
Youjip Won

2Youjip Won

Contents

Concepts

Block allocator

Code: Block allocator

balloc(), and bfree()

Address of file block

Code

bmap()

3Youjip Won

Concepts

File and directory content is stored in disk blocks.

The blocks must be allocated from block allocator.

Regular
file

Directory
(file)

Array of
directory
entries

Block Allocator

balloc() bfree()

File
data

4Youjip Won

Block allocator - bitmap

xv6’s block allocator maintains a free bitmap on disk, with one bit per block.

Each bit represents the status of a block located at the same index in the disk.

A zero bit indicates that the corresponding block is free; a one bit indicates that it is

in use.

0 1LBA

Area

512 Bytes

0 0 1 0 0 1 0 0 0 0 0 … 0 0 0 0

1,000 blocks  1,000 bits

2 3 4 5 6 7

…

8 ~ 999

5Youjip Won

Bitmap block

Bitmap content is stored in the disk block, which is called bitmap block.

The bits corresponding to the boot sector, superblock, log blocks, inode blocks, and

bitmap blocks are always set.

Boot
Sector

Super
block

Log On-Disk inode

0 1 2 ~ 31 32 ~ 57

Bitmap Data

58 59 ~ 999LBA

Area

512 Bytes

1 1 1 … 1 1 0 0 0 … 0 0 0 0

1,000 blocks  1,000 bits

Index: 0 ~ 58
Meta Blocks

6Youjip Won

balloc() & bfree()

The block allocator provides two functions.

balloc(): Mark the bit as in use to allocate a new disk block.

bfree(): Unset the corresponding bit to free the block.

The unit of allocation is a block (512 bytes).

xv6 uses the interface of the buffer cache and logging layers to read or

update the bitmap block.

struct buf

bread() and brelse()

log_write()

7Youjip Won

Read or update the bitmap block content.

Access the Nth bit  (N%8)th bit of data[𝑁/8]

ex) 27th bit  3rd bit of data[3]

1Byte (8 Bit)

[0]

[1]
[2]

[511]

[510]

[3]

…

1 struct buf {
2 int flags;
3 uint dev;
4 uint blockno = 58;

…
10 uchar data[512];
11 };

Boot
Sector

…

0 1 ~ 57

Bitmap …

58 59 ~ 999LBA

Area

27th

8Youjip Won

uint balloc(uint dev)

Allocate a new block and return the allocated block number.

① Read the bitmap block and find a free block.

② Mark the bit as in-use.

③ Log the updated bitmap block.

④ Initialize the block.

⑤ Return the block number.

9Youjip Won

56 static uint
57 balloc(uint dev)
58 {
59 int b, bi, m;
60 struct buf *bp;
61
62 bp = 0;
63 for(b = 0; b < sb.size; b += BPB){
64 bp = bread(dev, BBLOCK(b, sb));
65 for(bi = 0; bi < BPB && b + bi < sb.size; bi++){

…
75 brelse(bp);
76 }
77 panic("balloc: out of blocks");
78 }

balloc(): read the bitmap blocks.

For efficiency, the scanning is split into two pieces.

xv6 does not need to read all bitmap blocks to find a free block.

The outer loop reads each block of bitmap blocks.

The inner loop checks all bits in a single bitmap block.

Outer loop

Inner loop

10Youjip Won

56 static uint
57 balloc(uint dev)
58 {
59 int b, bi, m;
60 struct buf *bp;
61
62 bp = 0;
63 for(b = 0; b < sb.size; b += BPB){
64 bp = bread(dev, BBLOCK(b, sb));

…
75 brelse(bp);
76 }
77 panic("balloc: out of blocks");
78 }

balloc(): outer loop

struct superblock sb: super block content

sb.size : total number of blocks in disk.

BPB : the number of bits in a block.  512 byte X 8 bit

The number of blocks that can be covered by a single bitmap block.

11Youjip Won

56 static uint
57 balloc(uint dev)
58 {
59 int b, bi, m;
60 struct buf *bp;
61
62 bp = 0;
63 for(b = 0; b < sb.size; b += BPB){
64 bp = bread(dev, BBLOCK(b, sb));

…
75 brelse(bp);
76 }
77 panic("balloc: out of blocks");
78 }

balloc(): outer loop (Cont.)

#define BBLOCK(b, sb) (b/BPB + sb.bmapstart)

sb.bmapstart : block number of the first bitmap block = 58

Return the block number of the bitmap block containing the bitmap for the block

of block number b.

Read a single bitmap block.

12Youjip Won

balloc(): find a free block.

The inner loop checks all bits in a single bitmap block if each block in the bitmap is

free or not.

bi: bit index = 0 ~ BPB - 1.

Outer 루프도 명시

M 값 bitwise and 그림 추가.

56 static uint
57 balloc(uint dev)
58 {
59 int b, bi, m;
60 struct buf *bp;
61
62 bp = 0;
63 for(b = 0; b < sb.size; b += BPB){
64 bp = bread(dev, BBLOCK(b, sb));
65 for(bi = 0; bi < BPB && b + bi < sb.size; bi++){
66 m = 1 << (bi % 8);
67 if((bp->data[bi/8] & m) == 0){ // Is block free?

…
78 }

13Youjip Won

balloc(): find a free block. (Cont.)

Look for a block whose bitmap bit is zero, indicating that the block is free.

Bitwise & operation isolates (bi % 8)th bit from data[𝑏𝑖/8].

Outer 루프도 명시

M 값 bitwise and 그림 추가.

56 static uint
57 balloc(uint dev)
58 {
59 int b, bi, m;
60 struct buf *bp;
61
62 bp = 0;
63 for(b = 0; b < sb.size; b += BPB){
64 bp = bread(dev, BBLOCK(b, sb));
65 for(bi = 0; bi < BPB && b + bi < sb.size; bi++){
66 m = 1 << (bi % 8);
67 if((bp->data[bi/8] & m) == 0){ // Is block free?

…
78 }

ex) bi = 27

m = 1 << 3 = 0b 0000 1000
bp->data[3] = 0b 0101 1111

bp->data[3] & m = 0b 0000 1000

bitwise &

14Youjip Won

balloc(): mark the free block as in use.

If balloc() finds a free block, it sets the corresponding bit.

56 static uint
57 balloc(uint dev)
58 {

…
67 if((bp->data[bi/8] & m) == 0){ // Is block free?
68 bp->data[bi/8] |= m; // Mark the block as being in use.
69 log_write(bp);
70 brelse(bp);
71 bzero(dev, b + bi);
72 return b + bi;
73 }

…

15Youjip Won

balloc(): log the updated bitmap block.

Register the buffer cache entry of the bitmap block at the in-memory log structure.

Then, release the buffer cache entry.

56 static uint
57 balloc(uint dev)
58 {

…
67 if((bp->data[bi/8] & m) == 0){ // Is block free?
68 bp->data[bi/8] |= m; // Mark block in use.
69 log_write(bp);
70 brelse(bp);
71 bzero(dev, b + bi);
72 return b + bi;
73 }

…

16Youjip Won

balloc(): zero the block and return block number.

Lastly, zero the block and return the block number.

56 static uint
57 balloc(uint dev)
58 {

…
67 if((bp->data[bi/8] & m) == 0){ // Is block free?
68 bp->data[bi/8] |= m; // Mark block in use.
69 log_write(bp);
70 brelse(bp);
71 bzero(dev, b + bi);
72 return b + bi;
73 }

…

17Youjip Won

void bfree(int dev, uint b)

Free a disk block.

① Unset the corresponding bit.

② Log the updated bitmap block.

18Youjip Won

bfree(): read the bitmap block.

#define BBLOCK(b, sb) (b/BPB + sb.bmapstart)

Return the block number of the bitmap block containing the bitmap for the block

of block number b.

bi: bit index = 0 ~ BPB - 1.

81 static void
82 bfree(int dev, uint b)
83 {
84 struct buf *bp;
85 int bi, m;
86
87 bp = bread(dev, BBLOCK(b, sb));
88 bi = b % BPB;
89 m = 1 << (bi % 8);
90 if((bp->data[bi/8] & m) == 0)
91 panic("freeing free block");

…
95 }

19Youjip Won

bfree(): unset the bit and log the updated block.

Unset the corresponding bit.

Register the buffer cache entry of the bitmap block at the in-memory log structure.

Then, release the buffer cache entry.

81 static void
82 bfree(int dev, uint b)
83 {

…
92 bp->data[bi/8] &= ~m;
93 log_write(bp);
94 brelse(bp);
95 }

20Youjip Won

LBA of file block

Regular
file

File
data

Boot
Sector

…

0 2 ~ 57

Bitmap

58

59 ~ 999

LBA

Area

? ? ?

21Youjip Won

Inode

Data structure to represent the attribute of file

file type: T_FILE (regular file), T_DIR (directory), or T_DEV (device file)

the number of links, file size

locations of the file blocks : LBAs for 13 blocks

#define NDIRECT 12

struct inode {
…
uint addrs[NDIRECT+1]; // File block addresses

};

22Youjip Won

Direct and indirect block

direct blockinode

Attribute
(Directory, Regular File …)

LBA for 1st block

Device #

of Link, Size

LBA for 12th block

LBA for 13th block

…

Data

Data

1st address

128th address

Data

Data

…
…

indirect block

The maximum size of a file is 70 Kbytes.

(12 direct blocks + 1 indirect block * 128 blocks) * 512 bytes

23Youjip Won

data data data

Direct block

xv6’s inode structure contains addresses of 12 direct blocks, which store the file

data.

The addresses are located at the first 12 entries of addrs.

Boot
Sector

…

0 2 ~ 57

Bitmap

58 59 ~ 999LBA

Area

inode LBA 1 LBA 2 LBA 12 LBA 13

[0] [1] [11] [12]
…

data

12 blocks

6 KB = 12 * 512 bytes

24Youjip Won

data data data

Indirect block

The last entry of addrs points to an indirect block.

The content of indirect block is an array of addresses of file blocks.

A single indirect block can cover the 128 file blocks.

Boot
Sector

…

0 2 ~ 57

Bitmap

58LBA

Area

indirect
block

… …

128 file blocks.

inode LBA 1 LBA 2 LBA 12 LBA 13

[0] [1] [11] [12]
…

data

128 blocks

6 KB 64 KB = 128 * 512 bytes
Not

allowed

25Youjip Won

uint bmap(struct inode *ip, uint bn)

Return the disk block address of nth file block in inode.

① if (bn < NDIRECT)

Return the disk block address of nth file block.

② if (bn >= NDIRECT && bn < NDIRECT + NINDIRECT)

Read the indirect block. Then, return the corresponding address in the indirect block.

③ if (bn >= NDIRECT + NINDIRECT)

System fails due to the access of invalid range.

If there is no nth block, bmap() allocates one.

If the block address is 0, it denotes that there is no block.

#define NDIRECT 12
#define NINDIRECT 128

26Youjip Won

bmap(): return the address of the file block.

If bn is smaller than NDIRECT,

return the block address at index bn in ip->addrs.

If the block address is 0, it allocates the new block.

372 static uint
373 bmap(struct inode *ip, uint bn)
374 {
375 uint addr, *a;
376 struct buf *bp;
377
378 if(bn < NDIRECT){
379 if((addr = ip->addrs[bn]) == 0)
380 ip->addrs[bn] = addr = balloc(ip->dev);
381 return addr;
382 }

…
400 }

#define NDIRECT 12
#define NINDIRECT 128

27Youjip Won

bmap(): Check the range.

If bn is equal to or larger than NDIRECT,

it calculates the index of entry in the indirect block.

If the index exceeds NINDIRECT, xv6 fails.

372 static uint
373 bmap(struct inode *ip, uint bn)
374 {

…
383 bn -= NDIRECT;
384
385 if(bn < NINDIRECT){

…
397 }
398
399 panic("bmap: out of range");
400 }

#define NDIRECT 12
#define NINDIRECT 128

28Youjip Won

bmap(): Read indirect block.

To find the LBA in indirect block, it loads the indirect block.

The block address of indirect block is located at index NDIRECT in ip->addrs.

372 static uint
373 bmap(struct inode *ip, uint bn)
374 {

…
383 bn -= NDIRECT;
384
385 if(bn < NINDIRECT){
386 // Load indirect block, allocating if necessary.
387 if((addr = ip->addrs[NDIRECT]) == 0)
388 ip->addrs[NDIRECT] = addr = balloc(ip->dev);
389 bp = bread(ip->dev, addr);
390 a = (uint*)bp->data;

…
400 }

#define NDIRECT 12

29Youjip Won

bmap(): Allocate new indirect block.

If the block address of indirect block is 0, allocate a new indirect block.

372 static uint
373 bmap(struct inode *ip, uint bn)
374 {

…
383 bn -= NDIRECT;
384
385 if(bn < NINDIRECT){
386 // Load indirect block, allocating if necessary.
387 if((addr = ip->addrs[NDIRECT]) == 0)
388 ip->addrs[NDIRECT] = addr = balloc(ip->dev);
389 bp = bread(ip->dev, addr);
390 a = (uint*)bp->data;

…
400 }

30Youjip Won

bmap(): return the block address in indirect block.

Return the block address at index bn in the indirect block.

If the address is 0, allocated new block.

372 static uint
373 bmap(struct inode *ip, uint bn)
374 {

…
389 bp = bread(ip->dev, addr); // Read indirect block.
390 a = (uint*)bp->data;
391 if((addr = a[bn]) == 0){
392 a[bn] = addr = balloc(ip->dev);
393 log_write(bp);
394 }
395 brelse(bp);
396 return addr;
397 }
398
399 panic("bmap: out of range");
400 }

31Youjip Won

Summary

Block allocator

Bitmap & bitmap block

Code: balloc() and bfree()

Address of file block

Direct & indirect block

Code: bmap()

