
Addressing the Space Overhead of Vector Quotient
Filter

Chaeyoung Hwang Yongjin Kim Junhan Lee Youjip Won
Department of Electrical Engineering, KAIST, Korea

Abstract—Filters, also known as Approximate Membership
Query data structures, show whether an item is present in a
dataset. Filters are widely used in storage systems to avoid
unnecessary I/O operations. In distributed database systems,
effective memory management can be achieved by utilizing
filters to reduce the I/O requests of non-volatile memory. Vector
Quotient Filter is a filter that achieves high performance in
uniform datasets. However, it has limitations in terms of space
and performance when applied to skewed datasets. It does not
count duplicate items and gives them equal space, leading to
large space overhead. We examine how Vector Quotient Filter
can overcome this space overhead issue in skewed datasets by
applying a counting algorithm.

Index Terms—Filter, Memory Usage, Skewed Dataset

I. INTRODUCTION

Filters are probabilistic data structures that examine whether
an item is in a dataset. They support insertion, lookup, and
some also support removal. Bloom Filter [1], Quotient Filter
[2], Cuckoo Filter [3], Morton Filter [4], Vector Quotient
Filter [5] are well known filters. Filters are utilized in storage
systems to lessen I/O operations [6]. It is usually stored in
volatile memory and returns whether an item is in a dataset.
In this way, the system avoids I/O operations of non-volatile
memory for items that are not present in the dataset. Filters
may return false positive answers on an item. This may cause
unnecessary I/O operations on absent items, which degrades
performance. Therefore, it is important to design filters with
a low false positive rate and less space usage.

Among the well-known filters, Bloom Filter supports in-
sertion and lookup but does not support removal. Quotient
Filter, Cuckoo Filter, Morton Filter, and Vector Quotient Filter
support insertion, lookup, and removal. However, all these
filters lack support for counting duplicate items. Bloom Filter
doesn’t keep track of duplicate items. Quotient Filter, Cuckoo
Filter, Morton Filter, and Vector Quotient Filter use equal
amounts of space for each duplicate of items. Having a large
number of duplicates can result in space overhead, leading to
performance degradation. Since most real datasets follow a
Zipfian distribution, keeping track of duplicate items can help
conserve space.

To overcome this weakness, filters that track duplicates with
a counting method have been proposed. Counting Bloom Filter
[7] replaces each bit in the Bloom Filter with a counter.
However, it uses additional space than the Bloom Filter by
a factor equal to the size of the counter. Counting Quotient
Filter [8] uses a counting algorithm that counts duplicates in
a dataset. However, it has the same weakness as the Quotient

Filter, which is severe performance degradation with high load
factors. In this work, we examine the space overhead of the
Vector Quotient Filter and propose a way to overcome it.

II. MODEL

Vector Quotient Filter [5] consists of multiple blocks, con-
taining b logical buckets and s slots each storing an r-bit
fingerprint. When inserting an item, it uses a hash function
to generate a 64-bit hash value. The hash value is divided into
an upper logb-bit bucket index and a lower r-bit fingerprint.
Vector Quotient Filter finds two candidate blocks that have the
corresponding bucket and inserts the r-bit fingerprint into the
emptier block. The block also has a (b+s)-bit metadata area
that indicates the number of slots occupied within the block. In
our implementation, we use an 8-bit fingerprint with 48 slots
and 80 logical buckets in a block. Each block fits in a 512-bit
cache line. By using this block structure with AVX-512 vector
instruction, Vector Quotient Filter optimizes the performance
of insert, lookup, and removal operations in O(1) time.

Vector Quotient Filter has a limitation in storing more than
48 fingerprints in a single block. When insertions to fully oc-
cupied blocks occur, it does not make additional space, unlike
other filters which use linear probing [2] or cuckoo hashing
[3]. Furthermore, as Vector Quotient Filter allows duplicate
fingerprints to be stored in separate slots, the insertion of
duplicates increases the likelihood of insertion failure. Since
real datasets follow a skewed distribution, specifically the
Zipfian distribution, Vector Quotient Filter is more vulnerable
to experiencing insertion failures.

33333…33333

33333…33333

48 8-bit slots

0

1

2

3

(a) Vector Quotient Filter

…39503

…

0

1

2

3

48 8-bit slots

(b) Counting Vector Quotient Filter

Fig. 1: 96 Insertions of 3 to Vector Quotient Filter and
Counting Vector Quotient Filter

Vector Quotient Filter can overcome this space overhead
by using the counting algorithm proposed in the Counting
Quotient Filter [8]. Fig. 1 shows the 48 slots of Vector Quotient
Filter and Counting Vector Quotient Filter, a Vector Quotient
Filter with a counting algorithm implemented. In the worst
case, when a duplicate item is inserted 96 times, Vector
Quotient Filter assigns slots to each duplicate item, making
the two candidate blocks full. Additional insertion of item 3
will cause an insertion failure. However, in Counting Vector

TABLE I: Size of filters, 217 slots
Filter Size(KB)

Quotient Filter 176
Cuckoo Filter 256
Morton Filter 178.1

Vector Quotient Filter 170.7
Counting Vector Quotient Filter 170.7

Quotient Filter, it uses a counter to count the duplicate items.
In Fig. 1(b), the orange slots are used as counters for item 3.
Compared to Vector Quotient Filter which uses all 96 slots for
96 duplicate items, Counting Vector Quotient Filter can use
only 4 slots.

III. EVALUATION

We compare the space usage and performance of Quotient
Filter, Cuckoo Filter, Morton Filter, Vector Quotient Filter, and
Counting Vector Quotient Filter. All filters are configured to
have 217 slots, each storing 8-bit fingerprints, to reside in a
1.3MB L2 cache. All the experiments are done on AWS EC2
“m6i.large” instance, which uses 2 vCPUs, 8GB of DRAM,
and Intel Ice Lake CPU(Intel(R) Xeon(R) Platinum 8375C
CPU @ 2.90GHz) running Ubuntu 20.04.6 LTS. EBS type
“gp2” volume is used as the secondary storage.

A. Space Overhead

We first examine the size of filters that have the same
number of slots and fingerprint size. From Table I, we observe
that Vector Quotient Filter and Counting Vector Quotient Filter
achieve the smallest filter size, 170.7KB.

Table II shows the maximum allowed number of keys of
Vector Quotient Filter and Counting Vector Quotient Filter
on different Zipfian constants when they both have 217 slots.
Vector Quotient Filter experiences a significant decrease in
number of keys that can be inserted from a Zipf constant of
0.8. On the other hand, since Counting Vector Quotient Filter
has a counting algorithm, it can contain more keys on high Zipf
constants. This leads to space overhead in skewed datasets.
As Vector Quotient Filter and Counting Vector Quotient Filter
both use 170.7KB, the bits per key used decreases as the filter
can accept more keys. In Zipf Constant 0.99, while Counting
Vector Quotient Filter uses 8 bits per key, Vector Quotient
Filter uses 554 bits per key.

B. Performance

Insert throughputs of items having a uniform distribution are
measured by varying the load factor in Fig. 2. As the Counting
Vector Quotient Filter uses an additional algorithm to count
items, it has a lower throughput than the Vector Quotient Filter.
However, in most cases, Counting Vector Quotient Filter has
a higher or comparable throughput among other filters. It has

TABLE II: Maximum allowed number of keys

Zipfian Constant VQF CVQF
0 123,207 123,207

0.5 125,113 125,197
0.8 40,822 127,139
0.9 8,525 137,625

0.99 2,522 173,015

 0

 20

 40

 60

 80

 0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

s)

Load Factor (%)

VQF
CVQF

MF
CF

QF

Fig. 2: Insert throughput: Quotient Filter(QF), Cuckoo Fil-
ter(CF), Morton Filter(MF), Vector Quotient Filter(VQF), and
Counting Vector Quotient Filter(CVQF)

a higher throughput than Quotient Filter and Cuckoo Filter.
When the load factor is low, it has a lower throughput than
the Morton Filter. However, it has a similar insert throughput
when the load factor is high. In all load factors, it has a low
throughput than the Vector Quotient Filter due to the additional
counting algorithm.

IV. CONCLUSION

This work examines the feasibility of incorporating a count-
ing mechanism to Vector Quotient Filter to overcome the
space overhead on skewed datasets. Our evaluation shows that
Counting Vector Quotient Filter uses the space efficiently on
skewed datasets, and has acceptable insert performance. For
future work, we plan to implement Counting Vector Quotient
Filter on a database system and observe the effects on memory
usage on various workloads with skewed datasets.

ACKNOWLEDGMENT

This work was supported by NRF of Korea (No.
NRF2020R1A2C3008525) and SNU-SK hynix Inc. Solution
Research Center (S3RC) (No. MOUS002S).

REFERENCES

[1] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] M. A. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul, D. Med-
jedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok, “Don’t thrash:
how to cache your hash on flash,” in Proceedings of 3rd Workshop on
Hot Topics in Storage and File Systems (HotStorage, 11), 2011.

[3] B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher,
“Cuckoo filter: Practically better than bloom,” in Proceedings of the 10th
ACM International on Conference on emerging Networking Experiments
and Technologies, pp. 75–88, 2014.

[4] A. D. Breslow and N. S. Jayasena, “Morton filters: faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity,”
Proceedings of the VLDB Endowment, vol. 11, no. 9, pp. 1041–1055,
2018.

[5] P. Pandey, A. Conway, J. Durie, M. A. Bender, M. Farach-Colton, and
R. Johnson, “Vector quotient filters: Overcoming the time/space trade-off
in filter design,” in Proceedings of the 2021 International Conference on
Management of Data, pp. 1386–1399, 2021.

[6] B. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. Du, “Bloomflash:
Bloom filter on flash-based storage,” in 2011 31st International Confer-
ence on Distributed Computing Systems, pp. 635–644, IEEE, 2011.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a
scalable wide-area web cache sharing protocol,” IEEE/ACM transactions
on networking, vol. 8, no. 3, pp. 281–293, 2000.

[8] P. Pandey, M. A. Bender, R. Johnson, and R. Patro, “A general-purpose
counting filter: Making every bit count,” in Proceedings of the 2017 ACM
international conference on Management of Data, pp. 775–787, 2017.

