
Youjip Won

File System: buffer cache



2Youjip Won

Contents

• Overview

• Buffer cache layer

• Code: Buffer cache

• Logging layer

• Log design

• Code: Logging



3Youjip Won

File System Layout of xv6

• Block 0: Boot sector, what we covered at Chapter 2

• Block 1: Superblock. (metadata about file system)

• Blocks starting at 2

• Log

• inodes

• bitmap

• data

Boot
Sector

Super
block

Log On-Disk inode

0 1 2 ~ 31 32 ~ 57

Bitmap Data

58 59 ~ 999LBA

512 KB

Area

512 Bytes



4Youjip Won

Superblock in xv6 - Implementation

Boot
Sector

Super
block

On-Disk inode

0 1 2 ~ 31 32 ~ 57

Bitmap Data

58 59 ~ 999LBA

Area

• A block of metadata describing the file system

Log

struct superblock {
uint size;         // Size of file system image (blocks)
uint nblocks;      // Number of data blocks
uint ninodes;      // Number of inodes.
uint nlog;         // Number of log blocks
uint logstart;     // Block number of first log block
uint inodestart;   // Block number of first inode block
uint bmapstart;    // Block number of first free map block

};

512 Bytes



5Youjip Won

Log (Write-Ahead-Log)

Boot
Sector

Super
block

0 1 Log, 2 ~ 31 32 ~ 57

Bitmap Data

58 59 ~ 999LBA

Area

• An area for consistency guarantee 

Log 
Header

Log
Area

Log 
Block 1

Log 
Block 2

Log 
Block 3

Log 
Block 4

…

On-Disk inode

• Number of valid log blocks
• LBA’s for each log block

Log 
Block 29

…

15KB, 30 Sectors

struct logheader {
int n;
int block[LOGSIZE];

};



6Youjip Won

In-memory representation of the log area

struct log {
struct spinlock lock;
int start;
int size;
int outstanding; // how many FS sys calls are executing.
int committing;  // in commit(), please wait.
int dev;
struct logheader lh;

};

Main AreaWAL Area



7Youjip Won

Inode, 32 ~ 57

Inode structure

Boot
Sector

Super
block

0 1 2 ~ 31

Bitmap Data

58 59 ~ 999LBA

Area

• Inode describes a file

Log

inode

Attribute 
(Directory, Regular File …)

LBA for 1st block

Device #

# of Link, Size

LBA for 2nd block

LBA for 13st block

13.3KB, 26 Sectors

…

// On-disk inode structure
struct dinode {

short type;           // File type
short major;          // Major device number
short minor;          // Minor device number
short nlink;          // Number of links to

inode in file system
uint size;            // Size of file (bytes)
uint addrs[NDIRECT+1];   // Data block

addresses
};

…



8Youjip Won

… 0

32 ~ 57

Bitmap

Boot
Sector

Super
block

On-Disk inode

0 1 2 ~ 31

Bitmap Data

58 59 ~ 999LBA

Area

• Bitmap represents the state of the usage of blocks in filesystem

Log

512 Bytes

0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1

• Each bit in bitmap represents the state of the block allocation.

• 512byte can represent 4096 blocks (512 Bytes = 512 * 8 bit = 4096 bit).



9Youjip Won

Buffer cache

12 8 64 48 24

storage

Buffer 
cache

• Use part of the memory as storage.

devno
blkno



10Youjip Won

Buffer Cache Location at the Memory – Version 3

Physical Memory
0x0

0x100000
0x108000

0xe0000000

Rest are mapped for device.

Buffer Cache

Kernel



11Youjip Won

Buffer Cache Entry - Flags

• Flags of buffer head indicates the state of the buffer cache entry

• B_VALID: Buffer contains a copy of the block

• B_DIRTY: Buffer content has been modified and needs to be written to the disk

• If not set, buffer cache entry is unused

B_VALID

Data

B_DIRTY

Data

header

Data

header

Data…



12Youjip Won

• Buffer cache

• Cache disk block in memory.

• Ensure that only one copy of a block is in memory.

• Ensure that only one kernel thread at a time accesses that copy.

• API’s

• bget : Scan the buffer cache and find the matching buffer .

• bread: Obtain a buffer containing a copy of a block, lock the buffer.

• bwrite: Write the modified buffer to the appropriate location on the disk.

• brelse: unlock the buffer.

Buffer cache layer



13Youjip Won

Buffer

struct buf {

int flags;

uint dev;

uint blockno;

struct sleeplock lock;

uint refcnt;

struct buf *prev;  // LRU cache list

struct buf *next;

struct buf *qnext; // disk queue

uchar data[BSIZE];

}

#define B_VALID 0x2  // buffer has been read from disk

#define B_DIRTY 0x4  // buffer needs to be written to disk

data

• flag
• device number
• blockno
• lock



14Youjip Won

Buffer cache: bcache

struct {

struct spinlock lock;

struct buf buf[NBUF];

// Linked list of all buffers, through prev/next.

// head.next is most recently used.

struct buf head;

} bcache;

data

NBUF

data data data

head



15Youjip Won

Buffer cache mechanism

• The buffer cache uses a per-buffer sleep-lock.

• Only one thread at a time uses each buffer.

• bread returns a locked buffer.

• bget locks the buffer.

• brelse releases the lock.

• Buffer cache has a fixed number of buffer.

• If the file system asks for a block that is not in cache, buffer cache recycles a buffer 

currently holding some other block.

• LRU scheme for victim selection



16Youjip Won

Buffer Cache - Initialization

• Buffer cache is already allocated when kernel is loaded (at data section).

• binit() is called at main() and initializes the list.

main(void)
{
…
binit();
…
}

void
binit(void)
{

struct buf *b; 
initlock(&bcache.lock, "bcache");
// Create linked list of buffers
bcache.head.prev = &bcache.head;
bcache.head.next = &bcache.head;
for(b = bcache.buf; b < bcache.buf+NBUF; b++){

b->next = bcache.head.next;
b->prev = &bcache.head;
initsleeplock(&b->lock, "buffer");
bcache.head.next->prev = b;
bcache.head.next = b;

}
}



17Youjip Won

binit() - initialize the list of buffers

buf (head)

next

prev

buf[NBUF]

next

prev

buf[NBUF-1]

next

prev

buf[1]

next

prev

buf[0]

next

prev

…

buf (head)

next

prev

buf[NBUF]

next

prev

buf[NBUF-1]

next

prev

buf[1]

next

prev

buf[0]

next

prev

…

NULLNULLNULLNULLNULL

NULLNULLNULLNULLNULL

binit()



18Youjip Won

buffer state

• Buffer has two state bits

• B_VALID: Buffer contains a copy of the block

• B_DIRTY: Buffer content has been modified and needs to be written to the disk

head

10: valid 27: DIRTY



19Youjip Won

bread() 

• read ‘blockno’ from the ‘dev’.

• bget: scan the buffer cache and find the matching buffer with ‘blockno’ from the ‘dev’.

• If buffer does not exist, read the disk block of blockno’ from the ‘dev’ into buffer pointed by b.

bread(uint dev, uint blockno)
{
struct buf *b;

b = bget(dev, blockno);
if((b->flags & B_VALID) == 0) {
iderw(b);

}
return b;

}

blkno

blkno

b

iderw(b)

bget(blkno, dev)



20Youjip Won

struct buf * bget(uint dev, uint blockno)

• Find the matching buffer by scanning. 

• [Cache Hit] Return the locked Buffer.

• [Cache Miss] Return the locked Buffer which is newly allocated.

Scan the array until the matching buffer is found

UNUSED
BLK#

Data

B_VALID
BLK#

Data

Header

Data

UNUSED
BLK#

Data…



21Youjip Won

struct buf * bget(uint dev, uint blockno)

bget(uint dev, uint blockno)
{

struct buf *b;

acquire(&bcache.lock);

// Is the block already cached?
for(b = bcache.head.next; b != &bcache.head; b = b->next){
if(b->dev == dev && b->blockno == blockno){
b->refcnt++;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;

}
}

Note that we scan from 
the beginning of the MRU List. 

• Find the matching buffer by scanning. 



22Youjip Won

struct buf * bget(uint dev, uint blockno)

// Not cached; recycle an unused buffer.
// Even if refcnt==0, B_DIRTY indicates a buffer is in use
// because log.c has modified it but not yet committed it.
for(b = bcache.head.prev; b != &bcache.head; b = b->prev){
if(b->refcnt == 0 && (b->flags & B_DIRTY) == 0) {
b->dev = dev;
b->blockno = blockno;
b->flags = 0;
b->refcnt = 1;
release(&bcache.lock);
acquiresleep(&b->lock);
return b;

}
}
panic("bget: no buffers");

}

Note that we scan from 
the end of the MRU List

(the beginning of the LRU LIst). 

• Find the matching buffer by scanning. 



23Youjip Won

void bwrite(struct buf *b)

• Write the modified buffer to the appropriate location on the disk.

b

iderw(b)

UNUSED
BLK#

Data

B_VALID
BLK#

Data

Header

Data

UNUSED
BLK#

Data…



24Youjip Won

void bwrite(struct buf *b)

• Write the modified buffer to the appropriate location on the disk.

bwrite(struct buf *b)

{

if(!holdingsleep(&b->lock))

panic("bwrite");

b->flags |= B_DIRTY;

iderw(b);

}



25Youjip Won

brelse()

brelse(struct buf *b)
{
if(!holdingsleep(&b->lock))
panic("brelse");

releasesleep(&b->lock);
acquire(&bcache.lock);
b->refcnt--;
if (b->refcnt == 0) {
// no one is waiting for it.
b->next->prev = b->prev;
b->prev->next = b->next;
b->next = bcache.head.next;
b->prev = &bcache.head;
bcache.head.next->prev = b;
bcache.head.next = b;

}
release(&bcache.lock);

}

b

refcnt--

refcnt==0

• Decrease the reference counter.

• When reference counter is 0, remove it from the buffer cache and add it to the free buffer 

list.

b

b



26Youjip Won

Summary

• State of the buffer: B_VALID, B_DIRTY

• Locks

• Buffer lock

• Buffer cache lock

• API’s

• bread()

• bget()

• bwrite()

• brelse()


