
Embedded DBMS Design for In-Vehicle
Information Management

Joontaek Oh and Youjip Won
Hanyang University, Seoul, Korea

Abstract

Embedded devices have built-in software, which results

in them having to include storage for software. Embedded

devices use flash storage since it should be strong against

physical impact. However, flash storage has a limited lifespan,

which is equivalent to the lifespan of embedded device.

Relatively inexpensive embedded devices can tolerate such

limitation, but in the case of high cost devices like smartcars,

such ephemeral lifespan is unacceptable. In this paper, we

improve the lifespan of smartcars by improving the lifespan of

their flash storage, by minimizing the write volume of SQLite.

SQLite that is serverless DBMS that is mainly used in

embedded devices stores the log in a separated file, journal

file, at commit time. This is a logging. Logging doubles the

write volume because the SQLite writes data to both the log

file and the database file. Moreover, when using a journaling

filesystem such as EXT4, the write volume is amplified by the

journaling of journal anomaly. It leads to more program/erase

operations in flash storage. It short the lifespan of flash storage.

This anomaly leads to the shortened lifespan of its em-

bedded device. If the embedded device is a smartcar and

the lifespan is reduced down to five years due to write

amplification, we would have to pay extravagant cost every

five years. We need to optimize for long-term use of smartcars

before using them. There have been many efforts to reduce the

write volume of SQLite. This paper examines how smartcars

can improve their lifespan when a previous study to reduce

the write volume of SQLite is applied to smartcars.

Environment Write volume Writing frequency

A About 500 bytes 100 msec
B About 150 KB 1 min
C About 400 KB 1 week

TABLE I
THREE OF ENVIRONMENT MODELS IN SMARTCAR.

We assumed three environments according to the smartcar

IO pattern. Table I represents our three assumptions. These

environments do not have realistic evidence. Since we are

not smartcar vendor, we have assumed environments through

famous functions of smartcar.

In environment A, cars exchange their location information

with other cars to prevent colliding. Each car sends its location

information to the surrounding cars every 100 msec and the

data is about 500 bytes. In environment B, the car and traffic

information manager server communicate with each other. The

car transmits its position and status to the traffic information

manager server once per sec and its data is about 150 KB.

The C environment is an environment for transmitting and

receiving map information. The car sends its current location

and destination to the cloud server. The server obtains the route

to the destination of the car and transmits the corresponding

route data back to the car. The map is cached for one week on

the flash storage in the car. In this environment, the software

inserts about 400 KB of data into SQLite once a week.

In above environments, the data is stored transactionally by

SQLite, amplifying the write volume. We modeled how much

the write volume is amplified as a formula. These formulas are

primitives based on behavior of SQLite and filesystem. These

formulas are available on a Full sync WAL mode.

S(x) = 2x+ 1 (1)

In the Equation 1, x is the number of database pages to

change. S(x) means the number of pages to write when

SQLite modifies x of pages. First, all the data pages to be

changed are written to the WAL file and the database file

respectively (2x). In addition, the WAL frame header is written

as well, adding an extra page.

Fext4(x) = x+ 16 (2)

Equation 2 indicates the number of blocks that the filesys-

tem actually writes to flash storage in EXT4. EXT4 modifies

three metadata blocks: GDT, data block bitmap and inode

table, and they are logged by journaling. Since the SQLite

writes data to WAL files and database files respectively, the

write to the metadata is doubled. Thus, 16 blocks including

journal descriptor blocks and journal commit blocks are added

to the total write volume.

Ff2fs(x) = x+ 2 (3)

In F2FS, only data blocks and nodes are written. At this

time, fdataysnc() is called for both the database file and

the WAL file, writing two additional nodes.

LC =
MAXP/E × C

Wday ×WAF
(4)

Jeong et al [1] modeled a formula representing the lifespan

of a flash storage through factors: device WAF(WAF), total

capacity of storage(C), maximum number of program/erase

111

2018 7th IEEE Non-Volatile Memory Systems and Applications Symposium

2575-257X/18/$31.00 ©2018 IEEE
DOI 10.1109/NVMSA.2018.00028

Env Wday (MB) Lifespan (year)

A 97875.0 6.9
B 2244.4 300.0
C 0.6 1184083.0

A+B+C 100119.9 6.7

TABLE II
THREE OF ENVIRONMENT MODELS IN SMARTCAR.

cycles(MAXP/E), and total write volume per day(Wday

(Equation 4).

Table II indicates the lifespan of smartcar in situations in I

extracted from Equation 4 and the environment that is union

of all environments in Table I (A+B+C). The storage assumes

a 6 GB flash storage with a MAXP/E of 100,000 formatted

with the EXT4 filesystem. The WAF assumes Park et al [2]’s

worst WAF value of 2.5. In this assumption, it is assumed that

five tables are modified.

In environment A+B+C, the lifespan of flash storage is

about 6.7 years that is very short lifespan for expensive device

like smartcar. We used two studies to increase the lifespan:

WALDIO [3], F2FS single file atomic write [4].

WALDIO [3] solves the Journaling of Journal anomaly.

WALDIO embeds a WAL frame header on each page, which

eliminates further writes about WAL frame header, and the

data block of the WAL file is pre-allocated to fix the size, and

the writing to the WAL file uses direct IO to eliminate the

journaling of the WAL file.

S(x) = 2x (5)

With WALDIO, Equation 1 is improved to Equation 5 by

eliminating writes about the WAL header.

Fext4(x) = x+ 8 (6)

Equation 2 is advanced to Equation 6 because filesystem

journaling about WAL file is eliminated.

Env Wday (MB) Lifespan (year)

A 67500.0 10.0
B 2193.8 306.9
C 0.6 1194634.3

A+B+C 69694.3 9.7

TABLE III
THREE OF ENVIRONMENT MODELS IN SMARTCAR WITH WALDIO.

Table III represents lifespan of flash storage using SQLite

with WALDIO. In environment A+B+C, the lifespan has

improved about 46%.

F2FS supports multi-block atomic write feature [4]. This

feature allows the user to write multi blocks to a file atomi-

cally. Recently, SQLite has begun to support logging mode

using F2FS atomic writes. When SQLite is compiled with

the special option, all transactions will be committed through

F2FS single file atomic write.

S(x) = x (7)

With F2FS atomic write, Equation 1 is revamped to Equa-

tion 7. Since the database file is updated atomically, it does

not need to log the pages anymore.

Ff2fs(x) = x+ 1 (8)

Equation 3 is changed to Equation 8, because there is no

other file besides the database file.

Env Wday (MB) Lifespan (year)

A 23,625 28.5
B 1,080 623.4
C 0.3 2403547

A+B+C 24,705.3 27.3

TABLE IV
THREE OF ENVIRONMENT MODELS IN SMARTCAR WITH F2FS ATOMIC

WRITE.

Table IV represents lifespan of smartcar using SQLite with

F2FS atomic write. In environment A+B+C, the lifespan has

improved about 392%.

We have modeled the write amplification when SQLite per-

forms an insert operation in transaction (Equation 1, Equation

2, Equation 3). We assumed the environment that can occur

in a smartcar where flash storage lifespan is lethal and costly

(Table I). Finally, we derive Park et al’s formula for the

lifespan of a smartcar when SQLite write is amplified in our

assumption. The derived lifespan was short when we consider

the cot of smartcars. We have applied previous studies to

minimize the write volume of SQLite to increase the lifespan

of flash storage. The role of previous studies is to reduce S(x)
and F (x). When we applied these studies, we discovered that

the lifespan of flash storage increases from 1.4 × to 4 ×.

The write volume is as important as throughput in embedded

devices with flash storage. A technique such as journaling

has the advantage of maintaining consistency without reducing

throughput. However, it amplify the write volume by writing

the metadata twice. Now, a technique that minimizes the write

volume should be studied for embedded devices.

Acknowledgement

This work was supported by the BK21+ program (NRF),

Basic Research Lab program (NRF No. 2017R1A4A1015498),

ICT R&D program (IITP R7117-16-0232) and FutureOS grant

(IITP No. 2018-0-00549).

REFERENCES

[1] J. Jeong, S. S. Hahn, S. Lee, and J. Kim, “Lifetime improvement of nand
flash-based storage systems using dynamic program and erase scaling.”
in Proc. of USENIX FAST, 2014, pp. 61–74.

[2] C. Park, S. Lee, Y. Won, and S. Ahn, “Practical implication of analytical
models for ssd write amplification,” in Proc. of the 8th ACM ICPE. ACM,
2017, pp. 257–262.

[3] W. Lee, K. Lee, H. Son, W.-H. Kim, B. Nam, and Y. Won, “Waldio:
eliminating the filesystem journaling in resolving the journaling of journal
anomaly.” Usenix, 2015.

[4] J. Kim, “F2FS: support atomic_write feature for database,”
https://lkml.org/lkml/2014/9/26/19.

112

