software persistent memory. In

Proc. of the USENIX ATC ’12, Boston, MA, June. 2012.

[11] H. Volos and M. Swift. Mnemosyne: Lightweight

persistent memory. In Proc. of the International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), Newport,

California, USA, Mar. 2011.

[12] J. Coburn, A. Caulfield, A. Akel, L. Grupp, R. Gupta, R.

Jhala, and S. Swanson. Nv-heaps: making persistent

objects fast and safe with next-generation, non-volatile

memories. In Proc. of the ASPLOS , Newport, California,

USA, Mar. 2011.

[13] V. Lvin, G. Novark, E. Berger, and B. Zorn. Archipelago:

trading address space for reliability and security. In In

Proc. of the ASPLOS’08, Seattle, Washington, USA,

Mar. 2008.

493

