
lwFSCK: Light-weight Filesystem Check
Juwon Kim

KAIST
Republic of Korea

Dongeon Kim∗

Presto Labs
Republic of Korea

Seungwon Yoo
KAIST

Republic of Korea

Myeongin Cheon
KAIST

Republic of Korea

Joontaek Oh∗
University of Wisconsin-Madison

USA

Youjip Won
KAIST

Republic of Korea

ABSTRACT
The existing filesystem check and repair process (FSCK) requires
tens of minutes or even hours with hundreds GByte memory to
complete on petabyte-scale filesystems. To address this issue, we
propose lwFSCK, a light-weight FSCK tool that can minimize the
FSCK execution time and memory footprint. Our approach, called
lwFSCK consists of two key technical ingredients: Per-Thread Data
Processing and TwinTree. First, Per-Thread Data Processing parti-
tions the set of metadata that needs to be examined into multiple
partitions and allocates each of them to a separate thread which
has its own per-thread data structure without lock contention. Sec-
ond, lwFSCK introduces an adaptive data structure called Twin-
Tree. TwinTree reduces the memory footprint that is required to
hold the temporary information for filesystem check. lwFSCK re-
duces execution time by up to 1.4× compared to the state-of-the-art
FSCK, pFSCK. lwFSCK reduces memory consumption by 6.8× in
file-intensive filesystems that use only 1% of inodes.

CCS CONCEPTS
• Software and its engineering→ Filesystem Check and Re-
pair Tool.

KEYWORDS
Filesystem Check and Repair tool, Filesystem, Crash consistency
ACM Reference Format:
Juwon Kim, Dongeon Kim, Seungwon Yoo, Myeongin Cheon, Joontaek Oh,
and Youjip Won. 2025. lwFSCK: Light-weight Filesystem Check. In The 40th
ACM/SIGAPP Symposium on Applied Computing (SAC ’25), March 31-April
4, 2025, Catania, Italy. ACM, Sicily, Italy, 9 pages. https://doi.org/10.1145/
3672608.3707806

1 INTRODUCTION
Crash consistency is paramount for ensuring reliability and data
integrity in filesystems [7–9, 12, 19, 20, 25, 26, 45]. Filesystem Check
and Repair (Crash and Repair) [14, 17, 18, 27, 30] tool is a widely
adopted program that ensures the crash consistency of the filesys-
tem. It traverses the entire filesystem metadata blocks such as in-
odes, directory entries, and bitmaps, verifies the consistency of the
∗This work was done while the authors were graduate students at KAIST.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SAC ’25, March 31-April 4, 2025, Catania, Italy
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0629-5/25/03.
https://doi.org/10.1145/3672608.3707806

metadata blocks and corrects any detected errors. Representative
filesystem Crash and Repair tools include e2fsck, a Crash and Repair
tool for the Ext filesystem, and xfs_repair for the XFS filesystem
[1, 6, 22, 37].

While the filesystem Check and Repair tools provide strong
filesystem consistency, they take a huge amount of time on a large-
scale storage. Since it traverses the entire filesystem, the latency of
its filesystem verification process increases linearly as the number
of files and directories or the filesystem size increases [15, 18].
Depending on the size of the filesystem, the total execution time
can take from a few hours to a few weeks.

To mitigate the overhead of the filesystem Crash and Repair,
there have been several research projects that propose to perform
verification in parallel [4, 16, 21, 23, 28, 34]. Recently proposed
pFSCK is a filesystem Crash and Repair tool that utilizes the CPU
parallelization and the high bandwidth of recent storage devices
[16]. In pFSCK, the multiple threads verify the consistency of the
inode blocks and the directory blocks in parallel. pFSCK divides
the filesystem verification process into several steps, and run each
step in a pipelined manner, to avoid unnecessary waiting for the
completion of previous passes. pFSCK has the advantage of applying
parallelization to fine-grained units and being compatible with the
existing filesystem without modification of the on-disk layout.

From our observation, the existing state-of-the-art work, pFSCK,
has two limitations. First, pFSCK is not fully many-core scalable.
pFSCK uses shared global data structures and global locks. We ob-
serve that pFSCK exhibits a limited performance due to its extensive
use of the locks: the locks for bitmaps that maintain information
about (i) the used inodes (ii) the used directories (iii) the file in-
odes (iv) the allocated blocks and (v) reference count of each inode.
Second, pFSCK does not consider the memory pressure. The exist-
ing filesystem Check and Repair tools including pFSCK consume a
huge amount of memory to maintain the information of the entire
filesystem metadata blocks. The reason behind the huge memory
footprint is that the existing FSCKs unnecessarily allocate memory
for all metadata blocks, regardless of whether the metadata blocks
are in use or not. This results in a significant amount of memory
being wasted when only a small fraction of metadata blocks are in
use. This memory overhead becomes severe as the storage capacity
increases. For example, the existing filesystem Check and Repair
tool renders 500 GByte memory footprint on the 1 PByte storage
device.

To address this issue, we present a light-weight FSCK, lwFSCK.
lwFSCK is redesigned to minimize the use of the locks and max-
imize the benefits of the existing FSCK optimization techniques,
i.e. parallel filesystem scanning [3, 16] and the pipeline processing

https://orcid.org/0009-0004-5120-174X
https://orcid.org/0009-0003-6448-4075
https://orcid.org/0009-0003-0403-6238
https://orcid.org/0009-0000-3139-7555
https://orcid.org/0000-0002-3084-092X
https://orcid.org/0000-0001-7178-5245
https://doi.org/10.1145/3672608.3707806
https://doi.org/10.1145/3672608.3707806
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3672608.3707806


SAC ’25, March 31-April 4, 2025, Catania, Italy J. Kim et al.

[16]. lwFSCK consists of two technical ingredients, per-thread data
processing and TwinTree. In per-thread data processing, we carefully
redesign the filesystem scanning process, to make the process fully
many-core scalable. lwFSCK maintains the data structures used
for filesystem scanning in a per-thread manner, to get rid of any
lock contention. In TwinTree, we design the data structure which
is specialized to space-efficiently record the reference count of the
inode. TwinTree reduces memory footprint by maintaining only
in-use inodes’ reference counts. TwinTree maintains two different
data structures; one is for inodes with a single reference count,
and the other is for inodes with multiple reference count. Twin-
Tree adaptively uses one of those data structures to minimize the
memory footprint.

By redesigning the filesystem Check and Repair tool to be fully
many-core scalable, lwFSCK reduces the total execution time of
FSCK by up to 1.4 × compared to pFSCK. Through the TwinTree
data structure, lwFSCK reduces memory footprint by up to 6.8 ×
compared to the pFSCK.

2 BACKGROUND
2.1 Filesystem On-disk Layout
Filesystems abstract filesystem blocks into a hierarchy of files and
directories. To support this abstraction, filesystems maintain vari-
ous types of metadata. We categorize the filesystem metadata into
two types: filesystem metadata and file metadata.
Filesystem Metadata. Filesystem metadata maintains the overall
information of the filesystem. Filesystem metadata includes su-
perblock and block allocation [41]. Superblock stores information
such as the filesystem version, the filesystem partition size, the
numbers of inodes in use and free inodes, the number of blocks in
use, and the lists of orphan inodes and free blocks. The metadata
for block allocation usually uses bitmaps [2, 32] or B+Trees [5] to
track the allocation status (free or not) of each filesystem block.
File Metadata. File metadata maintains the information associated
with individual files and the connectivity between files. We divide
the file metadata into three categories. First is the metadata for
individual files (or directories), such as type, timestamp, permis-
sions, etc. UNIX-like filesystems, such as ext4 [15], XFS [22], and
F2FS [32], employ inode to manage file’s metadata. An inode block
is a filesystem block dedicated to storing the file’s metadata, such
as file type, timestamp and several other information. Each file has
its own inode block. Second is the file mapping. File mapping is
metadata that maintains the location of data blocks of a file. The
UNIX-like filesystem maintains file mapping in the form of extent
[2], indirect mapping [2, 32], and B+Trees [5]. Third is the directory
entry. The directory entry contains the file information, e.g. name,
and location, included in the directory. The existing filesystems
maintain directory entry by using lists [2] or hash tables [2, 32].
Filesystem Consistency. Filesystem consistency refers to ensur-
ing a set of filesystem invariants [41]. When these invariants are
violated, it can lead to problems like data corruption, security vul-
nerabilities, or file loss. For example, a filesystem invariant might
require that every directory entry must point to an initialized inode.
Filesystems like ext4 perform consistency checks during the FSCK
process, verifying various aspects listed in Table 1.

Table 1: Checklist of e2fsck for each pass [21]

Pass # Object checklist

1 Inode timestamp, file type, permission, block pointer.
two inodes must not share the same block.

2 Directory ‘.’ and ‘..’ point to itself and parent.
each directory entry must point to a valid inode.

3 Connectivity each directory must be connected to the root

4 Reference
Count

reference count of file (or directory) inode must be
equal to the # of hard links (or subdirectory entries)

5 Bitmap fix inode and block bitmap

2.2 fsck: The Filesystem Check/Repair Tools
Numerous techniques have been proposed to ensure filesystem
consistency. They include filesystem check and repair tools [1,
6, 34], journaling [15, 22, 43], copy-on-Write [32, 40], and soft-
update [35]. While the journaling, copy-on-write, and soft-update
are effective in maintaining filesystem consistency after a crash,
they are insufficient for handling errors such as disk failures. In
such cases, only check and repair (C/R) tools can be employed
[10, 11, 29, 31, 38, 39, 42]. In environments like data centers, where
hundreds of thousands of disks are in use, disk failures frequently
occur [44] so the C/R tools are essential to guarantee a filesystem
consistency from the disk failures.

In this work, we focus on one of the widely deployed C/R tool,
e2fsck, that services for ext2, ext3, and ext4 filesystems. e2fsck runs
total 5 passes as shown in Table 1.
Check and Repair in e2fsck. e2FSCK consists of five passes
in total. Pass 1 traverses the on-disk inode table and checks the
consistency of in-use inodes. For each inode, e2FSCK checks the
correctness of timestamp, size, file type, permission, and several
other attributes. Pass 2 traverses all the directory blocks and checks
the consistency of the directory entries in each directory block. It
checks the conflict between the length of the directory entry and
the length of the corresponding file name. Pass 3 checks whether
each directory can traverse to its upper directory via ‘..’ entry. Pass
4 examines reference counts of file inode blocks and directory inode
blocks. The reference count of a file inode indicates the number of
hard links, including itself. The reference count in a directory inode
is the count of subdirectory entries, including itself and the parent
directory. Pass 4 counts the hard links of each file and subdirectory
entries of each directory by traversing entire filesystem. Then it
compares them with the reference count in the on-disk inodes.
Pass 5 checks whether inode bitmap and block bitmap are correctly
indicating in-use inodes and in-use data blocks, respectively.
Inter-Pass Serial Execution. Since each pass requires the results
of the previous pass, e2fsck executes its five passes in a serial man-
ner. For example, after the pass 1 checks the validity of each inode,
pass 2 checks whether each directory entry points to a valid inode.
After pass 2 verifies that all directory entries are correctly pointing
valid inode, the pass 3 verifies whether each directory can reach
the root directory by using ‘..’ entry. Pass 4 sets the reference
count for each inode based on the number of directory entries that
reference it, which also requires the completion of pass 2. Finally,
pass 5 checks the validity of the on-disk bitmap, which represents
the allocation status of inodes and data blocks. The allocation status



lwFSCK: Light-weight Filesystem Check SAC ’25, March 31-April 4, 2025, Catania, Italy

of each inode and block is verified during pass 1, so pass 5 must
also be executed after pass 1.
Intra-Pass Serial Execution. Current e2fsck is designed to run
each pass in a serial manner with a single thread. In e2FSCK, there
are lots of global in-memory and on-disk data structures that are
referred to or updated during each pass. For example, when updat-
ing the validity of inodes during pass 1, the superblock and inode
bitmap are also updated. The superblock records the number of
inodes in use, and the inode bitmap sets the corresponding bit for
each inode that is in use. These global data structures introduce
significant lock contention, preventing e2fsck from being executed
with multiple threads.
Memory Pressure. e2FSCK is designed to minimize disk I/Os by
maintaining large in-memory data structure. Once e2FSCK reads
on-disk metadata such as inode table and bitmap, e2FSCK keeps the
information that will be potentially necessary for the subsequent
passes on the memory. This is to avoid multiple disk read on the
same metadata block. For example, when the pass 2 scans all direc-
tory block, it calculates reference counts of each inode pointed by
the directory blocks. Then, e2FSCK maintains in-memory array of
the [inode number, reference count]. This array is used in pass 4 that
performs reference count check. The memory overhead of e2FSCK
becomes severe as the storage capacity increases since e2FSCK
maintains in-memory data structure to store the information of the
entire filesystem blocks.

2.3 Scalability of fsck
As the size of a single filesystem reaches several terabytes, the exe-
cution time for fsck dramatically increases. Since the system that
has crashed is likely to crash again in the near future, minimiz-
ing the fsck execution time is crucial. There have been numerous
research projects [3, 13, 16, 17, 21, 24, 33, 34] to reduce the fsck
execution time. They include exploiting (i) physical isolation, (ii)
online check, (iii) data parallelism, and (iv) pipeline parallelism.
Physical Isolation. IceFS [33] and ChunkFS [24] divide the filesys-
tem partition into multiple small, individually repairable fault-
isolation domains [24]. With the physical isolation approach, the
filesystem can be recovered in a fine-grained manner, minimizing
the execution time of FSCK. However, this approach disables cross-
domain references [33] and requires significant modification to the
on-disk layout of the filesystem[24, 33].
Online Check. NoFS [13] and Recon [17] perform consistency
checks while serving the file and directory abstraction. NoFS checks
the consistency of only part of the partition and verifies the rest in
the background [13]. Recon [17] verifies whether the journal trans-
actions maintain filesystem invariants before committing them to
the journal. However, NoFS requires modifying the on-disk layout
[13], and Recon [17] must be used with journaling.
Data parallelsim. Wang et al. [3] and pFSCK [16] divide the inodes
to be checked in pass 1 across multiple threads, enabling them to be
checked in parallel. However, pFSCK shares five key data structures
across all threads, limiting its scalability: (i) the bitmap that tracks
in-use inodes, (ii) the bitmap that tracks directory inodes, (iii) the
bitmap that tracks file inodes, (iv) the bitmap that tracks used logical
blocks, and (v) the bitmap that tracks the inode reference counts.

 0

 10

 20

 30

 40

 50

2 4 16

R
u

n
ti
m

e
 (

s
e

c
)

inode count (millions)

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

(a) File-intensive scenario

 0

 40

 80

 120

 160

 200

2 4 16

R
u

n
ti
m

e
 (

s
e

c
)

inode count (millions)

Pass 1

Pass 2

Pass 3

Pass 4

Pass 5

(b) Dir-intensive scenario

Figure 1: Execution time breakdown of e2fsck

Wang et al. allocate these five data structures per thread and merge
them after pass 1. They also introduce per-thread data structures,
except for certain data structures such as the disk read/write lock
and block bitmap. However, Wang et al.’s approach introduces per-
thread data structures only for pass 1, which limits its scalability.
Pipeline Parallelism. pFSCK pipelines pass 1 and pass 2 to en-
hance performance. pFSCK has two set of threads; one is for pass 1
and the other is for pass 2. When each thread for pass 1 scans the
inode and finds a directory, it immediately delivers the directory
block to the thread for pass 2. The thread for pass 2 checks the
directory consistency in parallel with pass 1.

3 MOTIVATION
We evaluate two representative filesystem check and repair tools,
e2FSCK [1] and pFSCK [16], and obtain three key observations.

3.1 e2FSCK
We examine the execution time of each pass in e2FSCK. We set
the filesystem partition to 256 GByte. We vary the number of files
and directories to 2, 4, and 16 million, which account for 12%, 24%,
and 96% of total inodes in the filesystem, respectively. We evaluate
two scenarios: dir-intensive case and file-intensive case. In the
dir-intensive case, the ratio of file and directory is 50:50. In the
file-intensive case, the ratio of file and directory is 99:1. The details
of the experiment setting are shown in Sec. 5.

Fig. 1(a) and Fig. 1(b) depict the execution time of each pass
in the file-intensive case and dir-intensive case, respectively. The
total execution time of e2fsck increases with the number of in-use
inodes. It is notable that the sum of the execution times of pass 1
and pass 2 accounts for more than 94% of the total execution time
in both file-intensive and dir-intensive scenarios. Since there are
more directories in the dir-intensive scenario, the execution time
of pass 2 that checks directory consistency is significantly longer
than that of file-intensive case.
Observation #1. Pass 1 and 2 account for most of execution time
of filesystem check and repair. Thus, optimizing pass 1 and pass 2
is a key to reduce overall execution time of the filesystem check
and repair. According to our analysis, Passes 1 and 2 involve disk
read/write operations, while Passes 3, 4, and 5 involve significantly
less disk I/O. In Pass 1, all inodes and file mappings must be read
from the disk. In Pass 2, all directory blocks are read from the disk.
During passes 1 and 2, e2fsck do the following with read inodes and



SAC ’25, March 31-April 4, 2025, Catania, Italy J. Kim et al.

file mappings; (i) reconstruct the inode bitmap and block bitmap, (ii)
record the reference count for each inode, and (iii) create a directory
list. Thus, Pass 3 can minimize disk reads by utilizing the directory
list created in Passes 1 and 2. Similarly, Pass 4 can reduce disk reads
by using the [inode, reference count] pairs generated in Passes 1
and 2. Finally, Pass 5 relies on the bitmaps generated in Passes 1
and 2. Additionally, since the number of blocks occupied by the
bitmaps is relatively small, disk I/O in this pass is minimal.

3.2 Manycore Scalability of Parellel FSCK
We examine pFSCK, the advanced e2FSCK that exploitsmulti-thread
parallelism. To explore the manycore scalability of pFSCK. we run
pFSCK with varying the number of threads on a 256 GByte filesys-
tem partition. The evaluation runs with 16 million files and directo-
ries. We run file-intensive case and dir-intensive case, where the
ratio of file and directory is 99:1 and 50:50, respectively. The detail
of the experiment setting is shown in Sec. 5.

According to the result of the evaluation, pFSCK performance
decreases as the number of threads increases. The root cause be-
hind this is lock contention during pass 1. The pass 1 consists of
two phases. In the first phase, the multiple threads check inode
consistency in parallel. In the second phase, multiple threads collect
inodes’ information which will be used in subsequent passes. The
inode information includes the type (file or directory) and the state
(in-use or not) of the inode. pFSCK maintains global data structures
to maintain the inode information: (i) the bitmap that tracks in-use
inodes, (ii) the bitmap that tracks directory inodes, (iii) the bitmap
that tracks file inodes, (iv) the bitmap that tracks used logical blocks,
and (v) the bitmap that tracks the inode reference counts. When
multiple threads update the global data structures, they suffer from
severe lock contention, degrading the scalability of pFSCK. Fig. 2
depicts the execution time of pass 1 and lock wait time for the global
data structure. In the file-intensive filesystem with 16 threads (Fig.
2(a)), the lock wait time is about 67% of the execution time of pass
1. In the dir-intensive case with 16 threads (Fig. 2(b)), the lock wait
time accounts for about 60% of the execution time of pass 1.
Observation #2. Parallel FSCK is not fully parallel but suffers
from lock contention. To fully exploit the manycore parallelism,
the existing filesystem check and repair has to be redesigned.

3.3 Memory Consumption of Parallel FSCK
While pipeline parallelism enhances performance, it poses another
problem: huge memory footprint. e2FSCK, which runs each pass
serially, minimally allocates memory to keep the information nec-
essary for subsequent passes in memory. For example, e2FSCK
obtains the number of total in-use inodes when pass 1 finishes and
shares this information with pass 2. When pass 2 creates the array
of [inode number, reference count], it allocates memory for the
array minimally to hold only the in-use inodes.

In pFSCK, however, pass 1 and pass 2 are run simultaneously,
so pass 2 can not have the number of in-use inodes. Thus, pFSCK
maximally allocates the array with the size of the total number of
inodes, to prevent the record count array from being full. When
the number of in-use inodes is low, pFSCK significantly wastes
memory. When 1% of total inodes are in use in 512 TByte filesystem,
for example, 64 GByte of memory is wasted.

 0

 20

 40

 60

 80

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

lock wait time

Pass 1

(a) File-intensive scenario

 0

 30

 60

 90

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

lock wait time

Pass 1

(b) Dir-intensive scenario

Figure 2: Execution time breakdown of Pass 1 in pFSCK

Observation #3. With pipeline parallelism, pass 2 can not obtain
the complete outcome of pass 1. This results in an unnecessarily
large memory footprint of pFSCK.

4 LIGHT-WEIGHT FSCK
4.1 An Overview
We present lwFSCK, a light-weight FSCK. The lwFSCK addresses
two issues. First, it makes the accesses on the shared data structure
in the filesystem check operation manycore scalable. Second, it
minimizes the memory footprint of filesystem Check and Repair.
The design of lwFSCK consists of two parts. First, lwFSCK adopts
fully per-thread data structure to avoid lock contention overhead.
Second, to reduce memory consumption, lwFSCK proposes to adap-
tively use two types of data structures in allocating the memory
space for reference counts with respect to the number of inodes in
use.

4.2 Per-thread Data Processing
Existing e2FSCK and pFSCK have low scalability due to the lock
contention on global data structures. We replace all data structures
used during filesystem check and repair to per-thread data struc-
tures. we adopt the per-thread data structure as proposed by Wang.
et, al [3]. We allocate a set of block groups based on the number
of threads and the total number of block groups as in Wang. et
al [3]. For the data structure corresponding to the multiple block
groups, e.g., superblock, we use delta record which represents the
difference rather than the data field itself, as in [3]. With a per-
thread data structure, the synchronization cost for global variables
can be significantly reduced. Each pass consists of three phases.
First, each thread allocates its own per-thread data structures used
for the pass before the start of the pass. The per-thread data struc-
tures maintain the inode state (in-use or not) and inode type (file
or directory). Then, each thread is assigned a portion of the block
groups, calculated as the total number of block groups divided by
the number of cores. Second, each thread checks the consistency
of the metadata within the assigned block groups. During the in-
spection, the thread inserts inode type and inode state information
into its own data structures. The threads do not suffer from lock
contention since they have their own data structure. Finally, after
the inspection is over, all data structures and the delta record from
each thread are merged into the global structures. Compared to
global data structures, there is a disadvantage in that additional



lwFSCK: Light-weight Filesystem Check SAC ’25, March 31-April 4, 2025, Catania, Italy

(a) Regular files only (b) Directories and regular files

Figure 3: Regular files only vs. Directories and Regular files

merging work is required, but there is no performance degradation
due to synchronization through locks, so scalability is sufficiently
high. Additionally, each thread executes the next pass even if the
current pass is not done, e.g., inspecting the directory block even if
the whole pass 1 is not cone as in pFSCK [16].

4.3 TwinTree
TwinTree is a data structure designed to space-efficiently maintain
the reference count of inodes. TwinTree consists of two red-black
trees, called single and multiple. single is for inodes with
a reference count of 1. multiple is for inodes with a reference
count of more than 1. Both single and multiple are red-black
tree, but their entry structure are designed differently to minimize
the memory footprint. The entry of multiple simply consists of
the inode number and the reference count. The entry of single
space-efficiently represents the range of consecutive inodes with a
single reference count. The entry of single consists of the start
inode number and the number of consecutive inodes. Since the
single tree only maintains inodes with a reference count of 1, its
entry does not include the reference count in the entry of single.

For example, assume that the 𝑖-th inode has a reference count of
1 and it is not consecutive with other inode. Then the corresponding
single entry has inode number of 𝑖 and number of consecutive
inodes of zero. Then, when the (𝑖+1)-th inode also has the reference
count is 1, the (𝑖 + 1)-th inode will be reflected to the single.
Instead of creating a new entry and inserting it into the red-black
tree, the count of the 𝑖-th inode entry is increased by one because
the 𝑖-th and (𝑖 + 1)-th are consecutive inodes.

Fig. 3(a) depicts the single tree when the most of files have a
reference count of 1. Contiguous inodes can be represented by a
single entry, providing efficiency in terms of memory usage. Plus,
the advantage of having a small number of entries results in a
faster search in the red-black tree. Fig. 3(b) shows single tree
when the most of file have a reference count more than two. Since
the continuity of inodes breaks, there are multiple entries in the
single tree.

The way to increase, decrease, and search the reference count
using TwinTree is as follows.
INCREMENT. To increase the reference count of the inode by 1,
lwFSCK first checks if the inode exists in single. If it exists in
single, it removes the corresponding entry from single and

inserts a new entry with the inode number and reference count of
2 into multiple. If the inode does not exist in single, lwFSCK
checks if the inode exists in multiple. If it exists in multiple,
it increases the reference count by 1. Else, the inode is referenced
firstly so lwFSCK inserts the corresponding inode into single.
DECREMENT. To decrease the reference count of the inode by
1, lwFSCK checks if the inode exists in single. If so, lwFSCK re-
moves the corresponding entry from single. Otherwise, lwFSCK
searches the inode in multiple and decreases the reference count
of the inode by 1. If the reference count becomes 1, lwFSCK deletes
the entry from multiple and inserts the corresponding inode
into single. If the target inode does not exist in either single
or multiple, it is an inode with a reference count of 0 so far
and it is the first referenced inode. Therefore, the reference count
cannot be decreased.
FETCH. To search for the reference count of the target inode,
lwFSCK checks if the inode exists in single. If it exists, the ref-
erence count of the inode is 1. If it does not exist in single,
lwFSCK checks if the inode exists in multiple. If the inode exists
in multiple, it returns its reference count. If the inode exists in
neither multiple nor multiple, it means the inode has not
been referenced, so the reference count is 0.

In TwinTree, every operation such as insertion, search, and dele-
tion has a maximum time complexity of O(log n). While TwinTree
is not as fast as using an array with a time complexity of O(1),
TwinTree can significantly reduces the memory footprint by space-
efficiently maintaining reference counts of only in-use inodes.

4.4 Adaptive Object Allocation
To minimize memory footprint, lwFSCK adaptively switches the
data structure to maintain the inode reference count based upon the
utilization of the inode. It reduces the memory pressure associated
with performing a filesystem check operation. Existing filesystem
Check and Repair tools, e.g. e2fsck and pFSCK, statically determine
the data structure for inode reference counters when the filesystem
check procedure starts. pFSCK uses an array to represent a set of
inode reference counters. The number of elements of the array
corresponds to the number of total inodes in the filesystem no
matter whether the inode is in use or not. When the filesystem
utilization is low, pFSCK unnecessarily allocates a huge amount of
memory.

lwFSCK estimates the memory footprint of arrays and TwinTree
and adaptively chooses the data structure with minimal memory
footprint. The memory footprint of each data structure can be
estimated through the continuity of the file inode number and
inode usage. The continuity of inode numbers for regular files
is inversely proportional to the ratio of directory inodes in the
filesystem and directly proportional to the ratio of regular file inodes
in the filesystem. Using Eq. 1, the ratios of directory inodes (𝑅𝑑 )
and regular file inodes (𝑅𝑓 ) in the filesystem can be determined. 𝑁
represents the number of block group descriptors, and 𝑑𝑖 denotes
the count of in-use directory inodes in the 𝑖-th block group. 𝐼𝑢𝑠𝑒𝑑
represents the total count of in-use inodes in the filesystem. Eq.
1 calculates the counts of directory and regular file inodes using
information about the number of directories and regular files in
each block group descriptor.



SAC ’25, March 31-April 4, 2025, Catania, Italy J. Kim et al.

𝑅𝑑 =

∑𝑁
𝑖=1 𝑑𝑖

𝐼𝑢𝑠𝑒𝑑
, 𝑅𝑓 =

∑𝑁
𝑖=1 𝑓𝑖

𝐼𝑢𝑠𝑒𝑑
(1)

Eq. 2 and Eq. 3 represent estimated memory footprints of Twin-
Tree (𝑀𝑒𝑚𝑇𝑤𝑖𝑛𝑇𝑟𝑒𝑒 ) and array (𝑀𝑒𝑚𝐴𝑟𝑟 ), respectively. 𝑆𝑠𝑖𝑛𝑔𝑙𝑒 is
the size of an entry of single tree. 𝑆𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 is the size of an entry
of multiple tree. As the directory ratio increases and the inode
usage rises, the memory footprint with the TwinTree structure also
increases. 𝑆𝐴𝑟𝑟 is the size of an element in the array. Since the array
is always allocated with a size equal to the total number of inodes,
the memory footprint of the array remains fixed.

𝑀𝑒𝑚𝑇𝑤𝑖𝑛𝑇𝑟𝑒𝑒 = 𝐼𝑢𝑠𝑒𝑑 ∗ 𝑅𝑑 ∗ (𝑆𝑠𝑖𝑛𝑔𝑙𝑒 + 𝑆𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 ) (2)

𝑀𝑒𝑚𝐴𝑟𝑟 = 𝐼𝑡𝑜𝑡𝑎𝑙 ∗ 𝑆𝐴𝑟𝑟 (3)
lwFSCK calculates Eq. 2 and Eq. 3 before the start of Pass 1

and determines which data structure to use. If 𝑀𝑒𝑚𝑇𝑤𝑖𝑛𝑇𝑟𝑒𝑒 is
smaller than 𝑀𝑒𝑚𝐴𝑟𝑟 , it can be inferred that the TwinTree has
lower memory usage than the array. In this case, lwFSCK uses the
TwinTree. Otherwise, lwFSCK uses the array.

5 EVALUATION
We use Dell PowerEdge R740 server with 40 cores (Intel Xeon
Gold 6230), 512GB memory, and Samsung 970 pro NVMe SSD. We
build lwFSCK on top of Linux kernel 5.18.18. We set the filesystem
partition size to 256 GByte with 16 million inodes. We set the inode
utilization to 96%, i.e. 96% of the inodes in the filesystem partition
are in use. We compare lwFSCK with pFSCK, the state-of-the-art
filesystem check and repair tools. We consider two scenarios: file-
intensive case and dir-intensive filesystem. In the file-intensive case,
each directory has 99 files. The ratio between the number of files
and the number of directories is 99:1. In the dir-intensive case, each
directory has one file in it. The ratio between the number of files
and the number of directories is 50:50. We use FSMark to construct
the filesystem images as in pFSCK [16]. Through the evaluation,
we answer the following questions.
• How much execution time does lwFSCK reduce in performing
the filesystem check?

• How much memory does lwFSCK save during the filesystem
check?

5.1 Performance
Both lwFSCK and pFSCK have two types of parallelism techniques;
data parallelism and pipeline parallelism. To explore the effect of
each parallelism strategy, we run two experiments. In the first
experiment, we activate only the data parallelism of FSCKs. Second,
we apply both data parallelism and pipeline parallelism in running
filesystem check.
Data Parallelism. We examine the effect of the per-thread data
processing design in lwFSCK. lwFSCK adds per-thread data pro-
cessing technique to the data parallelism of pFSCK. This approach
eliminates unnecessary critical sections protected by locks. Fig. 4
illustrates the execution time breakdown of lwFSCK and pFSCK
in file-intensive case. lwFSCK outperforms pFSCK by 2.94×. The
execution time of pass 1 in lwFSCK decreases as the number of
threads increases. This is because the per-thread data structure

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

Pass 1
Pass 2
Pass 3

Pass 4
Pass 5

(a) lwFSCK

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

Pass 1
Pass 2
Pass 3
Pass 4
Pass 5

(b) pFSCK

Figure 4: Execution time breakdown of file-intensive case
with data parallelism

design enables to fully parallelize metadata scanning in pass 1. On
the other hand, pFSCK suffers from severe lock contention, thus, its
execution time of the pass 1 increases with the number of threads.
Dir-intensive case shows a similar pattern as shown in Fig. 5. The
per-thread data structure design results in lwFSCK to outperform
pFSCK by 2.58 × in pass 1. Since data parallelism works only on
pass 1, other passes do not change with the number of threads.

In both file-intensive and dir-intensive cases, the pass 1 execution
time of lwFSCK no more decrease when the number of threads
exceeds 8. This is the result of the small filesystem size, i.e, 256GB.
In lwFSCK, each thread is assigned a set of block groups, and its size
is not dramatically reduced if there are not enough block groups to
scan. We find that if the filesystem size is 2TB, the pass 1 execution
time is also reduced at 16 threads.

Notably, we observe that the merging time in lwFSCK itself is
not the bottleneck of many-core scalability. The pass 1 of lwFSCK
consists of two phases: checking metadata by multiple threads in
parallel, and merging the checking results from multiple threads.
The execution time of the first phase decreases as the number of
threads increases, the second phase does not. From our observation,
the merge time itself is less than 1% of the total execution time,
which is too minimal to become a main bottleneck.
Data Parallelism and Pipeline Parallelism. We measure the
execution time of pFSCK and lwFSCK. They use both the data paral-
lelism and the pipeline parallelism in running the filesystem check.
In the pipeline parallelism, both pass 1 and pass 2 run simulta-
neously in pipelined manner. Therefore, the total execution time
for filesystem check is determined by the longer execution time
between pass 1 and pass 2.

Fig. 6 illustrates the result with varying number of threads in
pass 1 and pass 2. The number of threads used ranges from 1 to
16. The same number of threads are used for data parallelism and
pipeline parallelism. In the file-intensive case as shown in Fig. 6(a),
the execution time of lwFSCK is upto 1

2.8 of the execution time
of pFSCK. Since the lwFSCK is designed to fully exploit both data
parallelism and pipeline parallelism, its execution time is enhanced
as the number of threads increases. The execution time of pFSCK
increaseswhen the number of threads ismore than 8. This is because
the lock contention overhead during pass 1 becomes a bottleneck
to the subsequent passes, increasing the overall execution time of
pFSCK.



lwFSCK: Light-weight Filesystem Check SAC ’25, March 31-April 4, 2025, Catania, Italy

 0

 50

 100

 150

 200

 250

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

Pass 1
Pass 2
Pass 3

Pass 4
Pass 5

(a) lwFSCK

 0

 60

 120

 180

 240

 300

 360

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

Pass 1
Pass 2
Pass 3
Pass 4
Pass 5

(b) pFSCK

Figure 5: Execution time breakdown of dir-intensive case
with data parallelism

 0

 20

 40

 60

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

pFSCK
lwFSCK

(a) File-intensive case

 0

 50

 100

 150

 200

1 2 4 8 16

R
u

n
ti
m

e
 (

s
e

c
)

Threads

pFSCK
lwFSCK

(b) Dir-intensive case

Figure 6: Execution time with data parallelism and pipeline
parallelism

Fig. 6(b) compares the execution time of pFSCK and lwFSCK
in a directory-intensive case. The data parallelism and pipeline
parallelism reduces execution time of lwFSCK and pFSCK as in-
creasing the number of threads by 4. pFSCK shows almost similar
performance with lwFSCK, since it does not much suffer from lock
contention during pass 1.

In dir-intensive case, the execution time of pass 1 of lwFSCK
is shorter than that of pFSCK. However, the total execution time
did not decrease significantly. In a directory-intensive filesystem,
the directory ratio is 50%, so the execution time of pass 2 is 10 ×
more than the execution time of pass 1. As shown in Fig. 5, pass
2 accounts for about 90% of the total execution time. Thus, the
lock contention overhead of pass 1 does not overshadow the total
execution time of pFSCK. The decrease in the execution time of
pass 1 does not have a big impact on the total execution time.

5.2 Memory Pressure
We examine how much lwFSCK can save memory footprint via
TwinTree. We measure the memory footprint of lwFSCK and pF-
SCK with varying the number of threads. To examine the effect of
TwinTree, we use the filesystem partition with low utilization. We
use a 64GB filesystem parition with 40,000 inodes and set inode
utilization to the 1%. We run two scenarios, file-intensive case and
dir-intensive case.

Fig. 7(a) and Fig. 7(b) depict thememory footprint of file-intensive
filesystem and dir-intensive filesystem, respectively. The memory

 0

 10

 20

 30

 40

 1  2  4  8  16

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Threads

lwFSCK
pFSCK

(a) File-intensive case

 0

 10

 20

 30

 40

 1  2  4  8  16

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Threads

lwFSCK
pFSCK

(b) Dir-intensive case

Figure 7: Memory Footprint (filesystem partition size: 64
GByte, inode utilization: 1%)

footprint of lwFSCK slightly increases with the number of threads
since lwFSCK maintains the per-thread data structure for many-
core scalability. The memory footprint of lwFSCK is about 1

6.8 and
1
2.4 of pFSCK’s in the file-intensive case and the dir-intensive case,
respectively. This is because TwinTree of lwFSCK allocates mem-
ory only for in-use inodes while pFSCK does not. Since the ratio of
in-use inode is about 1%, pFSCK wastes 99% of allocated memory.

In lwFSCK, the file-intensive case has much less memory foot-
print than dir-intensive case. The reason behind this is that Twin-
Tree space-efficiently maintain the reference count of continuous
inodes. Since the file-intensive case contains much more continu-
ous inodes than dir-intensive case, TwinTree significantly reduces
the memory footprint of lwFSCK in the file-intensive case.

When the utilization of inode is high (ex. 90%) or the number
of threads is numerous (ex. 128), TwinTree of lwFSCK can have
more memory footprint than pFSCK. To avoid this, lwFSCK adap-
tively uses the simple array instead of TwinTree as described in
subsection 4.4.

5.3 Adaptive Object Allocation
Before starting pass 1, lwFSCK selects either TwinTree or array
based on which data structure renders less memory pressure. As
shown in Table 2, the array can have less memory footprint than
TwinTree in certain cases. To decide between TwinTree and array,
we calculate the ratios of directory inodes and regular file inodes in
the filesystem. These ratios can be obtained from the superblock or
group descriptor of each block group [36]. According to our experi-
ments, the overhead of selecting the data structure is negligible.

Table 2: Comparison of Memory pressure in MByte (filesys-
tem partition size : 256 GByte, 8 Threads)

inode utilization 1% 25% 50% 100%
Array 72.4 200.8 274.0 280.2

TwinTree 9.5 173.7 284.7 355.3

In a 2 TByte filesystem partition (RAID 5, 7+1 configuration with
SATA Samsung SM883 SSDs, and a Dell PERC H730P Controller),
the selection process takes only 159ms, while the total fsck exe-
cution time is 192 seconds. This is because the group descriptor
size is very small—64 bytes per block group. Each group descriptor



SAC ’25, March 31-April 4, 2025, Catania, Italy J. Kim et al.

block contains 64 group descriptors, and since the block group size
is 128 MByte, a single group descriptor block covers 8 GByte of
the filesystem. For a 2 TByte filesystem, only 256 blocks of 4 KByte
each need to be read. Thus, the overhead is almost negligible.

6 RELATEDWORK
As the size of the filesystem and the number of available inodes
increase, the execution time of the filesystem Check and Repair
tool linearly increases. This has led to research on improving the
performance of filesystem Check and Repair tools. xfs_repair, a
representative Check and Repair tool of the XFS filesystem, sup-
ports parallel processing. However, the unit of parallel processing
is vast, such as disk, logical group, etc. If there is a large difference
in the amount of data between the units performing parallel pro-
cessing, it can lead to load imbalance, where some threads remain
idle while others are overloaded. This imbalance reduces the overall
efficiency of parallel processing, limiting the performance gains
from multi-threading. Ffsck [34] is a filesystem Check and Repair
tool that aims to reduce execution time by improving inefficient I/O
patterns and changing the metadata structure of the existing filesys-
tem. By changing the Ext filesystem layout considering the SEEK
time of the hard disk, the inspection process has been improved
to be processed as much as possible by sequential reading. How-
ever, because it requires modifications to the on-disk filesystem
layout, such as changing the metadata structure and rearranging
blocks for verification and recovery, it is challenging to be widely
adopted in the industry. Chunkfs [24] aims at reducing the total
execution time by dividing the entire filesystem partition into the
multiple small, individually repairable fault-isolation domains and
performing inspection on each domain in parallel. However, there
can still be data imbalance between the partitioned domains, which
reduces the overall efficiency of parallel processing. SQCK [21]
performs filesystem verification and recovery work by using SQL
queries. It proposes a technique to encapsulate 121 inspections
performed in e2fsck into a set of SQL queries. Instead of e2fsck,
which is composed of complex and incomplete code written in low-
level languages, SQCK has the advantage of being able to perform
recovery work simply and concisely through queries. However,
SQCK hinders widespread adoption because it needs to build a new
recovery tool.

7 CONCLUSION
We observe two limitations of the state-of-the-art filesystem Check
and Repair tool, pFSCK: (i) severe lock contention on the global
data structure, and (ii) unnecessarily excessive memory footprint
to maintain inode reference counts. Based upon this observation,
we propose the following two techniques. The first is per-thread
data processing. In per-thread data processing, we carefully replace
a global data structure where lock contention occurs with a per-
thread data structures. The second is an adaptive data structure
allocation. In order to minimize the memory footprint for main-
taining the reference count of inodes, lwFSCK adaptively switches
the data structure between the simple array and TwinTree. Twin-
Tree is a red-black tree-based data structure which is designed to
space-efficiently maintain the reference count of continuous in-
odes. lwFSCK estimates the memory footprints of simple array and

TwinTree and adopts the data structure with a minimal memory
footprint. lwFSCK reduces the execution time of pass 1 in a file-
intensive filesystem by up to 2.94 × compared to pFSCK. lwFSCK
reduces the entire execution time by up to 1.4 × compared to pFSCK.
Through the TwinTree data structure, lwFSCK reduces memory
footprint by 6.8 × in a file-intensive filesystem using only 1% of the
inodes.
Acknowledgements We are grateful to the anonymous reviewers
for their valuable comments and feedback. This workwas supported
by Development of Collection and Integrated Analysis Methods
of Automotive Inter/Intra System Artifacts through Construction
of Event-based experimental system Research Program (No. 2022-
0-01022) through the Institute of Information & Communications
Technology Planning & Evaluation (IITP), Korea.

REFERENCES
[1] e2fsck: fsck for ext4. https://linux.die.net/man/8/e2fsck.
[2] Ext4 on-disk layout. https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout.
[3] introduce parallel fsck to e2fsck pass1. https://patchwork.ozlabs.org/project/

linux-ext4/list/?series=169193.
[4] Mtanski. Parallel XFS. https://github.com/mtanski/xfsprogs/tree/preadv2/repair.
[5] XFS on-disk layout. https://dubeyko.com/development/FileSystems/XFS/xfs_

filesystem_structure.pdf.
[6] xfs_repair: fsck for xfs. https://linux.die.net/man/8/xfs_repair.
[7] Ramnatthan Alagappan, Aishwarya Ganesan, Yuvraj Patel, Thanu-

malayan Sankaranarayana Pillai, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2016. Correlated crash vulnerabilities. In Proc. of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[8] Sultan Aldossary and William Allen. 2016. Data security, privacy, availability
and integrity in cloud computing: issues and current solutions. SAI International
Journal of Advanced Computer Science and Applications (IJACSA) 7, 4 (2016).

[9] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,
Zachary Peterson, and Dawn Song. 2007. Provable data possession at untrusted
stores. In Proc. of the 14th ACM Conference on Computer and Communications
Security (CCS).

[10] Lakshmi N Bairavasundaram, Andrea C Arpaci-Dusseau, Remzi H Arpaci-
Dusseau, Garth R Goodson, and Bianca Schroeder. 2008. An analysis of data
corruption in the storage stack. ACM Transactions on Storage (TOS) 4, 3 (2008),
1–28.

[11] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.
2014. OpLog: a library for scaling update-heavy data structures. MIT CSAIL
Technical Reports (2014).

[12] Jinrui Cao, Om Rameshwar Gatla, Mai Zheng, Dong Dai, Vidya Eswarappa,
Yan Mu, and Yong Chen. 2018. PFault: A general framework for analyzing the
reliability of high-performance parallel file systems. In Proc. of the 32nd ACM
International Conference on Supercomputing (ICS).

[13] Vijay Chidambaram, Tushar Sharma, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2012. Consistency without ordering. In Proc. of the 10th USENIX
Conference on File and Storage Technologies (FAST).

[14] Dong Dai, Om Rameshwar Gatla, and Mai Zheng. 2019. A performance study of
lustre file system checker: Bottlenecks and potentials. In Proc. of the 35th IEEE
Symposium on Mass Storage Systems and Technologies (MSST).

[15] Borislav Djordjevic and Valentina Timcenko. 2012. Ext4 file system in linux envi-
ronment: Features and performance analysis. International Journal of Computers
(IJC) 6, 1 (2012), 37–45.

[16] David Domingo and Sudarsun Kannan. 2021. {pFSCK}: Accelerating File System
Checking and Repair for Modern Storage. In Proc. of the 19th USENIX Conference
on File and Storage Technologies (FAST).

[17] Daniel Fryer, Kuei Sun, Rahat Mahmood, TingHao Cheng, Shaun Benjamin,
Ashvin Goel, and Angela Demke Brown. 2012. Recon: Verifying file system
consistency at runtime. ACM Transactions on Storage (TOS) 8, 4 (2012), 1–29.

[18] Om Rameshwar Gatla, Mai Zheng, Muhammad Hameed, Viacheslav Dubeyko,
Adam Manzanares, Filip Blagojevic, Cyril Guyot, and Robert Mateescu. 2018.
Towards robust file system checkers. ACM Transactions on Storage (TOS) 14, 4
(2018), 1–25.

[19] Haryadi S Gunawi. 2011. Improving File System Reliability and Availability with
Continuous Checker and Repair. (2011).

[20] Haryadi S Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2007. Improving file system reliability
with I/O shepherding. In Proc. of the 21st ACM SIGOPS Symposium on Operating
Systems Principles (SOSP).

https://linux.die.net/man/8/e2fsck
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://patchwork.ozlabs.org/project/linux-ext4/list/?series=169193
https://patchwork.ozlabs.org/project/linux-ext4/list/?series=169193
https://github.com/mtanski/xfsprogs/tree/preadv2/ repair
https://dubeyko.com/development/FileSystems/XFS/xfs_filesystem_structure.pdf
https://dubeyko.com/development/FileSystems/XFS/xfs_filesystem_structure.pdf
https://linux.die.net/man/8/xfs_repair


lwFSCK: Light-weight Filesystem Check SAC ’25, March 31-April 4, 2025, Catania, Italy

[21] Haryadi S Gunawi, Abhishek Rajimwale, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2008. SQCK: A Declarative File System Checker. In Proc. of the
8th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[22] Christoph Hellwig. 2009. XFS: the big storage file system for Linux. USENIX
Magazine of USENIX & SAGE 34, 5 (2009), 10–18.

[23] Val Henson, Zach Brown, Theodore Ts’o, and Arjan van de Ven. 2006. Reduc-
ing fsck time for ext2 file systems. In Proc. of the 2006 USENIX Ottawa Linux
Symposium (OLS).

[24] Val Henson, Arjan van de Ven, Amit Gud, and Zach Brown. 2006. Chunkfs: Using
Divide-and-Conquer to Improve File System Reliability and Repair. In Proc. of
the 2nd USENIX Workshop on Hot Topics in System Dependability (HotDep).

[25] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder. 2019. Eval-
uating file system reliability on solid state drives. In Proc. of the 2019 USENIX
Annual Technical Conference (ATC).

[26] Shehbaz Jaffer, Stathis Maneas, Andy Hwang, and Bianca Schroeder. 2020. The
reliability of modern file systems in the face of SSD errors. ACM Transactions on
Storage (TOS) 16, 1 (2020), 1–28.

[27] Jerzy Kaczmarek and Michal Wrobel. 2008. Modern approaches to file system
integrity checking. In Proc. of the 1st IEEE International Conference on Information
Technology (ICITS).

[28] Saisha Kamat, Abdullah Al Raqibul Islam, Mai Zheng, and Dong Dai. 2023. Fault-
yRank: A graph-based parallel file system checker. In Proc. of the 37th IEEE
International Parallel and Distributed Processing Symposium (IPDPS).

[29] Junbin Kang, Benlong Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai Ma, and
Jinpeng Huai. 2015. {SpanFS}: A scalable file system on fast storage devices. In
Proc. of the 2015 USENIX Annual Technical Conference (ATC).

[30] Gene H Kim and Eugene H Spafford. 1994. The design and implementation of
tripwire: A file system integrity checker. In Proc. of the 2nd ACM Conference on
Computer and Communications Security (CCS).

[31] Jongseok Kim, Cassiano Campes, Joo-Young Hwang, Jinkyu Jeong, and Euiseong
Seo. 2021. {Z-Journal}: Scalable {Per-Core} journaling. In Proc. of the 2021
USENIX Annual Technical Conference (ATC).

[32] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. 2015. {F2FS}:
A new file system for flash storage. In Proc. of the 13th USENIX Conference on File
and Storage Technologies (FAST).

[33] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C Arpaci-
Dusseau, and Remzi H Arpaci-Dusseau. 2014. Physical Disentanglement in
a {Container-Based} File System. In Proc. of the 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI).
[34] Ao Ma, Chris Dragga, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau,

and Marshall Kirk Mckusick. 2014. Ffsck: The fast file-system checker. ACM
Transactions on Storage (TOS) 10, 1 (2014), 1–28.

[35] Marshall K McKusick, Gregory R Ganger, et al. 1999. Soft Updates: A Technique
for Eliminating Most Synchronous Writes in the Fast Filesystem. In Proc. of the
1999 USENIX Annual Technical Conference (ATC).

[36] Marshall K McKusick, William N Joy, Samuel J Leffler, and Robert S Fabry. 1984.
A fast file system for UNIX. ACM Transactions on Computer Systems (TOCS) 2, 3
(1984), 181–197.

[37] Marshall Kirk McKusick, Willian N Joy, Samuel J Leffler, and Robert S Fabry. 1986.
Fsck-The UNIX File System Check Program. Unix System Manager’s Manual-4.3
BSD Virtual VAX-11 Version (1986).

[38] Juan Piernas, Toni Cortes, and José M García. 2002. DualFS: a new journaling
file system without meta-data duplication. In Proc. of the 16th ACM International
Conference on Supercomputing (ICS).

[39] Vijayan Prabhakaran, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau.
2005. Analysis and Evolution of Journaling File Systems. In Proc. of the 2005
USENIX Annual Technical Conference (ATC).

[40] Mendel Rosenblum and John K Ousterhout. 1992. The design and implementation
of a log-structured file system. ACM Transactions on Computer Systems (TOCS)
10, 1 (1992), 26–52.

[41] Muthian Sivathanu, Andrea C Arpaci-Dusseau, Remzi H Arpaci-Dusseau, and
Somesh Jha. 2005. A Logic of File Systems. In Proc. of the 3rd USENIX Conference
on File and Storage Technologies (FAST).

[42] Yongseok Son, Sunggon Kim, Heon Y Yeom, and Hyuck Han. 2018. {High-
Performance} Transaction Processing in Journaling File Systems. In Proc. of the
16th USENIX Conference on File and Storage Technologies (FAST).

[43] Stephen C Tweedie et al. 1998. Journaling the Linux ext2fs filesystem. In Proc. of
the 4th Southern California Annual Linux Expo (SCALE).

[44] Yuqi Zhang, Wenwen Hao, Ben Niu, Kangkang Liu, Shuyang Wang, Na Liu, Xing
He, Yongwong Gwon, and Chankyu Koh. 2023. Multi-view feature-based {SSD}
failure prediction: What, when, and why. In Proc. of the 21st USENIX Conference
on File and Storage Technologies (FAST).

[45] Yupu Zhang, Abhishek Rajimwale, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. 2010. End-to-end Data Integrity for File Systems: A ZFS Case
Study. In Proc. of the 8th USENIX Conference on File and Storage Technologies
(FAST).


	Abstract
	1 Introduction
	2 Background
	2.1 Filesystem On-disk Layout
	2.2 fsck: The Filesystem Check/Repair Tools
	2.3 Scalability of fsck

	3 Motivation
	3.1 e2FSCK
	3.2 Manycore Scalability of Parellel FSCK
	3.3 Memory Consumption of Parallel FSCK

	4 Light-weight FSCK
	4.1 An Overview
	4.2 Per-thread Data Processing
	4.3 TwinTree
	4.4 Adaptive Object Allocation

	5 Evaluation
	5.1 Performance
	5.2 Memory Pressure
	5.3 Adaptive Object Allocation

	6 Related Work
	7 Conclusion
	References

