
Youjip Won

2Youjip Won

Directory

The file that its data is a list of directory entries.

Directory entry is <user-readable filename, inode number> pair.

Directory
(file)

EE209

EE415

EE488

<EE209, 10>

<EE415, 24>

<EE488, 25>

Directory content

3Youjip Won

c

c b

Hierarchical path name

The directories form a tree, starting at a special directory called the root.

In xv6, all files and directories appear under the root directory "/".

The slash "/" represents the root directory or is used to separate the name of a file or a

directory in a path name.

/

a b /

/b

/a/c

/a/b/c

Examples of directory

4Youjip Won

Path lookup

A path "/a/b/c" refers to the file or directory named c inside the directory "b"

inside the directory "a" in the root directory.

xv6 uses recursive lookup to find the file or directory for a given path.

c

c b

/

a b

5Youjip Won

Directory Inode

The inode that represents a directory has type T_DIR.

12: // in-memory copy of an inode
13: struct inode {
14: uint dev; // Device number
15: uint inum; // Inode number
16: int ref; // Reference count
17: struct sleeplock lock; // protects everything below here
18: int valid; // inode has been read from disk?
19:
20: short type; // copy of disk inode
21: short major;
22: short minor;
23: short nlink;
24: uint size;
25: uint addrs[NDIRECT+1];
26: };

#define T_DIR 1 // Directory
#define T_FILE 2 // File
#define T_DEV 3 // Device

6Youjip Won

struct dirent: Directory Entry

Data structure dirent represent a directory entry.

Each directory entry contains the inode number and the file name.

dirent wirh zero inode number is free.

Maximum length of the file name is DIRSIZ.

If the length of file name is less than DIRSIZ, it is terminated by a NUL (0) byte.

53: struct dirent {
54: ushort inum;
55: char name[DIRSIZ];
56: };

/

foo bar

inum 35
name “bar”

inum 32
name “foo”14

16 Byte structure

7Youjip Won

struct dirent: Directory Entry (Cont’d)

Directory entries are stored in the file block as an array.

53: struct dirent {
54: ushort inum;
55: char name[DIRSIZ];
56: };

inum 37
name “pig”

inode->size

16 byte

...inum 34
name “bird”

inum 32
name “dog”

12: // in-memory copy of an inode
13: struct inode {
14: uint dev; // Device number
15: uint inum; // Inode number

...

24: uint size;
25: uint addrs[NDIRECT+1];
26: };

8Youjip Won

Find or insert an entry in the directory

struct inode *dirlookup(inode *dp, char *name,

uint *poff)

Find a file or directory named name under the directory that pointed by dp.

If there is target inode, it returns the pointer of target inode.

poff is set to the offset of the matched entry in the directory.

int dirlink(struct inode *dp, char *name, uint inum)

Add the new directory entry to the directory that pointed by dp.

The directory entry is a pair of name and inum.

Return 0 on success, -1 on failure.

9Youjip Won

dirlookup(inode *dp, char *name, uint *poff)

① Check the inode parameter dp if it is T_DIR typed.

② Read an entry and store into the local variable dp.

③ If inode number is zero, it is considered as an empty directory entry.

④ Compare the string de.name whether it matches the argument name.

⑤ Return the pointer of an inode if found by calling iget().

10Youjip Won

dirlookup()

524: struct inode*
525: dirlookup(struct inode *dp, char *name, uint *poff)
526: {
527: uint off, inum;
528: struct dirent de;
529:
530: if(dp->type != T_DIR)
531: panic("dirlookup not DIR");

...

Search a directory for an entry with the given name name.

① Check the inode parameter dp if it is T_DIR typed.

11Youjip Won

dirlookup() (Cont’d)

...

533: for(off = 0; off < dp->size; off += sizeof(de)){
534: if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
535: panic("dirlookup read");
536: if(de.inum == 0)
537: continue;
538: if(namecmp(name, de.name) == 0){
539: // entry matches path element
540: if(poff)
541: *poff = off;
542: inum = de.inum;
543: return iget(dp->dev, inum);
544: }
545: }
546:
547: return 0;
548: }

Search a directory for an entry with given name name.

② Read an entry and store into the local variable de.

.
.
.

inum 32
name “foo\n”

off=0

Read the directory
entry at off.

struct dirent de

12Youjip Won

dirlookup() (Cont’d)

...

533: for(off = 0; off < dp->size; off += sizeof(de)){
534: if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
535: panic("dirlookup read");
536: if(de.inum == 0)
537: continue;
538: if(namecmp(name, de.name) == 0){
539: // entry matches path element
540: if(poff)
541: *poff = off;
542: inum = de.inum;
543: return iget(dp->dev, inum);
544: }
545: }
546:
547: return 0;
548: }

Search a directory for an entry with given name name.

③ If inode number is zero, it is considered as an empty directory entry.

.
.
.

inum 32
name “foo\n”

off=0
Check whether its
inum is 0 on not?

struct dirent de

13Youjip Won

dirlookup() (Cont’d)

...

533: for(off = 0; off < dp->size; off += sizeof(de)){
534: if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
535: panic("dirlookup read");
536: if(de.inum == 0)
537: continue;
538: if(namecmp(name, de.name) == 0){
539: // entry matches path element
540: if(poff)
541: *poff = off;
542: inum = de.inum;
543: return iget(dp->dev, inum);
544: }
545: }
546:
547: return 0;
548: }

Search a directory for an entry with given name name.

④ Compare the string de.name whether it matches the argument name.

.
.
.

inum 32
name “foo\n”

Check the entry to see if it
matches the name it is looking for.

struct dirent de

off=0

14Youjip Won

dirlookup() (Cont’d)

Search a directory for an entry with given name name.

④ Compare the string de.name whether it matches the argument name.

516: int
517: namecmp(const char *s, const char *t)
518: {
519: return strncmp(s, t, DIRSIZ);
520: }

strncmp() : Compare the given string character by character.

58: int
59: strncmp(const char *p, const char *q, uint n)
60: {
61: while(n > 0 && *p && *p == *q)
62: n--, p++, q++;
63: if(n == 0)
64: return 0;
65: return (uchar)*p - (uchar)*q;
66: }

d o g s \0

d o g x \0

Different!Same!

p

q

p

q
If characters are same,

move to the next character

15Youjip Won

dirlookup() (Cont’d)

...

533: for(off = 0; off < dp->size; off += sizeof(de)){
534: if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
535: panic("dirlookup read");
536: if(de.inum == 0)
537: continue;
538: if(namecmp(name, de.name) == 0){
539: // entry matches path element
540: if(poff)
541: *poff = off;
542: inum = de.inum;
543: return iget(dp->dev, inum);
544: }
545: }
546:
547: return 0;
548: }

Search a directory for an entry with given name name.

⑤ Return the pointer of an inode if found by calling iget().

.
.
.

inum 32
name “foo\n”

off=0

struct dirent de

16Youjip Won

dirlookup() (Cont’d)

...

533: for(off = 0; off < dp->size; off += sizeof(de)){
534: if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
535: panic("dirlookup read");
536: if(de.inum == 0)
537: continue;
538: if(namecmp(name, de.name) == 0){
539: // entry matches path element
540: if(poff)
541: *poff = off;
542: inum = de.inum;
543: return iget(dp->dev, inum);
544: }
545: }
546:
547: return 0;
548: }

Search a directory for an entry with given name name.

⑤ - 2. Otherwise, move to the next entry and repeat ①~⑤.

.
.
.

Next offset

17Youjip Won

dirlink(inode *dp, char *name, uint inum)

Add the new directory entry with the given name and inode number inum.

If the name already exists, dirlink() returns an error (-1).

a.txt

foo

a.txt

foo

b.txt

Adding a file
b.txt

a.txt 10

Data of directory foo

…

b.txt 11
a.txt 10

Data of directory foo

…

"" 0

18Youjip Won

dirlink()

Call dirlookup() to check any directory with the same name exists.

dirlookup() returns zero if a directory entry with name name is not

found.

553 int dirlink(struct inode *dp, char *name, uint inum){
554 int off;
555 struct dirent de;
556 struct inode *ip;
557
558 // Check that name is not present.
559 if((ip = dirlookup(dp, name, 0)) != 0){
560 iput(ip);
561 return -1;
562 }
563

… // Removed for saving space.
576
577 return 0;
578 }

19Youjip Won

dirlink() (Cont’d)

553 int dirlink(struct inode *dp, char *name, uint inum){
… // Removed for saving space.

564 // Look for an empty dirent.
565 for(off = 0; off < dp->size; off += sizeof(de)){
566 if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
567 panic("dirlink read");
568 if(de.inum == 0)
569 break;
570 }

… // Removed for saving space.
578 }

① Search for an empty directory entry. It is considered empty if inode number

is zero.

off=0

struct dirent de

inum 52
name “foo”

.
.
.

Read the directory
entry at off.

If entry is not free, read
the next directory entry.

20Youjip Won

dirlink() (Cont’d)

① Search for an empty directory entry. It is considered empty if inode number

is zero.

struct dirent de

inum 0
name “”

If it finds the empty entry,
end the loop and go to next step.

off=16

.
.
.

Read the directory
entry at off.

553 int dirlink(struct inode *dp, char *name, uint inum){
… // Removed for saving space.

564 // Look for an empty dirent.
565 for(off = 0; off < dp->size; off += sizeof(de)){
566 if(readi(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
567 panic("dirlink read");
568 if(de.inum == 0)
569 break;
570 }

… // Removed for saving space.
578 }

21Youjip Won

dirlink() (Cont’d)

553 int dirlink(struct inode *dp, char *name, uint inum){
… // Removed for saving space.

571
572 strncpy(de.name, name, DIRSIZ);
573 de.inum = inum;
574 if(writei(dp, (char*)&de, off, sizeof(de)) != sizeof(de))
575 panic("dirlink");
576
577 return 0;
578 }

② If found an empty entry, write the new entry to the this by calling writei().

off=16

struct dirent de

inum inum
name name.

.
.

Fill in the proper value and write it
at the empty entry of the directory

Input parameter.

22Youjip Won

Pathname lookup

Path: sequence of directories that ends with the filename or directory

/a/b/c

Path name lookup involves a succession of dirlookup() calls, one for each

directory name.

The lookup, that calls to dirlookup(), would start at (1) root directory or (2)

process’s current directory.

① dirlookup(ip,"a",) ② dirlookup(ip,"b",) ③ dirlookup(ip,"c",)

dirlookup(struct inode *ip, char *name, uint *poff)

c

c b

/

a b

ip

c

c b

/

a b

ip

c

c b

/

a b

ip

23Youjip Won

Pathname lookup (Cont.)

If the path begins with a slash, evaluation begins at the root; otherwise, the

current directory.

The current directory is the per-process attribute.

The system call chdir() change the current directory.

Path element or component

For the case of path “/a/b/c”, there are three elements; a, b, and c.

38 struct proc {
… // Removed for saving space.

49 struct file *ofile[NOFILE];
50 struct inode *cwd;
51 char name[16];
52 };

24Youjip Won

namei() and nameiparent()

namei()

evaluates path and returns the corresponding inode of the last element.

calls namex() with 0 nameiparent parameter.

nameiparent(): evaluates path and returns the inode of the parent of

the last element. It copies the last element to name.

calls namex() with 1 nameiparent parameter.

659 struct inode*
660 namei(char *path)
661 {
662 char name[DIRSIZ];
663 return namex(path, 0, name);
664 }
665
666 struct inode*
667 nameiparent(char *path, char *name)
668 {
669 return namex(path, 1, name);
670 }

25Youjip Won

namex(): path lookup function

struct inode *namex(char *path, int nameiparent, char *name)

If nameiparent is 0,

Return the inode pointer for name if it is found.

If not,

Copy the final component in the path to the name.

Return the inode pointer of the parent directory for a file name.

It is usually used when the caller should modify the directory content of a file,

such as link() or unlink().

26Youjip Won

char *skipelem(char *path, char *name)

char *skipelem(char *path, char *name)

Copy the first component of the path into name.

Return the pointer to the element following the copied one.

Examples:

skipelem("a/bb/c", name);

skipelem(“a”, name);

skipelem(“”, name);

name is set to “a” and return “bb/c”.

name is set to “a” and return “”.

name is set to “” and return NULL.

27Youjip Won

namex(): Get the start inode pointer.

If the path begins with a slash, lookup begins at the root directory.

Otherwise, it begins at the current directory.

The inode pointer assigned to variable ip.

626 static struct inode* namex(char *path, int nameiparent, char *name) {
627 struct inode *ip, *next;
628
629 if(*path == '/')
630 ip = iget(ROOTDEV, ROOTINO);
631 else
632 ip = idup(myproc()->cwd);
633

… // Removed for saving space.
656 return ip;
657 }

28Youjip Won

namex(): Loop for each element in the path.

char *skipelem(char *path, char *name)

Copy the first path element from path into name.

Return a pointer to the element following the copied one.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
656 return ip;
657 }

We explain the detailed implementation, later.

29Youjip Won

namex(): Loop for each element in the path. (Cont.)

namex (“a/b”, 1, …);

1st loop: path = skipelem(“a/b”, name);  name = “a”, path = “b”;

2nd loop: path = skipelem(“b”, name);  name = “b”, path = “”;

3rd loop: path = skipelem(“”, name);  name = “”, path = NULL; Stop

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
656 return ip;
657 }

We explain the detailed implementation, later.

Loop for each element in a path!

30Youjip Won

namex(): Check whether the ip is directory or not.

For each loop (each element), there are three things to do.

xv6 finds the element named name in the directory ip at the third step.

Before doing the third step, xv6 checks whether the ip is directory or not.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
657 }

① Check whether the ip is directory or not.

② If nameiparent is not 0, stop the lookup one step earlier

③ By calling dirlookup(), find the inode named name in directory ip.

31Youjip Won

namex(): Check whether the ip is directory or not.

Before checking it, xv6 acquire the lock for inode ip.

The type of ip should be T_DIR. Otherwise, release the lock and return the NULL.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);
636 if(ip->type != T_DIR){
637 iunlockput(ip);
638 return 0;
639 }
640

… // Removed for saving space.
649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
657 }

32Youjip Won

namex(): nameiparent is not 0

If nameiparent is not 0,

Return the inode pointer of the parent directory for the last component in

the path.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
657 }

① Check whether the ip is directory or not.

② If nameiparent is not 0, stop the lookup one step earlier.

③ By calling dirlookup(), find the inode named name in directory ip.

33Youjip Won

namex(): nameiparent is not 0

If the first character of path is ‘\0’, there is no more component in path.

Since the next skipelem() call will return NULL, the loop stops at the next step.

So it returns current ip, which is the parent directory of the last component in the path.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

… // Removed for saving space.
641 if(nameiparent && *path == '\0'){
642 iunlock(ip);
643 return ip;
644 }

… // Removed for saving space.
649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
657 }

34Youjip Won

namex(): find the inode named name in directory ip.

namex() calls the dirlookup(ip, name, 0) for finding the inode for name.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
657 }

① Check whether the ip is directory or not.

② If nameiparent is not 0, stop the lookup one step earlier.

③ By calling dirlookup(), find the inode named name in directory ip.

35Youjip Won

Example: namex(“a/b”, 1, …)

1st loop: name = “a”, path = “b”;  next = dirlookup(cwd, “a”, 0)

 ip = next = 0xdeadbeef // inode pointer of “a”.

2nd loop: name = “b”, path = “”;  next = dirloopup(0xdeadbeef, “b”, 0)

 ip = next = 0x8badf00d // inode pointer of “a/b”.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

… // Removed for saving space.
645 if((next = dirlookup(ip, name, 0)) == 0){
646 iunlockput(ip);
647 return 0;
648 }
649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
657 }

36Youjip Won

namex(“”,1,…)

If input parameter path of namex() is not empty string, namex() calls return

within the loop.

Otherwise, it does not go into the loop and return NULL.

626 static struct inode* namex(char *path, int nameiparent, char *name) {
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){

… // Removed for saving space.
651 }
652 if(nameiparent){
653 iput(ip);
654 return 0;
655 }
656 return ip;
657 }

37Youjip Won

namex(): Acquire and release per-inode lock.

Each iteration of the loop begins by locking ip and find the inode named name in ip.

Then, release the lock of ip before the end of the iteration.

namex() locks each directory in the path separately.

 Lookups in different directories can proceed in parallel.

626 static struct inode* namex(char *path, int nameiparent, char *name){
… // Removed for saving space.

633
634 while((path = skipelem(path, name)) != 0){
635 ilock(ip);

649 iunlockput(ip);
650 ip = next;
651 }

… // Removed for saving space.
656 return ip;
657 }

By calling dirlookup(), find the inode named name in directory ip.

38Youjip Won

Concurrency of namex()

The procedure namex() may take a long time to complete.

It could involve several disk operations.

ilock() could read on-disk inodes to load the inode structure in memory.

dirlookup() could read file blocks of directories to traverse its entries.

namex() locks each directory in the path separately.

If a thread invokes namex(), another thread looking up a different pathname can

proceed concurrently.

c

c b

/

a b

Thread A

namex(“/a/b/c”, …)

Thread B

namex(“/a/c”, …)

Thread A locks the directory “a/b”.
Thread A is blocked by disk I/O.

Thread B can lookup the path
without any lock contention.

39Youjip Won

Risk of concurrency: race condition

In namex(), each iteration only locks a single inode.

dirlookup() returns the pointer of next inode.

The returned inode pointer is locked after releasing the lock of parent directory.

There can be following situation in xv6.

c

c b

/

a b

c

c b

/

a b

① Release the lock
on ‘a’.

③ Acquire the lock
on ‘b’.

② The inode “/a/b” can
be deleted by another

thread.

Is the inode pointer returned from dirlookup() still valid?
Can xv6 invoke ilock() for this inode pointer?

40Youjip Won

Risk of concurrency: race condition (Cont.)

dirlookup() returns an inode pointer that was obtained using iget().

iget() increases the reference count of the inode.

In xv6, if reference count is larger than 0, the inode is not deleted from inode

cache and from the file system. (iput())

By separating the iget() and ilock(), xv6 avoids the race condition.

333 void iput(struct inode *ip){
334 acquiresleep(&ip->lock);
335 if(ip->valid && ip->nlink == 0){
336 acquire(&icache.lock);
337 int r = ip->ref;
338 release(&icache.lock);
339 if(r == 1){

345 }
346 }
347 releasesleep(&ip->lock);

…
352 }

Remove the in-memory inode as well as on-disk inode.

If this process is the last reference,
xv6 removes this inode.

41Youjip Won

Risk of concurrency: deadlock

What happen if locking the next inode before releasing the lock on the

parent directory?

It may result in a deadlock.

If namex(“/./a”,…) is invoked, the next inode “/.” is same with parent

directory “/” in the first iteration.

In this case, the thread may try to acquire the lock that already held.

42Youjip Won

Summary

Directory layer

dirlookup() and dirlink()

Path lookup

namex(), namei(), and nameiparent()

Concurrency of namex()

