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An Example of Crash

Q@  Scenario

Q

Append of a single data block to an existing file.

I.n ode Pata Inodes Data Blocks
Bitmap Bitmap
I[v1]
5 Da
v1
Before Append a single data block
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An Example of Crash

O  File system perform three writes to the disk.
° inode I[v2]
o  Data bitmap B[v2]

o  Data block (Db)

I.n ode !)ata Inodes Data Blocks
Bitmap Bitmap
\
- 2] 7\
s \ Da Db
B N
V2 \/

After Append a single data block
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Crash Scenario

O Only one of the blocks below is written to disk.
o  Data block (Db): lost update
o  Update inode (I [v2]) block: garbage, consistency problem
o  Updated bitmap (B[v2]): space leak

O  Two writes succeed and the last one fails.
o Theinode(I[v2])and bitmap (B[v2]), but not data (Db).: consistent
o  Theinode(I [v2]) and data block (Db), but not bitmap(B[v2]): inconsistent
o  The bitmap(B [v2]) and data block (Db), but not the inode(T [v2]): inconsistent

Metadata should be consistent.
Crash-consistency problem (consistent- update problem)
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Crash Scenario

Q@ |node is lost.

O Data block write is lost.

O  Bitmap is lost.

Inode

Bitmap

Data

Inode

Bitmap

Data

Inode
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Solution: Journaling (Write-Ahead-Logging)

O In filesystem, it is called “write -ahead-logging”.
O Bring back the filesystem to safe state after system crash.
O Rule

o  When you update the metadata, record it to the log space (journal).

o Ifitis stored to the log space safely, then reflect it to the original location

sometime later.
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Log Region

O  File system reserves some small amount of space within the partition or on

another device.

Super Group 0 Group 1 Group N

without journaling

Log region
Super Group 0 Group 1 Group N

with journaling
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Transaction

O A set of blocks that need to be written as a single unit.

o  Transaction header (TxB): Place a description of all the disk writes it wishes to

make in a log on the disk.
o  Log blocks

o  Transaction commit mark (TXE): Once the system call has logged all of its write
s, it writes a special commit record to the disk indicating that the log contains a

complete operation.

physical logging

©
c
5 TxB [[v2] Blv2] Db TxE >
(@)
—_
\ Y J
Transaction
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Logging and Recovery in XV6

O  Recovery
o Scan the log region and replay the log.
©  Incomplete transaction

o For the transaction with commit record missing, the recovery code ignores it.

o  The state of the disk will be if the operation had not even started.
O  Committed transaction (Complete Transaction)

o If the crash occurs after the operation commits, the recovery will replay all of th

e operation’s writes.

replay

v

™B A B | TxE| T™xB C D | TXE | T™xB E F

l A \ ;
I I I

Recovered Recovered ignored

KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P 10




Logging and Recovery in XV6

©  The log makes the operation atomic with respect to crash.

o  After recovery, either all of the operation’s write appear on the disk, or none of t

hem appear.

nothing

all
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Structure of Log Region

©  The log region can accommodate one log structure.
©  Compound transaction
| "’ T
append create
o multiple system calls into one transaction.
O  The total number of blocks written by the system calls in a transaction
must fit in that space.
o  Large system call is broken into smaller pieces.
o A system call can only start when there is a space in the log region.
KAIST OSLab
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Structure of Log Region (Cont’d)

O  To commit a transaction

o Wait for the existing system call to finish

T " T

append create

append create
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Structure of Log Region in xv6

header
block

|
Log blocks

© Header block

struct logheader {
int n;
int block[LOGSIZE];
i

O  Header block of the log region in XV6 corresponds to “TxB + TxE”
o  written when a transaction commits

o count is set to zero after reflecting the log blocks to the file system.
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Logging in xv6

1. Collects the updated contents in memory and freeze them.(Creating a Transaction).

2. Write the log blocks to log area and write the log header (Commit).

3. Writes them to its places after commit (Checkpoint).

Updated
Memory blocks
_ checkpoint
commit
vl !
Disk Boot Super Log Inodes Bitmap Data Data
0 1 2 32 58 59 1000

block number
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Process of commit in xv6

©  Commit starts when there is no committing transaction.
©  Write the data blocks specified in the log header to the log area persistently.

©  Write the log header to the disk persistently.

Log header
gn =3 Data Data Data

DRAM (no=5) (no=7) (no=3)

data|T] =
data[2] =3

Disk

Log
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Process of commit in xv6 (Cont’d)

Log header
D R AM n=3 Data Data Data

data[0] = 7 (no=5) (no=7) (no=3)
aata =

| /

' /

| /

| /

| /

Disk Data Data
(no=7) | (no=5)
Log
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Process of commit in xv6 (Cont’d)

Log header
=3 Data Data Data
D RAM datr;[O] =7 (no=5) (no=7) (no=3)
data[1] =5
I
I
I
I /
I /
- Data Data
Disk (no=7) | (no=5) | (no=3)
Log
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Process of commit in xv6 (Cont’d)

Log header
D R AM n=3 Data Data Data
data[0] = 7 (no=5) (no=7) (no=3)
data[1] =5
data[2] = 3
I
I
I
I /
I /
Disk Log header Data Data
n=3 (no=7) | (no=5) | (no=3)
Log
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Process of checkpoint in xv6 (Cont’d)

O Checkpoint writes the committed data blocks to their original place.
O After the checkpoint, set the number of blocks in the log header to zero. Then, write
the updated log header to the disk.
Log header
n=3
DRAM data[0] =7
data[1]=5
data[2] = 3
. Data Data Data
Disk Log header (no=7) (no=5) (no=3)
Log Area X
i i Data Data Data
E E (no=3) (no=5) (no=7)
Data Area
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Process of checkpoint in xv6 (Cont’d)

Log header
DRAM n=0

data[0] =7
data[1] =5
data[2] = 3

I l

|

Disk Log header Data Data Data
n=0 (no=7) (no=5) (no=3)
Log Area
Data Data Data
(no=3) (no=5) (no=7)
Data Area
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Recovery

O Recovery routine checks the “number of blocks” in the log header.

° If the number of block in the log header is 0, it skip recovery phase.

If there is no block to recover, keep booting

Log Area

Disk

Log header
n=0

° Otherwise, it performs recovery; It write the blocks in the log area to the original locations.

Log Area
Disk Log header Data Data Data
n=3 (no=7) (no=5) (no=3)
i i Data Data Data
i i (no=3) (no=5) (no=7)
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Typical system call pattern

System call

1. wait for the outstanding commit to finish.

2. update the buffer cache.

3. Register the buffer cache entries at the log header and pin the buffer cache

blocks.

4. write them to the log region and checkpoint.

. begin op();

. bp=bread(..) ;
. bp->datal..] = .. ;
log write (bp) ;

~ o O b~ w N

. end op() ;
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Code: begin op ()

O  Before logging, it check status of log area.
O Wait till
o The current commit finishes,

o  there is enough space available, or

o  there is no ongoing system calls (1og.outstanding)
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Code: begin op () (Cont.)

void begin op (void) {
acquire (&log.lock);
while (1) {

if (log.committing) {
sleep(&log, &log.lock);

} else if(log.lh.n + (log.outstanding+l) *MAXOPBLOCKS > LOGSIZE) {
// this op might exhaust log space; wait for commit.
sleep(&log, &log.lock);

} else {

oo o= & Aimeliimei =iz
release (&log.lock) ;

b k; : . :
e If it don’t need to wait, increase outstanding and start to log
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Code: 1log write()

O Register the buffer cache entry at the in-memory log structure.

1. Reserve a slot in the log.

2. Mark the buffer as DIRTY.
Prohibit the buffer from going to the disk.

3. Log absorption.
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Code: 1log write() (Cont.)

Operating Systems Laboratory
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3. Increase
I
v
n
log.1lh
t t loghead
(struct logheader) block [ 27 [ 3 [132]e...
A .
2. Add record
4 )
blockno 3
flags B _DIRTY
b - /| blockno 132
(struct buf*) e ~N
blockno 27 flags B_DIRTY 1. Flag set
flags B DIRTY
\_ J
Buffers
Disk
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Code: 1log write() (Cont.)

O  Log absorption

o |fa block is already in the log, it updates the existing log entry.

log.1lh

t t loghead
(struc ogheader) block | 27 | 3

35

3 -
X Block Number 35
exists!

blockno 35
b ( )
(struct buf*) blockno 36
blockno 37
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Code: 1log write() (Cont.)

O  Log absorption

o |fa block is already in the log, it updates the existing log entry.

log.1lh

t t loghead
(struc ogheader) block | 27 3 351 36 | 37
A
Overwrite
blockno 35
b {

(struct buf*) blockno 36

blockno 37
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Code: 1log write() (Cont.)

void log write(struct buf *b) {

int 1i;

if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
panic("too big a transaction");

if (log.outstanding < 1)
panic("log write outside of trans");

acquire (&log.lock);

for (1 = 0; 1 < log.lh.n; i++) {
if (log.lh.block[i] == b->blockno) // log absorbtion

break;

}
log.lh.block[i] = b->blockno;

if (i == log.lh.n)
Ibeier Ilgie e - Add a new block to the log header
E= T lags = NE NET RIS/ DT esfe ri e eaz ileEitai

release(&log.lock);

}
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Code: end op ()

Q

o

-

Decrements the counts of outstanding system calls.

If the counts is O, call commit ().

. Write the log blocks to the log region in the disk: write log ()

Update header block : write head()
Checkpoint : install trans()

Reset the counter of log header : end op ()

KAIST
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Code: end op () (Cont.)

O  Complete logging: Commit and Checkpoint

void end op(void) {

int do commit = 0;

acquire (&log.lock) ;

log.outstanding -= 1;

if(log.committing)
panic("log.committing") ;

if (log.outstanding == 0) {
do commit = 1;
log.committing = 1;

} else {
// begin op() may be waiting for log space, and decrementing
// log.outstanding has decreased the amount of reserved space.

wakeup (&10qg) ;
}

release(&log.lock);
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Code: end op () (Cont.)

1f (do commit) {
// call commit w/o holding locks,
// to sleep with locks.
commit () ;
acquire (&log.lock);
log.committing = 0;
wakeup (&10qg) ;

release(&log.lock);

since not allowed
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Code: commit ()

static void commit () {
if (log.lh.n > 0) {
write log();
write head();
install trans();
log.lh.n = 0;

write head();

//
//
//

//

Write modified blocks from cache to log
Write header to disk —-- the real commit

checkpoint

Erase the transaction from the log

(D Write log blocks to log area in storage.

@ Write log head to log area in storage (commit)

(® Write log blocks to original location in storage(checkpoint)

@ Initialize n of journal head to O(transaction invalidation)

(® Write n initialized in @ to storage

KAIST
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Code: write log()

©  Write the log blocks in the buffer cache to the on-disk log area.

static void write log(void) {

int tail;

for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start+tail+l); // log block
struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block
memmove (to->data, from->data, BSIZE);
bwrite(to); // write the log
brelse (from) ;

brelse (to) ;

(D Acquiring buffer cache from the log area (to)

@ Acquiring modified buffer cache (from)

(@ Copy the contents of modified buffer cache (from) to buffer cache for log area (to)
@ Write buffer cache for log area to storage

(®), ® release buffer cache
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Code: write head()

©  Write the log header to on-disk log area.

static void write head(void) {
struct buf *buf = bread(log.dev, log.start);
struct logheader *hb = (struct logheader *) (buf->data);
int 1i;
hb->n = log.lh.n;
for (1 = 0; 1 < log.lh.n; i++) {
hb->block[i] = log.lh.block[i];
}
bwrite (buf);
brelse (buf) ;

1. Acquire buffer cache for the first block of log area.
2. Copy the contents of log head to buffer cache.
3. Write buffer cache.
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Code: install trans()

O Checkpoint: write modified data blocks in buffer cache to on-disk area.

static void install trans(void) {

int tail;

for (tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf = bread(log.dev, log.start+tail+l); // read log block
struct buf *dbuf = bread(log.dev, log.lh.block[taill); // read dst
memmove (dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite (dbuf); // write dst to disk
brelse (lbuf) ;
brelse (dbuf) ;
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Recovery

After initializing log area, start recovery

void forkret (void) {

if (first) {
first = 0;
iinit (ROOTDEV) ;
initlog (ROOTDEV) ;

void initlog(int dev) {

if (sizeof (struct logheader)

panic(“initlog: too big logheader”);

struct superblock sb;
initlock (&log.lock, “log”);
readsb (dev, &sb);

log.start = sb.logstart;
log.size = sb.nlog;

log.dev = dev;

recover from log() ;

>= BSIZE)
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Recovery

Perform log replay (checkpoint).

static void recover from log(void) {
read head();
install trans(); // if committed, copy from log to disk
log.lh.n = 0;

write head(); // clear the log
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Important of logging

Scaling a file system to many c
using an operation log
Srivatsa S. Bhat,” Rasha Eqbal,* Austin T. Cleme|

M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

ABSTRACT

It is challenging to simultaneously achieve multicore scala-
bility and high disk throughput in a file system. For exam-

allow file-system-intensive
10, 13, 23, 26, 31]. This papsg
system design that allows fol
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SpanF'S: A Scalable File System on Fast Storage Devices

Barrier-Enabled 10 Stack for Flash Storage

Youjip Won!  Jaemin Jung?* Gyeongyeol Choi!

Joontack Oh!  Seongbae Son!

'Hanyang University ~ 2Texas A&M University

Abstract

This work is dedicated to eliminating the overhead re-
quired for guaranteeing the storage order in the mod-
ern IO stack. The existing block device adopts a pro-

hihitivalv a¥ynanciva annrnach in anenring the ctarage ar
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Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai Ma and Jinpeng Huai
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ized file system service with a collection of independent

JAND flash-based micro file system services, called domains, to achieve
P P scalability on many-core. Each domain performs its file
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summary

O  Logging

© API's

Q

begin op (), log write(), end op()

System call ()
1. begin op();
2. . /
3. bp=bread(..) ; .
4. bp->datal..] = .. ; " —
5. log write (bp) ; E-' ;}
6. ..
7. end op() ; "
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