Filesystem - Inode

Youjip Won

KAISTELE

Contents

O Inode structure: On-disk and in-memory inode.

O Code:

° iget () ,iput (), ilock (), and iunlock ()

e ialloc(), iupdate(), and itrunc()
O Reading or writing the data through inode.

O Code:

°© readi() and writei ()

° filewrite ()

KAIST OSLab Youjip Won

Operating Systems Laboratory

Inode

O Data structure to represent the attribute of file

o file type: T_FILE (regular file), T_DIR (directory), or T_DEV (device file)

° the number of links, file size

o creation time, modification time, access authority

° locations of file blocks

Regular ﬂ Directory
file E (file)

\ /

[Inode management
inode inode
Disk
KA'ST OSLab Youjip Won

Operating Systems Laboratory

On-disk inode and in-memory inode

O There are on-disk inode and in-memory inode.
o On-disk inode: inode structure on the disk
o In-memory inode: inode structure in the memory.

O In-memory inode contains a copy of the on-disk inode and information

needed within the kernel.

In-memory inode

: On-disk i
\ inode

Y

Memory
Disk

On-disk On-disk On-disk
inode inode inode

KAIST OSLab Youjip Won

Operating Systems Laboratory

On-disk inode

O All of the on-disk inodes are stored into the inode blocks of disk.

O Every inode is the same size, 64 Byte.
o 8inodes on a single block.

o 26 inode blocks.

o There are 208 on-disk inode slots in the disk.

O The content of inode blocks is the array of on-disk inodes.
208 on-disk inodes
Boot | Super :
Area sector | block Log Bitmap Data
LBA 0 1 2~ 31 32 ~ 57 58 59 ~ 999
KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P

Inode number

O The index of on-disk inode is called inode number.
O Inode number is how inodes are identified in the kernel.

O The directory entry stores the inode number.

o This number represents the location of an on-disk inode.

Directory Entry
a.c 27
Inode blocks
Inode number|lnode number|Inode number Inode number Inode number
=0 =1 =2 =27 =207
[0] [1] [2] ... [27] . [207]
MIST gpselrdaatilzg Systems Laboratory Youjip Won

struct dinode

© type:T FILE (regularfile), T DIR (directory), or T DEV (device file)
© major andminor (T DEV only)
o Driver type and device ID for a driver type.
O nlink:the number of directory entries referring to this inode
O size: file size (byte)

O addrs: file block addresses

struct dinode {

short type;

short major;

short minor;

short nlink;

uint size;

uint addrs [NDIRECT+1];

KA'ST OSLab Youjip Won

Operating Systems Laboratory

nlink

O The number of directory entries that refer to this inode

Directory entries

Directory ™ T

/a 27t dinode

> nlink =3
Directory
t. 27 >
Illbll C

DlrﬁCt,?ry r.c 27

Ic

KAIST OSLab Youjip Won

Operating Systems Laboratory

In-memory inode

O Inode structure cached in memory from the disk.

O It contains a copy of the on-disk inode and the information needed within
the kernel.

° Reference count, lock, and so on...

struct inode {
uint dev;
uint inum;
int ref;
struct sleeplock lock;
int valid;

d short type;
short major;
The content of short minor;
the on-disk inode. short nlink;
uint size;
A\ uint addrs [NDIRECT+1];

[—

¥

KA'ST OSLab Youjip Won

Operating Systems Laboratory

struct inode

© dev: device number

© inum: inode number

O ref: the number of the processes that currently open the file

O lock: sleep lock for the exclusive access of valid and the copy of on-disk inode.

© valid:indicator that represents whether the copy of on-disk inode is valid.

° If the value is 1, the content of on-disk inode is valid.

struct inode {
uint dev;
uint inum;
int ref;
struct sleeplock lock;
int valid;

// copy of disk inode

KA'ST OSLab Youjip Won

Operating Systems Laboratory

ref

O The number of C-pointers that refer to this inode.

O There is only one copy of a single on-disk inode in the memory.

> offset e

>

ex) . ref=3

fdl = open(a.c); ° >

fd2 = open(a.c); ° >l offset ® } Content of
fd3 = open(a.c); on-disk inode.

> offset e

: : In-memory
File descriptor , .
table P file objects inode

KAIST OSLab Youjip Won

Operating Systems Laboratory 11

Inode cache: struct icache

© xv6 maintains an array of in-memory inodes, which is called inode cache.
© Inode cache contains the NINODE (= 50) entries.
O Itis protected by spin lock from the race conditions.

© ref attribute in inode structure represents the cache entry is free or not.

° If the value of ref is larger than 0, cache entry is not free.
° If the value of ref is 0, cache entry is free.
struct {

struct spinlock lock;
struct inode 1node[NINODE];

} 1cache; l
ref=0 ref =1 ref=0 ref=0
[0] [1] [2] e [49]
MIST gpselrdaatilzg Systems Laboratory Youjip Won 12

Inode cache lock vs. per-inode locks

© To prevent race condition for inode cache and its entries, xv6 uses two types of lock.
° Inode cache lock (spin lock) a
o |t protects the variable for managing the inode cache.

° e.g)dev, inum, and ref for all the in-memory inodes.

0 Per-inode locks (sleep lock) G

Q

It controls the concurrent accesses to inode and serializes them.

(=]

Each lock protects the file data, valid, and the content of on-disk inode of the

corresponding inode.

struct {
struct spinlock lock;

struct inode inode[NINODE];
} 1cache;

A 4

a @& &8 - | o

[0] [1] [2] = [49]

KAIST OSLab Youjip Won

Operating Systems Laboratory 13

iinit(int dev): Initializing the inode cache.

O ltis called right before executing the very first user process.

O ltinitializes the two types of lock; inode cache lock and per-inode locks.

171 void

172 iinit(int dewv)
173 {

174 int i = 0;
175

176 initlock (&icache.lock,

396 void 397 forkret (void) {

406 if (first) {

407 first = 0;

408 iinit (ROOTDEV) ;
409 initlog (ROOTDEV) ;
410 }

413 }

"icache") ;

177 for(i = 0; 1 < NINODE; i++) {
178 initsleeplock (&icache.inode[1i] .1lock, "inode") ;
179 }
186 }
KAIST OSLab Youjip Won 14

Operating Systems Laboratory

Functions for in-memory inode

O iget(uint dev, uint inum) and iput (struct inode *ip)

o Reserve or release the in-memory inode in the inode cache.

O ilock(struct inode *ip) and iunlock (struct inode *ip)

o Acquire or release the per-inode lock for a given inode.

° ilock () function loads the on-disk inode if it is invalid.

KAIST OSLab Youjip Won

Operating Systems Laboratory

15

struct inode *iget(uint dev, uint inum)

© Return the pointer of in-memory inode for the given dev and inode number (inum).

O If target inode is already in cache,
° Increase the reference count by 1.

° Then, return the pointer to target in-memory inode with dev and inum.

© If not,
° Allocate the free entry in inode cache.
° Set the reference count of allocated cache entry to 1.

o Then, return the pointer to allocated cache entry.

O By setting the reference count, it guarantee that the inode will stay in the inode

cache and will not be deleted.

KA'ST OSLab Youjip Won 16

Operating Systems Laboratory

iget (): Target inode is not in cache.

(dev, inum)
ref =1

O ex)iget(dev=1, inum=8)

Scan all entries and
Then if there is no target inode,

| D

Inode structure

Inode (1, 4) (0, 0) (1, 12) (0, 0)'
cache ref=3 ref=0 ref = 1 ref=0
[0] [1] [2] [49]
Inode (1,4) (1, 8) (1, 12) (0, 0)
cache ref=3 ref =1 ref = 1 ref=0
[0] [1] [2] [49]
KAIST OSLab Youjip Won

Operating Systems Laboratory

iget (): Target inode is already in cache.

O ex)iget(dev=1l, inum=12) (dev, inum)
ref =1

' i i | truct
If there is target in-memory inode, node structure

| D

node | (1,4) | (0,0 | (1,12) (0, 0)
cache ref=3 ref=0 ref = 1 ref=0
[0] [1] [2] . [49]
Inode (1,4) (0, 0) (1,12) (0, 0)
cache ref =3 ref=0 ref = 2 ref=0
[0] [1] [2] - [49]
KAIST OSLab Youjip Won

Operating Systems Laboratory

iget (): Acquire the inode cache lock.

O Acquire the inode cache lock to prohibit other processes from modifying

dev, inum, and ref.

241 static struct inode*

242 i1iget (uint dev, uint inum)

243 |

244 struct inode *ip, *empty;

245

246 acquire (&icache. lock) ;

247

248 // Is the inode already cached?

249 empty = 0;

250 for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; 1ip++) {
.. I/ Removed for saving space.

272 '}

KA'ST OSLab Youjip Won 19

Operating Systems Laboratory

iget (): Scan all entries.

O Scan all the entries in the inode cache.
@ Check whether the inode is with number inum on device dev.

@ Check if the entry is free or not.

241 static struct inode*
242 1get (uint dev, ulnt inum)

243 {

244 struct inode *ip, *empty;
245

246 acquire (&icache.lock);
247

248 // Is the inode already cached?

249 empty = 0;

250 for (ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++) {
.. I/ Removed for saving space.

272 '}

KA'ST OSLab Youjip Won

Operating Systems Laboratory

iget (): Target inode is already in cache.

O If the target in-memory inode with dev and inum is already in cache, increases

reference count by 1.

© Then, release the icache lock and return the pointer of target inode.

241 static struct inodex*

242 iget (uint dev, uint inum)

243 {

250 for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++) {
251 if (ip—->ref > 0 && ip->dev == dev && ip->inum == inum) {
252 ip->ref++;

253 release(&icache.lock);

254 return 1ip;

255 }

256 if (empty == 0 && ip->ref == 0) // Remember empty slot.
257 empty = 1ip;

258 }

272 '}

KAIST OSLab Youjip Won

Operating Systems Laboratory

iget () : Find the first free entry.

O If refis 0, this entry is free.

O While scanning all the entries of inode cache, stores the first free entry in

inode cache at the variable “empty”.

241 static struct inode*
242 iget (uint dev, uint inum)
243 |

.. Il Removed for saving space.
249 empty = 0;

250 for(ip = &icache.inode[0]; ip <

&icache.inode [NINODE]; ip++) {

251 if(ip->ref > 0 && ip->dev == dev && ip->inum == inum) {
.. I/ Removed for saving space.
255 }
256 if (empty == 0 && ip->ref == 0) // Remember empty slot.
257 empty = ip;
258 }
272 '}
KAIST OSLab Youjip Won 22

Operating Systems Laboratory

iget (): Target inode is not in cache.

O Set the proper value to first free entry.

O Then, return the start address of it.

241 static struct inode*
242 iget (uint dev,

uint inum)

243 |
.. Il Removed for saving space.
264 ip = empty;
265 ip->dev = dev; :}— Same with the given dev and inum.
266 ip->inum = inum;
267 ip->ref = 1; —— > Reference count for this process.
268 ip->valid = 0;
269 release (&icache.lock) ;
270
271 return ip;
272 '}
KA'ST OSLab Youjip Won 23

Operating Systems Laboratory

iget (): invalid content

It does not read the inode from the disk.

There would be the invalid content in in-memory inode.

Xv6 separates the process of reserving a slot in inode cache from the process of

reading the associated on-disk inode from the disk.

241 static struct inode*
242 iget (uint dev, uint inum)
243 |
.. Il Removed for saving space.
264 ip = empty;
265 ip->dev = dev;
266 ip->inum = inum;
267 ip->ref = 1;
268 ip->valid = 0; > xv6 reads the on-disk inode
269 release (&icache.lock); when process try to acquire the per-inode lock.
270
271 return ip;
272 '}
KAIST OSLab Youjip Won 24

Operating Systems Laboratory

void iput(struct inode *ip)

O Decreases the reference count of an in-memory inode.

O If the reference counter is 0, it frees the in-memory inode.

o The entry in the inode cache can be recycled.

O If reference counter is 0 and n1ink is 0 (no link), it frees the in-memory

inode as well as on-disk inode.

o To free the on-disk inode, free all the file blocks and set the type to O.

KA'ST OSLab Youjip Won 25

Operating Systems Laboratory

iput () : Order of lock acquisition.

Q

Q

First, acquire the per-inode lock to protect vaild and nlink.

Next, acquire the inode cache lock to protect ref.

334
335
336
337
338
339

345
346
3477

352

333 void iput (struct inode *ip) {

acquiresleep (&ip->lock) ;
1f(ip->valid && 1p->nlink == 0) {

acquire (&icache.lock) ;

int r = ip->ref;

release (&icache.lock) ;

if(r == 1) {

.. 1 Removed for saving space.

}

}
releasesleep (&ip->lock) ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

26

iput (): The case of no link

O Ifnlinkis 0 and this process is the last reference of this inode, xv6

removes this inode.

333 void iput (struct inode *ip) {
334 acquiresleep (&ip->lock);
335 if (ip->valid && ip->nlink == 0) {

336 acquire (&icache.lock) ;
337 int r = ip->ref;
338 release (&icache.lock);
339 if(r == 1) {

.. 1 Removed for saving space.
345 }
346 }

347 releasesleep (&ip—->lock) ;

352 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

iput (): Delete the inode.

© itrunc(): Free all the file block.
O Set the type of inode to 0 to free the on-disk inode.
O iupdate (): Synchronize the modified in-memory inode to the on-disk inode in the
disk.
333 void iput (struct inode *ip) {
334 acquiresleep (&ip—->lock) ;
335 1f (ip—->valid && 1p->nlink == 0) {
.. I Removed for saving space.
339 if(r == 1) {
341 itrunc(ip) ;
342 ip->type = 0;
343 iupdate (ip) ;
344 ip->valid = 0O;
345 }
3406 }
347 releasesleep (&ip—->lock) ;
352 1}
MIST gpse!‘-aatilzg Systems Laboratory Youjip Won 28

iput () : Drop the reference.

Q

Q

o

Decreases the reference count of an in-memory inode.
If ref becomes 0, the in-memory is free entry.

To update ref, xv6 holds the inode cache lock.

334
335

346
3477
348
349
350
351
352

333 void iput (struct inode *ip) {

acquiresleep (&1p->1lock) ;

1f (1p->valid && 1p->nlink == 0) {
.. 1 Removed for saving space.

}

releasesleep (&ip->1lock) ;

acquire (&icache.lock) ;
ip->ref--;
release (&icache.lock) ;

}

KA'ST OSLab Youjip Won

Operating Systems Laboratory

29

iput(): ref becomes 0.

O ex)iput (struct inode *ip = &icache[2]) (dev, inum)
ref =1

Inode structure

Inode (1, 4) (0, 0) (1, 12) (0, 0)
cache ref=3 ref=0 ref = 1 ref=0
[0] [1] [2] - [49]

— Now it is free slot.

Inode (1, 4) (0, 0) (1,12) (0, 0)
cache ref =3 ref=0 ref=0 ref=0
[0] [1] [2] = [49]
KAIST OSLab Youjip Won

Operating Systems Laboratory

Eviction policy

O If ref becomes 0, the in-memory inode is evicted immediately.

o The inode cache never keeps the no referred on-disk inode at all even if the

valid content is on the inode cache.

O The function iget () checks if it is target or not only when ref is larger
than 0.

241 static struct inode*
242 iget (uint dev, uint inum)
243 {

250 for(ip = &icache.inode[0]; ip < &icache.inode[NINODE]; ip++) {

251 if (ip—->ref > 0 && ip->dev == dev && ip->inum == inum) {
252 ip->ref++;

253 release (&icache.lock);

254 return ip;

255 }

272 '}

KAIST OSLab Youjip Won 31

Operating Systems Laboratory

Role of inode cache.

O The main job of inode cache is really synchronizing access by multiple

processes, not caching.
O Multiple processes share the same in-memory inode in the inode cache.

O The shared inode structure is protected by the per-inode lock.

O So, xv6 never caches the on-disk inodes? Yes, it does!

o If an inode is used frequently, the buffer cache will probably keep it in memory.

KA'ST OSLab Youjip Won 32

Operating Systems Laboratory

ilock (inode *ip) and iunlock (inode *ip)

O In xv6, multiple processes can share a single in-memory inode, returned
by iget () function.
O To prevent race condition, xv6 uses the per-inode lock to allow only one

process can access the file data and metadata at a time.

© These functions are interfaces that manipulate the per-inode lock.

KA'ST OSLab Youjip Won 33

Operating Systems Laboratory

ilock () : Acquire the per-inode lock.

O Acquire the per-inode lock (sleep lock) for a given inode.
O Return without releasing the lock.

O The red box is executed only when the given entry in the inode cache is

invalid.
° In this box, xv6 loads the on-disk inode.

o Per-inode lock acquisition prevents the race condition.

287 void
288 1ilock(struct inode *ip)
289 {

296 acqulresleep (&ip—->1lock);

297
298 1f(ip—->valid == 0) {
Loading the on-disk inode
311 |}
312 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

ilock (struct inode *ip): Load the on-disk inode.

ilock (inode struct *ip)

Buffer Cache Inode Cache

struct buf struct buf

A4

header header struct | struct | struct struct
inode inode | inode inode
data [0] [1] [2] [49]

@ Copy the data in buffer cache

Memory @ bread () entry to the in-memory inode.
Disk
Inode blocks
Block 1 Block 2 Block 3 Block 26
MIST gpse!‘-aatilzg Systems Laboratory Youjip Won 35

ilock (struct inode *ip): Load the on-disk inode.

O |f the value of valid is 0O, load the on-disk inode.

O 4#define IBLOCK (i, sb) ((i) / IPB + sb.inodestart)

° Return the block number that contains the inode i.

Read a single inode block and find the data of corresponding on-disk inode.

287 void ilock (struct inode *ip) {

298 if (ip->valid == 0) {

299 bp = bread (ip->dev, IBLOCK (ip->inum, sb)) ;

300 dip = (struct dinode*)bp->data + ip->inum%IPB;
311 }

312 }

KAIST OSLab Youjip Won 36

Operating Systems Laboratory

ilock (struct inode *ip): Load the on-disk inode.

287 void ilock (struct inode *ip) {

298 if (ip->valid == 0) {

299 bp = bread(ip->dev, IBLOCK (ip->inum, sb));

300 dip = (struct dinode*)bp->data + ip->inum%IPB;

301 ip->type = dip->type;

302 ip->major = dip->major;

303 ip->minor = dip->minor;

304 ip->nlink = dip->nlink;

305 ip->size = dip->size;

306 memmove (ip->addrs, dip->addrs, sizeof (ip->addrs));
307 brelse (bp) ;

308 ip->valid = 1; Copy the data to the in-memory inode.
309 if (ip->type == 0)

310 panic("ilock: no type");

311 }

312 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

iunlock ()

O If the process does not hold the per-inode lock for a given inode or there is

no process that refers this inode, panic occurs.

O If not, release the per-inode lock.

315 void

316 iunlock (struct inode *ip)

317 {

318 if(ip == | | 'holdingsleep (&ip->lock) || ip->ref < 1)
319 panic ("iunlock") ;

320

321 releasesleep (&ip—->1lock) ;

322 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Inode APIs

© struct inode*

ialloc (uint dev,

short type):;

Q@ yoid iupdate (struct inode¥*);
O void itrunc (struct inode*);
KAIST OSLab Youjip Won 39

Operating Systems Laboratory

struct inode *ialloc(uint dev, short type)

O Allocate the new inode at the disk and load it to icache.

O Then, return the start address of cached in-memory inode.
@ Scan the inode blocks on the disk to find the free on-disk inode slot.
=>» The slot is free if the type is 0.
@ Zero the on-disk inode and set the new type.

3 Register the buffer cache entry of the modified inode block at the in-memory log

structure.

@ Call iget () and return the return value of iget ().

KA'ST OSLab Youjip Won 40

Operating Systems Laboratory

ialloc (uint dev,short type) : Find free inode slot.

(@ Scan the inode blocks on the disk to find the free on-disk inode slot.

Buffer Cache

struct buf struct buf

header header @ Find the slot where the
value of type is 0.
data
Memory ® bread()
Disk
Inode blocks

Block 1 Block 2 Block 3 Block 26

KA'ST OSLab Youjip Won

Operating Systems Laboratory

41

ialloc () : Find free inode slot. (Cont.)

© Loop check all the inodes on the disk from index 1 to index “ninodes - 1” if the type

of each inode is O or not.

° Index 0 is always occupied by the root directory so skip it.

O Check the inode at index inum%8 in the inode block if the type is 0 or not.

194 struct inode*
195 i1alloc(uint dev, short type)
196 {
201 for(inum = 1; inum < sb.ninodes; inum++) { Read an
202 bp = bread(dev, IBLOCK(inum, sb)); inode block
203 dip = (struct dinode*)bp->data + inum$%IPB; '
204 if (dip->type == 0) {
210 }
211 brelse (bp) ;
212 }
213 panic("ialloc: no 1nodes");
214 '}
KAIST OSLab Youjip Won 42

Operating Systems Laboratory

ialloc () : Find free inode slot. (Cont.)

O xv6 calls bread () and brelse () for each on-disk inode to check if it is

free or not.

© How can we optimize it?

194 struct inode*

195 i1alloc(uint dev, short type)

196 {

201 for(inum = 1; inum < sb.ninodes; inum++) {
202 bp = bread(dev, IBLOCK(inum, sb));

203 dip = (struct dinode*)bp->data + 1num$IPB;
204 if (dip->type == 0) {

210 }

211 brelse (bp) ;

212 }

213 panic("ialloc: no inodes");

214 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

ialloc () : Update the inode block.

© Zero the on-disk inode and set the new type.

O Register the buffer cache entry of the modified inode block at the in-memory log

structure.

© Then, call iget (). It returns the in-memory inode for newly allocated inode.

194 struct inode*

195 i1alloc(uint dev, short type)

196 {

201 for(inum = 1; inum < sb.ninodes; inum++) {
202 bp = bread(dev, IBLOCK (inum, sb));

203 dip = (struct dinode*)bp->data + 1num$IPB;
204 if (dip->type == 0) {

205 memset (dip, 0, sizeof (*dip))

206 dip->type = type;

2077 log write (bp) ;

208 brelse (bp) ;

209 return iget(dev, inum) ;

210 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

void iupdate (struct inode *ip)

D Copy the modified in-memory inode to the buffer cache entry of associated

inode block.

2 Register the buffer cache entry of the inode block at the in-memory log

structure.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

45

iupdate (inode *ip): Copy the modified data to buf.

O Copy the modified in-memory inode to the buffer cache entry of associated

inode block. iupdate (inode struct *ip)

Buffer Cache Inode Cache

struct buf struct buf

header header struct | struct | struct struct
inode | inode | inode inode
data (0] (1] [2] [49]

@ Copy the in-memory inode to

Memory @ bread () buffer cache entry.
Disk
Inode blocks
Block 1 Block 2 Block 3 Block 26
KAIST 8}%—359 i Lo Youjip Won 46

iupdate () : Copy the modified data to buf. (Cont.)

o

#define IBLOCK (i, sb) ((i) / IPB + sb.inodestart)

o Return the block number containing inumber 1.
220 void
221 iupdate (struct inode *ip)
222 A l—» Read an inode block.
226 bp = bread(ip->dev, IBLOCK (ip->inum, sb));
227 dip = (struct dinode*)bp->data + ip->inum%IPB;
228 dip->type = ip->type;
229 dip->major = ip->major;
230 dip->minor = ip->minor;
231 dip->nlink = ip->nlink;
232 dip->size = ip->size;
233 memmove (dip->addrs, ip->addrs, sizeof (ip-
>addrs)) ;
234 log write (bp) ;
235 brelse (bp) ;
236 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

47

iupdate () : Copy the modified data to buf. (Cont.)

O Copy the updated content of on-disk inode in the in-memory inode to the

buffer cache entry.

220 wvoid
221 iupdate(struct inode *1ip)
222 |

226 bp = bread(ip->dev, IBLOCK (ip->inum, sb));
227 dip = (struct dinode*)bp->data + ip->inum%IPB;
228 dip->type = ip->type;

229 dip->major = ip->major;

230 dip->minor ip->minor;

231 dip->nlink = ip->nlink;

232 dip->size = ip->size;

233 memmove (dip->addrs, ip->addrs, sizeof (ip-
>addrs)) ;

234 log write (bp) ;

235 brelse (bp) ;

236 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

iupdate () : Log the updated inode block.

© To synchronize the updated buffer cache entry with the disk, register the buffer

cache entry of the inode block at the in-memory log structure.

220 wvoid
221 iupdate(struct inode *1ip)
222 |

226 bp = bread(ip->dev, IBLOCK (ip->inum, sb));

227 dip = (struct dinode*)bp->data + ip->inum%IPB;
228 dip->type = ip->type;

229 dip->major = ip->major;

230 dip->minor = ip->minor;

231 dip->nlink = ip->nlink;

232 dip->size = ip->size;

233 memmove (dip->addrs, ip->addrs, sizeof (ip-
>addrs)) ;

234 log write (bp) ;
235 brelse (bp) ;
236 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

void itrunc (struct inode * 1ip)

O |t truncates the file.

O It frees all the file blocks for a given inode.
@ Free all the valid direct blocks.
@ Free all the file blocks that pointed by the indirect block.
® Free the indirect block.
@ Set the file size to 0.

(® Store the updated inode by calling iupdate ().

KA'ST OSLab Youjip Won

Operating Systems Laboratory

50

void itrunc (struct inode * 1ip)

O It frees all the file blocks for a given inode.

@ Free all the valid direct blocks.

@ Free all the file blocks that pointed by the indirect block.

(3 Free the indirect block.

— inode

Type

Device #
of Link, Size

LBA for 15t block 4

LBA for 12 block]

@ direct blocks

X
X

3) indirect block

X

LBA for 13t block

1XS
12 adavess

[\

X

KAIST OSLab

Operating Systems Laboratory

Youjip Won

51

itrunc (): Free all direct blocks.

O Scan the 12 entries for direct blocks. (Index 0 ~ 11).

O |fthe LBA is not O, free the block and set the LBA to O.

407 static wvoid
408 itrunc(struct inode *ip)
409 {

414 for(i = 0; i < NDIRECT; i++){

415 if (ip—->addrs[i]) {

416 bfree (ip->dev, ip->addrs[i]);
417 ip->addrs[i] = O;

418 }

419 }

435 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

52

itrunc (): Free all file blocks pointed by indirect block.

O Read the indirect block and scan all the LBAs in the data of indirect block.

° If the LBA is not O, free the file block.

407 static void
408 itrunc(struct inode *ip)
409 {
.. /I Removed for saving space.
421 if (ip—->addrs[NDIRECT]) {
422 bp = bread(ip->dev, ip->addrs[NDIRECT]) ;
423 a = (uint*)bp->data;
424 for(j = 0; j < NINDIRECT; j++) {
425 if(alj])
426 bfree(ip->dev, aljl):
4277 }
431 }
435 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

itrunc (): Free the indirect block.

O Free the indirect block.

O Set the LBA for indirect block to O.

407 static void
408 itrunc(struct inode *ip)
409 {
.. Il Removed for saving space.
421 if (ip->addrs [NDIRECT]) {
422 bp = bread(ip->dev, ip->addrs[NDIRECT]) ;
423 a = (uint*)bp->data;
424 for(j = 0; j < NINDIRECT; Jj++) {
425 if(aljl)
426 bfree (ip->dev, alj]);
4277 }
428 brelse (bp) ;
429 bfree (ip->dev, ip->addrs[NDIRECT]) ;
430 ip->addrs[NDIRECT] = O;
431 }
435 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

54

itrunc (): Free all direct blocks.

O Set the file size to 0.

O Synchronize the updated inode to the disk by calling iupdate().

407 static void
408 itrunc(struct inode *ip)
409 {

.. I/ Removed for saving space.
433 ip->size = 0;
434 iupdate (ip) ;
435 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

iput (struct inode *ip) and crash

O iput(struct inode *ip)

o Ifnlink is 0 and this process is the last reference of this inode, xv6

removes this inode.

O Although nlink is 0, xv6 waits till the re f becomes 0 to remove the inode.

O What happened if the crash occurs before ref becomes 07?

o The on-disk inode without the references to it still stored on the inode block.

! - - |.1

\ —

On-disk inode e 7
nlink == uﬁu

Disk

KAIST OSLab Youjip Won

Operating Systems Laboratory

56

fsck and orphan list

There are two approaches to solve this problem.

D fsck style

o After crash, scan all the inodes.

o Remove all inodes with no link (n1ink ==

@ Orphan list

° Maintain the list of inodes with no link.

o Remove the inodes in this orphan list.

)

KA'ST OSLab Youjip Won

Operating Systems Laboratory

57

readi () and writei ()

© readi(inode *ip, char*dst, uint off, uint u):read the data from

the inode.

© writei(inode *ip, char *dst, uint off, uint n): write the data to

the inode.

O It uses interfaces of block cache layer, logging layer, and inode layer.
° Dbread() and brelse ()
° Dbegin op(),end op(),and log write()

° iupdate ()

KAIST OSLab Youjip Won 58

Operating Systems Laboratory

readi (inode *ip, char*dst, uint off, uint n)

O Read n byte to dst from of £ position of ip.
o First, load the data from the disk to a buffer cache entry.
o Then, copy the data in buffer cache entry to the user buffer.
o Repeat it until read n bytes from the disk.
O |t reads the file data so caller must hold the per-inode lock.
KAIST OSlLab

Youjip Won
Operating Systems Laboratory J'P 59

readi (): Load the data to buffer cache entry.

O bmap () : Return the disk block address of nt" file block in inode.

O Dbread/(): allocate the buffer cache entry and load the data from the disk t

o this entry.

454 |

452 1int
453 readi(struct inode *ip, char *dst, uint off, uint n)

469 for (tot=0; tot<n; tot+=m, off+=m, dst+=m) {

470 bp = bread(ip->dev, bmap(ip, off/BSIZE));
471 m = min(n - tot, BSIZE - off%$BSIZE) ;
4772 memmove (dst, bp->data + off%BSIZE, m);
473 brelse (bp) ;
474 }
4775 return n;
4776 }
KA'ST OSLab Youjip Won 60

Operating Systems Laboratory

readi () : Calculate the data size to read.

Copy “BSIZE - off % BSIZE” byte. Copy “n - tot” byte.

off n off n

A
<

A
A 4

P »ld
<« Ll

tot: total size of
already read data

469 for (tot=0; tot<n; tot+=m, off+=m, dst+=m) {
)

-
‘§§ ‘?Q
& |——> Data to read —|—> Data to read
“BsTzE | BSIZE “Ss1zE T BS1ZE
452 1int
453 readi(struct inode *ip, char *dst, uint off, uint n)
454 {

470 bp = bread(ip->dev, bmap (ip, off/BSIZE))
471 m = min(n - tot, BSIZE - off%$BSIZE) ;
4772 memmove (dst, bp->data + off%BSIZE, m);
473 brelse (bp) ;
474 }
4775 return n;
476 }
KA ST LD systems Laboratory Youjip Won 61

readi (): Copy the data to user buffer.

O Copy the data in buffer cache entry to the user buffer.

O Repeat it utill read and copy n byte from the disk to the user buffer.

452 int

453 readi(struct inode *1ip, char *dst, uint off,
454 {

469 for(tot=0; tot<n; tot+=m, off+=m, dst+=m) {
470 bp = bread(ip->dev, bmap (ip, off/BSIZE))
471 m = min(n - tot, BSIZE - off%$BSIZE) ;

4772 memmove (dst, bp->data + off%BSIZE, m);
473 brelse (bp) ;

474 }

4775 return n;

476 }

ulint n)

KAIST OSLab Youjip Won

Operating Systems Laboratory

62

writei (inode *ip, char *dst, uint off, uint n)

O This function writes n byte of dst to of £ position of ip.
o First, load the data from the disk to a buffer cache entry.
o Next, copy the data in user buffer to the buffer cache entry.
o Then, register the buffer cache entry to in-memory log structure.
o Repeat it until copy n bytes to the buffer cache entry.
O |t updates the file data and metadata so caller must hold the per-inode lock.
KAIST OSlLab

Youjip Won
Operating Systems Laboratory J'P 63

writei (): Load the data to buffer cache entry.

O bmap () : Return the disk block address of nt" file block in inode.

O Dbread/(): allocate the buffer cache entry and load the data from the disk t

o this entry.

481 int
482 writeil (struct inode *ip, char *src, uint off, uint n)
483 {

498 for (tot=0; tot<n; tot+=m, off+=m, src+=m) {

499 bp = bread(ip->dev, bmap(ip, off/BSIZE)) ;
500 m = min(n - tot, BSIZE - off$%$BSIZE) ;

501 memmove (bp->data + off%BSIZE, src, m);
502 log write (bp);

503 brelse (bp) ;

504 }

510 return n;

511 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

writei (): Copy the data to buffer cache entry.

O Copy the data in user buffer to the buffer cache entry.

O Register the buffer cache entry to in-memory log structure.

481 int
482 writeil (struct inode *ip, char *src, uint off, uint n)
483 {

498 for (tot=0; tot<n; tot+=m, off+=m, src+=m) {
)

499 bp = bread(ip->dev, bmap (ip, off/BSIZE));
500 m = min(n - tot, BSIZE - off$%$BSIZE) ;

501 memmove (bp->data + off%BSIZE, src, m);
502 log write(bp) ;

503 brelse (bp) ;

504 }

510 return n;

511 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

65

writei():log write() andbrelse()

O What happened if you

switch the line 502 and line 5037

o Call log write (bp) aftercallingbrelse (bp).

481 int

483 {

498 for (tot=0; tot<n; tot+=m, off+=m, src+=m) {
)

482 writeil (struct inode *ip, char *src, uint off, uint n)

499 bp = bread(ip->dev, bmap (ip, off/BSIZE));
500 m = min(n - tot, BSIZE - off$%$BSIZE) ;
501 memmove (bp->data + off%BSIZE, src, m);
502 log write(bp) ;
503 brelse (bp) ;
504 } The buffer cached entry can be evicted.
If the other data is loaded in evicted cache entry before commit,
510 e L unexpected data can be written to the log area.
511 }
KA'ST OSLab Youjip Won 66

Operating Systems Laboratory

writei (): Repeat writing until copying n bytes.

O Repeat it until copy n bytes to the buffer cache entry.

481 int
482 writeil (struct inode *ip, char *src, uint off, uint n)
483 {

498 for(tot=0; tot<n; tot+=m, off+=m, src+=m) {

499 bp = bread(ip->dev, bmap (ip, off/BSIZE));
500 m = min(n - tot, BSIZE - off$%$BSIZE) ;

501 memmove (bp->data + off%BSIZE, src, m);
502 log write (bp);

503 brelse (bp) ;

504 }

510 return n;

511 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

writei (): Enlarge the file size.

O Ifthe offset is larger than the file size after writing the data, update the file size.

© ltcalls iupdate () after modifying the in-memory inode to synchronize the

modified in-memory inode to the disk.

481 int
482 writeil (struct inode *ip, char *src, uint off, uint n)
483 {

498 for (tot=0; tot<n; tot+=m, off+=m, src+=m) {
.. I Removed for saving space.

504 }
505
506 1f(n > 0 && off > ip—->size) {
507 ip->size = off;
508 iupdate (ip) ;
509 }
510 return n;
511 }
KAIST gpilr-ggg i L RSy Youjip Won 68

filewrite(struct file *f, char *addr, int n)

O Write the n byte data from addr to the file that pointed by £.

O Jtcallsthe writei ().
o Useilock() and iunlock () to protect the inode.

o Usebegin op() and end op () tosynchronize atomically the several
updated blocks with the disk.

KA'ST OSLab Youjip Won 69

Operating Systems Laboratory

Putting everything together: filewrite ()

O Jtcallswritei () to write the data to the file.

117 int
118 filewrite(struct file *f, char *addr, int n)
119 {
135 while (1 < n) {
139
140 begin op();
141 ilock (f->ip);
142 if ((r = writei(f->ip, addr + i, f£->0ff, nl)) > 0)
143 f->o0ff += r;
144 iunlock (f->ip);
145 end op();
152 }
156 }
MIST gpselrdaatilzg Systems Laboratory Youjip Won 70

Putting everything together: filewrite ()

O The caller must hold the per-inode lock of the inode when writing the data.

O After writing the data, lock must be released.

117 int

118 filewrite(struct file *f, char *addr, int n)
119 {

138 while (1 < n) {

139

140 begin op();

141 ilock (£->ip) ;

142 if ((r = writei(f->ip, addr + i, f->o0ff, nl)) > 0)
143 f->o0ff += r;

144 iunlock (£->ip) ;

145 end op();

152 }

156 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Putting everything together: filewrite ()

© struct file: the data structure to represent a file

© end op () writes all buffer cache entry registered in in-memory log structure by

log write () to the log area on the disk.

// file.h
struct file {
enum { FD NONE, FD PIPE, FD INODE } type;
int ref; // reference count
char readable;
char writable;
struct pipe *pipe;
struct inode *ip;
uint off;

[

KA'ST OSLab Youjip Won

Operating Systems Laboratory

72

Putting everything together: filewrite ()

O To guarantee the file system consistency even if crash occurs at the middle of
function writei (), it calls begin op () and end op ().

© end op() writes all buffer cache entry registered in in-memory log structure by the
function 1og write () to the log area on the disk.

117 int

118 filewrite(struct file *f, char *addr, int n) {

140 begin op() ;

141 ilock (f->ip);

142 if ((r = writei(f->ip, addr + i, f->o0ff, nl)) > 0)

143 f->o0ff += r;

144 iunlock (f->ip);

145 end op() ;

152 }

156 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

73

Summary

O Inode structure: On-disk and in-memory inode.

O Code:

° iget () ,iput (), ilock (), and iunlock ()
e ialloc(), iupdate(), and itrunc()
O Protection

o |node cache lock: spin lock, protect the changes in the in-memory field of the in

ode

o Per-inode lock: sleep lock, synchronize the accesses of multiple processes.

O Real examples that read or write the file data through inode.

° readi (), writei(),and filewrite ()

KA'ST OSLab Youjip Won 74

Operating Systems Laboratory

