Filesystem: Block allocation

Youjip Won

KAISTELE

Contents

O Concepts
© Block allocator

O Code: Block allocator

© Dballoc(),andbfree ()
O Address of file block
O Code

° bmap ()

KAIST OSLab Youjip Won

Operating Systems Laboratory

Concepts

O File and directory content is stored in disk blocks.

© The blocks must be allocated from block allocator.

Regular \ Directory
file (file)

. annsnnn . Array of : """ :

File [:::]E ; dWedow'”EﬂIﬂ: :

data . - entries S

balloc() ‘ bfree ()

=

Block Allocator

KAIST OSLab Youjip Won

Operating Systems Laboratory

Block allocator - bitmap

© xv6’s block allocator maintains a free bitmap on disk, with one bit per block.
© Each bit represents the status of a block located at the same index in the disk.

© A zero bit indicates that the corresponding block is free; a one bit indicates that it is

in use.
1,000 blocks = 1,000 bits
A
001 0010O0O0O00O0 0 00O
Area
LBA 0 1 3 4 6 7 8 ~ 999
KAIST gpselr;atilgg Systems Laboratory Youjip Won

Bitmap block

© Bitmap content is stored in the disk block, which is called bitmap block.

© The bits corresponding to the boot sector, superblock, log blocks, inode blocks, and

bitmap blocks are always set.

1,000 blocks = 1,000 bits

r * N\
1 1 1 1 1(0 0 O 0 0 0 0«
Index: 0 ~ 58
Meta Blocks
Boot | Super L :
Area Sector | block Log On-Disk inode Bitmap Data
LBA 0 1 2~31 32 ~ 57 58 59 ~ 999
KA'ST OSLab Youjip Won

Operating Systems Laboratory

balloc () & bfree ()

O The block allocator provides two functions.
o balloc (): Mark the bit as in use to allocate a new disk block.

o Dbfree (): Unset the corresponding bit to free the block.

O The unit of allocation is a block (512 bytes).

xv6 uses the interface of the buffer cache and logging layers to read or
update the bitmap block.

° struct buf

o Dbread() and brelse()

° log write()

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Read or update the bitmap block content.

O Access the N"bit = (N%8)" bit of data [[N/8]]
O ex)27thbit = 3dbitof data[3]

1 struct buf ({ < 1Byte (8 Bit) >
2 int flags; e [0]

3 uint dev;

4 uint blockno = 58; E}

v

10 uchar data[512]; < B | B8

[510]
[511]
Area Boot Bitma >
Sector P
LBA 0 1~57 58 59 ~ 999
MIST gpselrdaatilzg Systems Laboratory Youjip Won

uint balloc (uint dev)

O Allocate a new block and return the allocated block number.
@ Read the bitmap block and find a free block.
@ Mark the bit as in-use.
(3 Log the updated bitmap block.
@ Initialize the block.
(B Return the block number.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

balloc(): read the bitmap blocks.

O For efficiency, the scanning is split into two pieces.

o xv6 does not need to read all bitmap blocks to find a free block.

o The outer loop reads each block of bitmap blocks.

o The inner loop checks all bits in a single bitmap block.

56 static uint

57 balloc (uint dev)

58 {

59 int b, bi, m;

60 struct buf *bp;

2; e = O Outer loop

63 for(b = 0; b < sb.size; b += BPB) {

64 bp = bread(dev, BBLOCK (b, sb)):; Inner loop
65 for(bi = 0; bi < BPB && b + bi < sb.size; bi++) {
75 brelse (bp) ;

76 }

17 panic ("balloc: out of blocks");

78 '}

KA'ST OSLab Youjip Won

Operating Systems Laboratory

balloc(): outer loop

O struct superblock sb: super block content
o sb.size :total number of blocks in disk.
O BPB : the number of bits in a block. = 512 byte X 8 bit

o The number of blocks that can be covered by a single bitmap block.

56 static uint

57 balloc (uint dev)
58 {

59 int b, bi, m;
60 struct buf *bp;

61

62 bp = 0;

63 for(b = 0; b < sb.size; b += BPB) {
64 bp = bread(dev, BBLOCK (b, sb));
75 brelse (bp) ;

76 }

177 panic ("balloc: out of blocks");

78 '}

KA'ST OSLab Youjip Won

Operating Systems Laboratory

10

balloc (): outer loop (Cont.)

© #define BBLOCK (b, sb) (b/BPB + sb.bmapstart)

° sb.bmapstart : block number of the first bitmap block = 58

o Return the block humber of the bitmap block containing the bitmap for the block

of block number b.

56 static uint

57 balloc (uint dev)
58 {

59 int b, bi, m;
60 struct buf *bp;

61

62 bp = 0;

63 for(b = 0; b < sb.size; b += BPB) {

64 bp = bread(dev, BBLOCK(b, sb)); —— Read a single bitmap block.
75 brelse (bp) ;

76 }

177 panic ("balloc: out of blocks");

78 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

11

balloc (): find a free block.

© The inner loop checks all bits in a single bitmap block if each block in the bitmap is

free or not.

© bi:bitindex=0~BPB - 1.

56 static uint

57 balloc (uint dev)
58 {

59 int b, bi, m;
60 struct buf *bp;

61

62 bp = 0;

63 for(b = 0; b < sb.size; b += BPB) {

64 bp = bread(dev, BBLOCK (b, sb));

65 for(bi = 0; bi < BPB && b + bi < sb.size; bi++) {

60 m=1 << (bl % 8);

67 if ((bp->data[bi/8] & m) == 0){ // Is block free?
78 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

balloc (): find a free block. (Cont.)

© Look for a block whose bitmap bit is zero, indicating that the block is free.
© Bitwise & operation isolates (bi % 8)t bit from data [|bi/8]] .
ex) bi = 27
m= 1 << 3 = 0b 0000 1000
56 static uint bp->data[3] = 0b 0101 1111 o
57 balloc (uint dev) bitwise &
58 { bp->data[3] & m = 0b 0000 1000 <—
59 int b, bi, m;
60 struct buf *bp;
61
62 bp = 0;
63 for(b = 0; b < sb.size; b += BPB) {
64 bp = bread(dev, BBLOCK (b, sb));
65 for(bi = 0; bi < BPB && b + bi < sb.size; bit++) {
66 m=1<< (bi % 8);
67 if ((bp->data[bi/8] & m) == 0){ // Is block free?
78 '}
MIST gpse!‘-;atilzg Systems Laboratory Youjip Won 13

balloc (): mark the free block as in use.

O Ifballoc () finds a free block, it sets the corresponding bit.

56 static uint
57 balloc (uint dev)
58 {
67 if ((bp->data[bi/8] & m) == 0){ // Is block free?
68 bp->data[bi/8] |= m; // Mark the block as being in use.
69 log write (bp) ;
70 brelse (bp) ;
71 bzero(dev, b + bi);
72 return b + bi;
73 }
KA'ST OSLab Youjip Won 14

Operating Systems Laboratory

balloc () : log the updated bitmap block.

© Register the buffer cache entry of the bitmap block at the in-memory log structure.

© Then, release the buffer cache entry.

56 static uint

57 balloc (uint dev)

58 {

67 if ((bp->data[bi/8] & m) == 0){ // Is block free?
68 bp->data[bi/8] |= m; // Mark block in use.

69 log _write (bp) ;

70 brelse (bp) ;

71 bzero(dev, b + bi);

72 return b + bi;

73 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

balloc () : zero the block and return block number.

O Lastly, zero the block and return the block number.

56 static uint
57 balloc (uint dev)
58 {
67 if ((bp->data[bi/8] & m) == 0){ // Is block free?
68 bp->data[bi/8] |= m; // Mark block in use.
69 log write (bp) ;
70 brelse (bp) ;
71 bzero(dev, b + bi);
72 return b + bi;
73 }
KA'ST OSLab Youjip Won 16

Operating Systems Laboratory

void bfree (int dev, uint b)

O Free a disk block.
(D Unset the corresponding bit.
2 Log the updated bitmap block.

KAIST OSLab Youjip Won

Operating Systems Laboratory

17

bfree (): read the bitmap block.

© #define BBLOCK (b, sb) (b/BPB + sb.bmapstart)

o Return the block number of the bitmap block containing the bitmap for the block

of block number b.

© Dbi:bitindex=0~BPB - 1.

81 static void
82 bfree(int dev, uint b)
83 {
84 struct buf *bp;
85 int bi, m;
86
87 bp = bread(dev, BBLOCK (b, sb));
88 bi = b % BPB;
89 m=1 << (bi % 8);
i

90 f ((bp->datalbi/8] & m) == 0)
91 panic ("freeing free block");
95 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

bfree () : unset the bit and log the updated block.

© Unset the corresponding bit.
O Register the buffer cache entry of the bitmap block at the in-memory log structure.

© Then, release the buffer cache entry.

81l static void
82 bfree(int dev, uint b)
83 {

92 bp->data[bi/8] &= ~m;
93 log write (bp) ;

94 brelse (bp) ;

95 }

KA'ST OSLab Youjip Won

Operating Systems Laboratory

LBA of file block

file

Regular Eﬂ

File
data
Boot Bitma
Area | sector P
LBA 0 2 ~57 58 ? ?
59 ~ 999
KAIST OSLab Youjip Won 20

Operating Systems Laboratory

Inode

O Data structure to represent the attribute of file
o file type: T_FILE (regular file), T_DIR (directory), or T_DEV (device file)
o the number of links, file size
o locations of the file blocks : LBAs for 13 blocks
#define NDIRECT 12
struct inode {
uint addrs[NDIRECT+1]; // File block addresses
} i
KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P

Direct and indirect block

O The maximum size of a file is 70 Kbytes.

o (12 direct blocks + 1 indirect block * 128 blocks) * 512 bytes

— inode

Attribute
(Directory, Regular File ...)

Device #
of Link, Size
LBA for 15t block 4

LBA for 12 block |/

direct block

Data

Data

indirect block

Data

1st address

LBA for 13t block

128" address

N

Data

KAIST OSLab

Operating Systems Laboratory

Youjip Won

22

Direct block

© xvB’s inode structure contains addresses of 12 direct blocks, which store the file
data.

O The addresses are located at the first 12 entries of addrs.

) 12 blocks .
ET data 6 KB =12 * 512 bytes
N RS
D N < N N ~ -
[0] [1] [11] [12]
inode LBA 1 || LBA 2 LBA 12| |LBA 13
Boot .
Area | sector Bitmap data data data
LBA 0 2~57 58 59 ~ 999
MIST gpse!‘-aatilzg Systems Laboratory Youjip Won

Indirect block

© The last entry of addrs points to an indirect block.

© The content of indirect block is an array of addresses of file blocks.

© Asingle indirect block can cover the 128 file blocks.

j 128 blocks _
— * Not
Eﬂ data 6 KB 64 KB = 128 * 512 bytes allowed
[0] [1] [11] [12]
inode LBA 1 || LBA 2 LBA 12| |LBA 13
indirect
! bllock 128 file blocks.
Boot .
Area Sector Bitmap data data data
LBA 0O 2 ~57 58 ' iy 1
KA'ST OSLab Youjip Won 24

Operating Systems Laboratory

uint bmap (struct inode *ip, uint bn)

© Return the disk block address of nt" file block in inode.

@ if (bn < NDIRECT) #define NDIRECT 12
#define NINDIRECT 128

Return the disk block address of nt" file block.
@ if (bn >= NDIRECT && bn < NDIRECT + NINDIRECT)
Read the indirect block. Then, return the corresponding address in the indirect block.
® if (bn >= NDIRECT + NINDIRECT)

System fails due to the access of invalid range.

O If there is no nt" block, bmap () allocates one.

° If the block address is 0, it denotes that there is no block.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

25

bmap () : return the address of the file block.

© If bnis smaller than NDIRECT,

#define NDIRECT 12

o return the block address at index bn in ip->addrs. _
#define NINDIRECT 128

O |f the block address is 0, it allocates the new block.

372 static uint

373 bmap (struct inode *ip, uint bn)
374 {

375 uint addr, *a;

376 struct buf *bp;

377

378 if (bn < NDIRECT) {

379 if ((addr = ip->addrs[bn]) == 0)

380 ip->addrs[bn] = addr = balloc(ip->dev);
381 return addr;

382 }

400 1}

KA'ST OSLab Youjip Won

Operating Systems Laboratory

bmap () : Check the range.

&}

Q

If bn is equal to or larger than NDIRECT,
o it calculates the index of entry in the indirect block.

If the index exceeds NINDIRECT, xv6 fails.

#define NDIRECT 12
#define NINDIRECT 128

372 static uint
373 bmap (struct inode *ip, uint bn)

374 {
383 bn -= NDIRECT;
384
385 if (bn < NINDIRECT) {
397 }
398
399 panic ("bmap: out of range");
400 }
MIST gpsel‘-;latilzg Systems Laboratory Youjip Won 27

bmap () : Read indirect block.

© To find the LBA in indirect block, it loads the indirect block.

© The block address of indirect block is located at index NDIRECT in ip->addrs.

372 static uint

373 bmap (struct inode *ip, uint bn) #define NDIRECT 12
374 |

383 bn -= NDIRECT;

384

385 if (bn < NINDIRECT) {

386 // Load indirect block, allocating if necessary.
387 1f ((addr = ip->addrs[NDIRECT]) == 0)

388 1p->addrs [NDIRECT] = addr = balloc (ip->dev) ;
389 bp = bread(ip->dev, addr);

390 a = (uint*)bp->data;

400 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

28

bmap () : Allocate new indirect block.

O |If the block address of indirect block is 0, allocate a new indirect block.

372 static uint
373 bmap (struct inode *ip, uint bn)
374 {
383 bn -= NDIRECT;
384
385 1f (bn < NINDIRECT) {
386 // Load indirect block, allocating if necessary.
387 1if((addr = ip->addrs[NDIRECT]) == 0)
388 ip->addrs [NDIRECT] = addr = balloc (ip->dev) ;
389 bp = bread(ip->dev, addr);
390 a = (uint*)bp->data;
400 1}
KA'ST OSLab Youjip Won 29

Operating Systems Laboratory

bmap () : return the block address in indirect block.

O Return the block address at index bn in the indirect block.

O |f the address is 0, allocated new block.

372 static uint
373 bmap (struct inode *ip, uint bn)

374 {

389 bp = bread(ip->dev, addr); // Read indirect block.
390 a = (uint*)bp->data;

391 if((addr = a[bn]) == 0) {

392 albn] = addr = balloc (ip->dev) ;
393 log write (bp) ;

394 }

395 brelse (bp) ;

396 return addr;

397 }

398

399 panic ("bmap: out of range");

400 1}

KAIST OSLab Youjip Won

Operating Systems Laboratory

30

Summary

O Block allocator
O Bitmap & bitmap block

O Code:balloc () and bfree ()

O Address of file block
O Direct & indirect block

© Code: bmap ()

KAIST OSLab Youjip Won

Operating Systems Laboratory

31

