File System: buffer cache

Youjip Won

KAISTELE

Contents

® Overview

® Buffer cache layer
® Code: Buffer cache
® Logging layer

® Log design

® (Code: Logging

KAIST OSLab Youjip Won

Operating Systems Laboratory

File System Layout of xv6

512 KB
Boot | Super . :
Area Sector | block Log On-Disk inode Bitmap Data
LBA 0 1 2~31 32 ~ 57 58 59 ~ 999

® Block 0: Boot sector, what we covered at Chapter 2

® Block 1: Superblock. (metadata about file system)

® Blocks starting at 2

e Log

. inodes

e bitmap

. data
KAIST OSLab

Operating Systems Laboratory

Youjip Won

Superblock in xv6 - Implementation

® A block of metadata describing the file system

Area SBeC;(t)cEr ?):Jopcekr Log On-Disk inode Bitmap Data
LBA 0 1 2~31 32 ~ 57 58 59 ~ 999
struct superblock {
uint size; // Size of file system image (blocks)
uint nblocks; // Number of data blocks
uint ninodes; // Number of inodes.
uint nlog; // Number of log blocks
uint logstart; // Block number of first log block
uint inodestart; // Block number of first inode block
uint bmapstart; // Block number of first free map block
I

= {size = 1000, nblocks = 941, ninodes = 200, nlog = 30, logstart = 2, inodestart = 32, bmapstart = 58}

KAIST OSLab Youjip Won 4

Operating Systems Laboratory

Log (Write-Ahead-Log)

® An area for consistency guarantee

Area

LBA

Log
Area

Boot | Super o _
Sector | block On-Disk inode Bitmap Data
0 Log, 2 ~ 31 32 ~57
Log Log | Log | Log Log
Header Block 1 | Block 2 | Block 3 | Block 4 Block 29

Number of valid log blocks
LBA’s for each log block

[

int n;

int block[LOGSIZE];

struct logheader {

KAIST OSLab

Operating Systems Laboratory

Youjip Won

In-memory representation of the log area

._ |

Main Area

struct log {
struct spinlock lock;
int start;
int size;
int outstanding; // how many FS sys calls are executing.
int committing; // in commit (), please wait.
int dev;
struct logheader 1lh;

b g

KAIST OSLab Youjip Won

Operating Systems Laboratory

Inode structure

® |node describes a file

Boot | Super :
Area sector | block Log Bitmap Data
LBA 0 1 2~31 Inode, 32 ~ 57 58 59 ~ 999
— inode
- // On-disk inode structure
(DirectorAtlg:)uljlear File ...) struct dinode {
Y, ~°9 — short type; // File type
Device # short major; // Major device number
of Link, Size short minor; // Minor device number
short nlink; // Number of links to
LBA for 1st block : . .
inode 1n file system
LBA for 2" block uint size; // Size of file (bytes)
uint addrs [NDIRECT+1]; // Data block
addresses
} i
LBA for 13st block
KAIST OSLab Youjip Won 7

Operating Systems Laboratory

Bitmap

® Bitmap represents the state of the usage of blocks in filesystem

Boot | Super . :
Area Sector | block Log On-Disk inode Bitmap Data
LBA 0 1 2~31 32~ 57 58 59 ~ 999
01110 1 0|0 0/0]0 111

e Each bit in bitmap represents the state of the block allocation.

e 512byte can represent 4096 blocks (512 Bytes = 512 * 8 bit = 4096 bit).

KAIST OSLab

Operating Systems Laboratory

Youjip Won

Buffer cache

® Use part of the memory as storage.

devno
/ b1lkno

24 Buffer
cache

storage

KAIST OsLab Youjip Won

Operating Systems Laboratory

Buffer Cache Location at the Memory — Version 3

Rest are mapped for device.

0xe0000000
—>
— 0x108000
S e 0x100000
«— 0x0
Physical Memory Buffer Cache

KAIST OSLab Youjip Won 10

Operating Systems Laboratory

Buffer Cache Entry - Flags

® Flags of buffer head indicates the state of the buffer cache entry
e B VALID: Buffer contains a copy of the block
« B DIRTY: Buffer content has been modified and needs to be written to the disk

. If not set, buffer cache entry is unused

p
o
header < »B VALID®112B DIRTY J—» o2 header o
Data g Data
- Wl el

KAIST OSLab Youjip Won

Operating Systems Laboratory

Buffer cache layer

® Buffer cache
® (Cache disk block in memory.
® Ensure that only one copy of a block is in memory.

® Ensure that only one kernel thread at a time accesses that copy.

® API’s

® pget : Scan the buffer cache and find the matching buffer .

® bread. Obtain a buffer containing a copy of a block, lock the buffer.

® bwrite: Write the modified buffer to the appropriate location on the disk.

® brelse: unlock the buffer.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

12

Buffer

struct buf {
int flags;
uint dev;

uint blockno;

D)

data

struct sleeplock lock;

uint refcnt;

struct buf *prev;
struct buf *next;
struct buf *gnext;

uchar data[BSIZE];

#define B VALID 0x2

#define B DIRTY 0x4

// LRU cache list

// disk queue

// buffer has been

flag

device number
blockno

lock

read from disk

// buffer needs to be written to disk

KAIST OSLab

Operating Systems Laboratory

Youjip Won

13

Buffer cache: bcache

¢ head

- »)
- »]
- »]
- b}

data data data

- B}

data

NBUF

struct {
struct spinlock lock;

struct buf buf [NBUF] ;

// Linked list of all buffers, through prev/next.
// head.next is most recently used.
struct buf head;

} bcache;

KAIST OSLab Youjip Won

Operating Systems Laboratory

14

Buffer cache mechanism

® The buffer cache uses a per-buffer sleep-lock.
. Only one thread at a time uses each buffer.
. bread returns a locked buffer.
. bget locks the buffer.

. brelse releases the lock.

o Buffer cache has a fixed number of buffer.

. If the file system asks for a block that is not in cache, buffer cache recycles a buffer

currently holding some other block.

. LRU scheme for victim selection

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Buffer Cache - Initialization

{

Buffer cache is already allocated when kernel is loaded (at data section).

binit ()

binit ()

is called at main ()

and initializes the list.

{

void
binit (void)

struct buf *b;

initlock (&bcache.
// Create linked
bcache.head.prev
bcache.head.next

for (b = bcache.buf; b < bcache.buf+NBUF;

lock, "bcache");
list of buffers
= &bcache.head;
= &bcache.head;

b->next = bcache.head.next;
b->prev = &bcache.head;

initsleeplock (&b->1ock,

bcache.head.next->prev = b;
bcache.head.next = b;

"buffer");

b++) {

KAIST OSLab

Operating Systems Laboratory

Youjip Won

Operating Systems Labora

tory

binit () - initialize the list of buffers

NULL NULL NULL NULL NULL

t t 1 t t
next next next next next
buf (head) buf[NBUF] buf[NBUF-1] buf[1] buf[0]
prev prev prev prev prev

!) !) !
NULL NULL NULL NULL NULL

binit ()
next ——» next — next next » next
buf (head) buf[NBUF] buf[NBUF-1] buf[1] buf[0]
preV <t preVv <—_—— prev prev prev
KAIST OSLab Youjip Won 17

buffer state

Buffer has two state bits

. B VALID: Buffer contains a copy of the block

. B DIRTY: Buffer content has been modified and needs to be written to the disk

KAIST OSLab Youjip Won

Operating Systems Laboratory

18

bread ()

° read ‘blockno’ from the ‘dev’.
¢ bget: scan the buffer cache and find the matching buffer with ‘blockno’ from the ‘dev’.
° If buffer does not exist, read the disk block of blockno’ from the ‘dev’ into buffer pointed by b.
b
Q\\Eget(blkno, dev)
o a a a
bread (uint dev, uint blockno) blEQO
{ -4
struct buf *b; V?;*
b = bget (dev, blockno) ; —
1ff(b—>flags & B VALID) == 0) { iderw (b)
iderw (b) ;
}
return b;
}

KAIST OSLab

Operating Systems Laboratory Youjip Won

19

struct buf * bget (uint dev, uint blockno)

¢ Find the matching buffer by scanning.
® [Cache Hit] Return the locked Buffer.

e [Cache Miss] Return the locked Buffer which is newly allocated.

Scan the array until the matching buffer is found

11

g
N - -

* [* UNUSED %R B VALID — S UNUSED *]
Sl BLK# BLK# BLK#

Data @ @ - Data

KAIST OSLab Youjip Won

Operating Systems Laboratory

struct buf * bget (uint dev, uint blockno)

® Find the matching buffer by scanning.

{

bget (uint dev, uint blockno)

struct buf *b;

acquire (&bcache.lock);

// Is the block already cached?

for (b = bcache.head.next; b !=

&bcache.head; b = b->next) {

i1f (b->dev == dev && b->blockno == blockno) {

b->refcnt++;

release (&bcache.lock);
acquiresleep (&b->1lock) ;
return b;

Note that we scan from
the beginning of the MRU List.

KAIST OSLab Youjip Won

Operating Systems Laboratory

21

struct buf * bget (uint dev, uint blockno)

® Find the matching buffer by scanning.

// Not cached; recycle an unused buffer.

acquiresleep (&b->1lock) ;
return b;

}

panic ("bget: no buffers");

// Even if refcnt==0, B DIRTY indicates a buffer is in use
// because log.c has modified it but not yet committed it.
for (b = bcache.head.prev; b != g&bcache.head; b = b->prev) {
i1f (b->refcnt == 0 && (b->flags & B DIRTY) == 0) {
b->dev = dev;
E_i?iocmf _,blOCkno' Note that we scan from
ags = 0; :
b-srefont = 1; the end of the MRU List

relesse (Fheaehe . lock) s (the beginning of the LRU Llst).

KAIST OSLab Youjip Won

Operating Systems Laboratory

22

vold bwrite (struct buf *Db)

* Write the modified buffer to the appropriate location on the disk.

b

-
N - i ™ |
K3 Head < e UNUSED <o B VALID 4—e “1¢ UNUSED *

selelar BLK# BLK# BLK#

Data Data

/ iderw (b)
)
@
s, VOV .
KAIST g)pselr-éatilgg Systems Laboratory Youjip Won

vold bwrite (struct buf *Db)

* Write the modified buffer to the appropriate location on the disk.

bwrite (struct buf *b)
{
1if ('holdingsleep (&b->1ock))
panic ("bwrite");
b->flags |= B DIRTY;
iderw (b) ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

brelse ()

® Decrease the reference counter.

® \When reference counter is 0, remove it from the buffer cache and add it to the free buffer

list.

brelse (struct buf *b)

{
if('holdingsleep (&b->1ock))

panic ("brelse");

releasesleep (&b->1ock) ;
acquire (&bcache. lock) ;
b->refcnt--;
if (b->refcnt == 0) {

b->next->prev = b->prev;
b->prev->next = b->next;
b->next = bcache.head.next;
b->prev = &bcache.head;
bcache.head.next->prev = b;
bcache.head.next = b;

}

release (&bcache.lock) ;

// no one is waiting for it.

b
/
«— «— «— «—
— — —
refcnt-- ‘
b
/
«— «— «— «—
— — —
refcnt==0 l b
«— “« : «—
! 1
— ; —> —

KAIST OSLab

Operating Systems Laboratory

Youjip Won

25

Summary

® State of the buffer: B VALID, B DIRTY
® Locks

- Buffer lock

- Buffer cache lock
® API's

. bread ()

« Dbget()

e Dbwrite ()

. brelse ()

KAIST OSLab Youjip Won

Operating Systems Laboratory

