Filesystem: Logging

Youjip Won

KAISTELE



Crash

FA131 705

create (Yhello.c”)

KA'ST OSLab Youjip Won

Operating Systems Laboratory




An Example of Crash

Q@  Scenario

Q

Append of a single data block to an existing file.

I.n ode Pata Inodes Data Blocks
Bitmap Bitmap
I[v1]
5 Da
v1
Before Append a single data block
KAIST OSLab Youjip Won

Operating Systems Laboratory




An Example of Crash

O  File system perform three writes to the disk.
° inode I[v2]
o  Data bitmap B[v2]

o  Data block (Db)

I.n ode !)ata Inodes Data Blocks
Bitmap Bitmap
\
- 2] 7\
s \ Da Db
B N
V2 \/

After Append a single data block

KAIST OSLab Youjip Won

Operating Systems Laboratory




Crash Scenario

O Only one of the blocks below is written to disk.
o  Data block (Db): lost update
o  Update inode (I [v2]) block: garbage, consistency problem
o  Updated bitmap (B[v2]): space leak

O  Two writes succeed and the last one fails.
o Theinode(I[v2])and bitmap (B[v2]), but not data (Db).: consistent
o  Theinode(I [v2]) and data block (Db), but not bitmap(B[v2]): inconsistent
o  The bitmap(B [v2]) and data block (Db), but not the inode(T [v2]): inconsistent

Metadata should be consistent.
Crash-consistency problem (consistent- update problem)
KAIST OSLab

Operating Systems Laboratory vsu:"p Wsn



Crash Scenario

Q@ |node is lost.

O Data block write is lost.

O  Bitmap is lost.

Inode

Bitmap

Data

Inode

Bitmap

Data

Inode

Inode

Bitmap

Data

KAIST OSLab

Operating Systems Laboratory

Youjip Won




Solution: Journaling (Write-Ahead-Logging)

O In filesystem, it is called “write -ahead-logging”.
O Bring back the filesystem to safe state after system crash.
O Rule

o  When you update the metadata, record it to the log space (journal).

o Ifitis stored to the log space safely, then reflect it to the original location

sometime later.

h Temipiana I:'_’, ~
12 _
fa e el
L s
it Rl
154 3 ]
i,
i
_E_ m.-'.: ua i
v |
b L
: G
KAIST OSLab Youjip Won
Operating Systems Laboratory




Log Region

O  File system reserves some small amount of space within the partition or on

another device.

Super Group 0 Group 1 Group N

without journaling

Log region
Super Group 0 Group 1 Group N

with journaling

KAIST OSLab Youjip Won

Operating Systems Laboratory




Transaction

O A set of blocks that need to be written as a single unit.

o  Transaction header (TxB): Place a description of all the disk writes it wishes to

make in a log on the disk.
o  Log blocks

o  Transaction commit mark (TXE): Once the system call has logged all of its write
s, it writes a special commit record to the disk indicating that the log contains a

complete operation.

physical logging

©
c
5 TxB [[v2] Blv2] Db TxE >
(@)
—_
\ Y J
Transaction
KAIST OSLab Youjip Won
- Operating Systems Laboratory



Logging and Recovery in XV6

O  Recovery
o Scan the log region and replay the log.
©  Incomplete transaction

o For the transaction with commit record missing, the recovery code ignores it.

o  The state of the disk will be if the operation had not even started.
O  Committed transaction (Complete Transaction)

o If the crash occurs after the operation commits, the recovery will replay all of th

e operation’s writes.

replay

v

™B A B | TxE| T™xB C D | TXE | T™xB E F

l A \ ;
I I I

Recovered Recovered ignored

KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P 10




Logging and Recovery in XV6

©  The log makes the operation atomic with respect to crash.

o  After recovery, either all of the operation’s write appear on the disk, or none of t

hem appear.

nothing

all

KAIST OsLab Youjip Won

Operating Systems Laboratory

11



Structure of Log Region

©  The log region can accommodate one log structure.
©  Compound transaction
| "’ T
append create
o multiple system calls into one transaction.
O  The total number of blocks written by the system calls in a transaction
must fit in that space.
o  Large system call is broken into smaller pieces.
o A system call can only start when there is a space in the log region.
KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P

12



Structure of Log Region (Cont’d)

O  To commit a transaction

o Wait for the existing system call to finish

T " T

append create

append create

KAIST OsLab Youjip Won 13

Operating Systems Laboratory



Structure of Log Region in xv6

header
block

|
Log blocks

© Header block

struct logheader {
int n;
int block[LOGSIZE];
i

O  Header block of the log region in XV6 corresponds to “TxB + TxE”
o  written when a transaction commits

o count is set to zero after reflecting the log blocks to the file system.

KA'ST OSLab Youjip Won

Operating Systems Laboratory




Logging in xv6

1. Collects the updated contents in memory and freeze them.(Creating a Transaction).

2. Write the log blocks to log area and write the log header (Commit).

3. Writes them to its places after commit (Checkpoint).

Updated
Memory blocks
_ checkpoint
commit
vl !
Disk Boot Super Log Inodes Bitmap Data Data
0 1 2 32 58 59 1000

block number

KA'ST OSLab Youjip Won

Operating Systems Laboratory

15



Process of commit in xv6

©  Commit starts when there is no committing transaction.
©  Write the data blocks specified in the log header to the log area persistently.

©  Write the log header to the disk persistently.

Log header
gn =3 Data Data Data

DRAM (no=5) (no=7) (no=3)

data|T] =
data[2] =3

Disk

Log

KA'ST OSLab Youjip Won

Operating Systems Laboratory




Process of commit in xv6 (Cont’d)

Log header
D R AM n=3 Data Data Data

data[0] = 7 (no=5) (no=7) (no=3)
aata =

| /

' /

| /

| /

| /

Disk Data Data
(no=7) | (no=5)
Log
MIST gpselrdaatilzg Systems Laboratory Youjip Won




Process of commit in xv6 (Cont’d)

Log header
=3 Data Data Data
D RAM datr;[O] =7 (no=5) (no=7) (no=3)
data[1] =5
I
I
I
I /
I /
- Data Data
Disk (no=7) | (no=5) | (no=3)
Log
KA'ST OSLab Youjip Won

Operating Systems Laboratory




Process of commit in xv6 (Cont’d)

Log header
D R AM n=3 Data Data Data
data[0] = 7 (no=5) (no=7) (no=3)
data[1] =5
data[2] = 3
I
I
I
I /
I /
Disk Log header Data Data
n=3 (no=7) | (no=5) | (no=3)
Log
KAIST OSLab Youjip Won

Operating Systems Laboratory




Process of checkpoint in xv6 (Cont’d)

O Checkpoint writes the committed data blocks to their original place.
O After the checkpoint, set the number of blocks in the log header to zero. Then, write
the updated log header to the disk.
Log header
n=3
DRAM data[0] =7
data[1]=5
data[2] = 3
. Data Data Data
Disk Log header (no=7) (no=5) (no=3)
Log Area X
i i Data Data Data
E E (no=3) (no=5) (no=7)
Data Area
KA'ST OSLab Youjip Won 20

Operating Systems Laboratory




Process of checkpoint in xv6 (Cont’d)

Log header
DRAM n=0

data[0] =7
data[1] =5
data[2] = 3

I l

|

Disk Log header Data Data Data
n=0 (no=7) (no=5) (no=3)
Log Area
Data Data Data
(no=3) (no=5) (no=7)
Data Area
KA'ST OSLab Youjip Won 21

Operating Systems Laboratory




Recovery

O Recovery routine checks the “number of blocks” in the log header.

° If the number of block in the log header is 0, it skip recovery phase.

If there is no block to recover, keep booting

Log Area

Disk

Log header
n=0

° Otherwise, it performs recovery; It write the blocks in the log area to the original locations.

Log Area
Disk Log header Data Data Data
n=3 (no=7) (no=5) (no=3)
i i Data Data Data
i i (no=3) (no=5) (no=7)
KA'ST OSLab Youjip Won 22

Operating Systems Laboratory



Typical system call pattern

System call

1. wait for the outstanding commit to finish.

2. update the buffer cache.

3. Register the buffer cache entries at the log header and pin the buffer cache

blocks.

4. write them to the log region and checkpoint.

. begin op();

. bp=bread(..) ;
. bp->datal..] = .. ;
log write (bp) ;

~ o O b~ w N

. end op() ;

KA'ST OSLab Youjip Won

Operating Systems Laboratory

23



Code: begin op ()

O  Before logging, it check status of log area.
O Wait till
o The current commit finishes,

o  there is enough space available, or

o  there is no ongoing system calls (1og.outstanding)

KAIST OSLab Youjip Won

Operating Systems Laboratory

24



Code: begin op () (Cont.)

void begin op (void) {
acquire (&log.lock);
while (1) {

if (log.committing) {
sleep(&log, &log.lock);

} else if(log.lh.n + (log.outstanding+l) *MAXOPBLOCKS > LOGSIZE) {
// this op might exhaust log space; wait for commit.
sleep(&log, &log.lock);

} else {

oo o= & Aimeliimei =iz
release (&log.lock) ;

b k; : . :
e If it don’t need to wait, increase outstanding and start to log

KAIST OSLab Youjip Won

Operating Systems Laboratory

25



Code: 1log write()

O Register the buffer cache entry at the in-memory log structure.

1. Reserve a slot in the log.

2. Mark the buffer as DIRTY.
Prohibit the buffer from going to the disk.

3. Log absorption.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

26



Code: 1log write() (Cont.)

Operating Systems Laboratory

Youjip Won

3. Increase
I
v
n
log.1lh
t t loghead
(struct logheader) block [ 27 [ 3 [132]e...
A .
2. Add record
4 )
blockno 3
flags B _DIRTY
b - /| blockno 132
(struct buf*) e ~N
blockno 27 flags B_DIRTY 1. Flag set
flags B DIRTY
\_ J
Buffers
Disk
KAIST OSLab



Code: 1log write() (Cont.)

O  Log absorption

o |fa block is already in the log, it updates the existing log entry.

log.1lh

t t loghead
(struc ogheader) block | 27 | 3

35

3 -
X Block Number 35
exists!

blockno 35
b ( )
(struct buf*) blockno 36
blockno 37
MIST gpselrdaatilzg Systems Laboratory Youjip Won 28




Code: 1log write() (Cont.)

O  Log absorption

o |fa block is already in the log, it updates the existing log entry.

log.1lh

t t loghead
(struc ogheader) block | 27 3 351 36 | 37
A
Overwrite
blockno 35
b {

(struct buf*) blockno 36

blockno 37

KA'ST OSLab Youjip Won

Operating Systems Laboratory

29



Code: 1log write() (Cont.)

void log write(struct buf *b) {

int 1i;

if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
panic("too big a transaction");

if (log.outstanding < 1)
panic("log write outside of trans");

acquire (&log.lock);

for (1 = 0; 1 < log.lh.n; i++) {
if (log.lh.block[i] == b->blockno) // log absorbtion

break;

}
log.lh.block[i] = b->blockno;

if (i == log.lh.n)
Ibeier Ilgie e - Add a new block to the log header
E= T lags = NE NET RIS/ DT esfe ri e eaz ileEitai

release(&log.lock);

}

KAIST OSLab Youjip Won

Operating Systems Laboratory

30



Code: end op ()

Q

o

-

Decrements the counts of outstanding system calls.

If the counts is O, call commit ().

. Write the log blocks to the log region in the disk: write log ()

Update header block : write head()
Checkpoint : install trans()

Reset the counter of log header : end op ()

KAIST

OSLab Youjip Won
Operating Systems Laboratory

31



Code: end op () (Cont.)

O  Complete logging: Commit and Checkpoint

void end op(void) {

int do commit = 0;

acquire (&log.lock) ;

log.outstanding -= 1;

if(log.committing)
panic("log.committing") ;

if (log.outstanding == 0) {
do commit = 1;
log.committing = 1;

} else {
// begin op() may be waiting for log space, and decrementing
// log.outstanding has decreased the amount of reserved space.

wakeup (&10qg) ;
}

release(&log.lock);

KAIST OSLab Youjip Won

Operating Systems Laboratory




Code: end op () (Cont.)

1f (do commit) {
// call commit w/o holding locks,
// to sleep with locks.
commit () ;
acquire (&log.lock);
log.committing = 0;
wakeup (&10qg) ;

release(&log.lock);

since not allowed

KAIST OSLab Youjip Won

Operating Systems Laboratory

33



Code: commit ()

static void commit () {
if (log.lh.n > 0) {
write log();
write head();
install trans();
log.lh.n = 0;

write head();

//
//
//

//

Write modified blocks from cache to log
Write header to disk —-- the real commit

checkpoint

Erase the transaction from the log

(D Write log blocks to log area in storage.

@ Write log head to log area in storage (commit)

(® Write log blocks to original location in storage(checkpoint)

@ Initialize n of journal head to O(transaction invalidation)

(® Write n initialized in @ to storage

KAIST

OSLab

Operating Systems Laboratory

Youjip Won

34



Code: write log()

©  Write the log blocks in the buffer cache to the on-disk log area.

static void write log(void) {

int tail;

for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start+tail+l); // log block
struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block
memmove (to->data, from->data, BSIZE);
bwrite(to); // write the log
brelse (from) ;

brelse (to) ;

(D Acquiring buffer cache from the log area (to)

@ Acquiring modified buffer cache (from)

(@ Copy the contents of modified buffer cache (from) to buffer cache for log area (to)
@ Write buffer cache for log area to storage

(®), ® release buffer cache

KA'ST OSLab Youjip Won

Operating Systems Laboratory

35



Code: write head()

©  Write the log header to on-disk log area.

static void write head(void) {
struct buf *buf = bread(log.dev, log.start);
struct logheader *hb = (struct logheader *) (buf->data);
int 1i;
hb->n = log.lh.n;
for (1 = 0; 1 < log.lh.n; i++) {
hb->block[i] = log.lh.block[i];
}
bwrite (buf);
brelse (buf) ;

1. Acquire buffer cache for the first block of log area.
2. Copy the contents of log head to buffer cache.
3. Write buffer cache.

KAIST OSLab Youjip Won

Operating Systems Laboratory

36



Code: install trans()

O Checkpoint: write modified data blocks in buffer cache to on-disk area.

static void install trans(void) {

int tail;

for (tail = 0; tail < log.lh.n; tail++) {
struct buf *lbuf = bread(log.dev, log.start+tail+l); // read log block
struct buf *dbuf = bread(log.dev, log.lh.block[taill); // read dst
memmove (dbuf->data, lbuf->data, BSIZE); // copy block to dst
bwrite (dbuf); // write dst to disk
brelse (lbuf) ;
brelse (dbuf) ;

KAIST OSLab Youjip Won

Operating Systems Laboratory




Recovery

After initializing log area, start recovery

void forkret (void) {

if (first) {
first = 0;
iinit (ROOTDEV) ;
initlog (ROOTDEV) ;

void initlog(int dev) {

if (sizeof (struct logheader)

panic(“initlog: too big logheader”);

struct superblock sb;
initlock (&log.lock, “log”);
readsb (dev, &sb);

log.start = sb.logstart;
log.size = sb.nlog;

log.dev = dev;

recover from log() ;

>= BSIZE)

KAIST OSLab

Operating Systems Laboratory

Youjip Won

38



Recovery

Perform log replay (checkpoint).

static void recover from log(void) {
read head();
install trans(); // if committed, copy from log to disk
log.lh.n = 0;

write head(); // clear the log

KAIST OSLab Youjip Won

Operating Systems Laboratory

39



Important of logging

Scaling a file system to many c
using an operation log
Srivatsa S. Bhat,” Rasha Eqbal,* Austin T. Cleme|

M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

ABSTRACT

It is challenging to simultaneously achieve multicore scala-
bility and high disk throughput in a file system. For exam-

allow file-system-intensive
10, 13, 23, 26, 31]. This papsg
system design that allows fol

Ordered IO / Orderless 10 (%)

A+ C@® E0 GX
BX DO Fw HDD A
s C
£ 1351 supercap

2131 y=(34%10 )x !

Omo..o.p.ooooqo.t*_
50 100 150 200 250

Orderless 10 (IOPSX10°)

1"‘ \H.Dl;. <2 57,403 584 2296
0

SpanF'S: A Scalable File System on Fast Storage Devices

Barrier-Enabled 10 Stack for Flash Storage

Youjip Won!  Jaemin Jung?* Gyeongyeol Choi!

Joontack Oh!  Seongbae Son!

'Hanyang University ~ 2Texas A&M University

Abstract

This work is dedicated to eliminating the overhead re-
quired for guaranteeing the storage order in the mod-
ern IO stack. The existing block device adopts a pro-

hihitivalv a¥ynanciva annrnach in anenring the ctarage ar

Jooyoung Hwang?

Orderless 10 (%)

Sangyeun Cho?

3Samsung Electronics

ce
DO

EQ
Fw

supercap

HDD

y=(34X%10 )x

Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai Ma and Jinpeng Huai
SKLSDE Lab, Beihang University, China
mashuai} @act.buaa.edu.cn, zblgeqian @ gmail.com, huaijp @ buaa.edu.cn
ized file system service with a collection of independent

JAND flash-based micro file system services, called domains, to achieve
P P scalability on many-core. Each domain performs its file

KAIST OSLab

Operating Systems Laboratory

Youjip Won

40



summary

O  Logging

© API's

Q

begin op (), log write(), end op()

System call ()
1. begin op();
2. . /
3. bp=bread(..) ; .
4. bp->datal..] = .. ; " —
5. log write (bp) ; E-' ;}
6. ..
7. end op() ; "
KAIST OSLab Youjip Won 41

Operating Systems Laboratory



