CPU Scheduling

Youjip Won

KAIST

Outline

® sharing CPU
® swtch()

® sched()

® switch()

® sleep() and wakeup ()

KAIST OSLab Youjip Won

Operating Systems Laboratory

(el MP2 MS
Bvow%r Mg/\.. wovd
| | |) | LLLC
LT ’\\ M VAT

L)\ik Y atnk, E‘i}‘

~l~
I\

'

AN

In Ln.-.-l'i*:

KAIST OSLab Youjip Won

Operating Systems Laboratory

Multiplexing

® number of processes >> number of processors

® multiplexing the processes onto the hardware processors

® Way to release CPU
e voluntary context switch
e Based on sleep & wakeup
e waits for device or pipe 10 to complete

e waits for a child to exit

e involuntary context switch
e Based on timer interrupt

e Multiplexing by scheduler

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Issues in CPU multiplexing

® context switch mechanism: Which informations are saved and restored

during the switch?
® How to do it transparently: timer interrupt.

® Avoid race condition: Many CPU’s perform context switches concurrently.
How to avoid race condition when multiple processors are switching

processes?
® Release resources: How can exiting process release its resources?

® Maintain information on current processes.

KAIST OSLab Youjip Won

Operating Systems Laboratory

Switching the processes in xv6

® Every process has its own kernel stack and register set.
® Each CPU has a its own scheduler thread.

® Switching from one thread to another
e saving the old thread’s CPU registers at the kernel stack.

e restoring the previously-saved registers of the new thread from the associated

kernel stack.

e Kernel stack pointer is saved at the struct context pointed by struct

proc.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

struct proc

® struct proc represents per-process state.

® struct proc isinitialized whenever process is created. (userinit (),

fork())

® struct proc isused for including scheduling process.

// Per-process state
struct proc {
uint sz;
pde t* pgdir;
char *kstack;
enum procstate state;
int pid;
struct proc *parent;
struct trapframe *tf;
struct context *context;
void *chan;
int killed;
struct file *ofile[NOFILE];
struct inode *cwd;
char name[16];

[

//
//
//
//
//
//
//
//
//
//
//
//
//

Size of process memory
Page table

Bottom of kernel stack for this process
Process state

Process 1ID

Parent process

Trap frame for current syscall

swtch () here to run process

If non-zero, sleeping on chan

If non-zero, have been killed

Open files

Current directory

Process name (debugging)

(bytes)

OSLab

Operating Systems Laboratory

KAIST

Youjip Won

switching the processes

©)

User Space

switch

Kernel Space

s cat

shel
{fork exec (

mode
switch

(D save registers
at trap frame

@ restore the registers
at the trap frame

N el lomanl |

kstack(shell) kstack(scheduler) kstack(cat)

o

context switch context switch'

mode
switch

KAIST OSLab

Operating Systems Laboratory

Youjip Won

Switching the processes

D

l

Shell
(Parent) . 4

@.

3 :
Scheduler ! A >
@ -) @

: ! Vo
Shell(Child) @ \] .
> By @ cat l

Do what we expected !!

v

@D fork(); Creating Child Process

@ Context switching to the Scheduler User Mode

@ exec(); Load Cat Binary Kernel Mode
@ exit(); Terminate the process

KA'ST OSLab Youjip Won

Operating Systems Laboratory

switching the processes

User
Space @restore

/

Y
A 4

@swtch() (®swtch()

Kernel
Space

kstack(shell) kstack(scheduler) kstack(cat)

1. stack switch from user to kernel: old process
2. A context switch to the local CPU’s scheduler thread.
3. A context switch to a new process’s kernel thread.

4. stack switch from kernel to user: new process (A trap return)

KAIST OSLab Youjip Won 10

Operating Systems Laboratory

separate scheduler thread in xv6

® Xxv6 scheduler runs on its own thread.

® The process switch accompanies two context switches.
® why?

e simplify the procedure of cleaning up user processes.

o exit ()

o kill ()

KA'ST OSLab Youjip Won

Operating Systems Laboratory

11

swtch (void **old, wvoid* new)

1 swtch () saves and restores the register sets, called contexts.

® When itis time for a process to give up the CPU, the process’s kernel thread calls

swtch () .

® struct context*. It points to a structure stored on the kernel stack involved.

struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

// Per-process state
struct proc {

struct context *context, e—f———»

I

}s

KAIST OSLab Youjip Won

Operating Systems Laboratory

swtch (struct context **old, struct context
*

yield() ‘ : yield()
exit () > sched ()= swtch() # scheduler() = swtch()— sched ()< exit ()
) -

sleep (sleep ()

Process A scheduler Process B
SWtCh (A’ Scheduler) »
Swtch(scheduler, B) roeeeererrreree >
5 SWtCh(B, Scheduler)
B swtch (scheduler, A)
KAIST g)pselr::at!gg Systems Laboratory Youjip Won 13

swtch (struct context **old,

e —

struct context

load arguments to %eax and %edx
movl 4 (%esp), %eax //old i
movl 8 (%esp), %edx //new
(%esp) Parameter to gwtch *new *new
Pushes the registers (Save context of old) - **01d **01d
pushl %ebp
pushl %ebx Sqsp *>lret addr ret addr
pushl %esi -
pushl %edi sebp
sebx
Switch stack. s80
movl %esp, (%eax) //Saves %esp at *old .
movl %$edx, %esp //Restore %esp from new
sesi
Load registers (Restore context of new)
popl %edi
popl %esi
popl %ebx KaﬂifMCk Kernel stack of
popl %ebp o1d thread new thread
make return address as %eip
ret
%eax sedx
KAIST OSLab Youjip Won 14
Operating Systems Laboratory

swich(struct context **old, struct context *new)

load arguments to %eax and %edx

movl 4 (%esp), %eax //old
movl 8 (%esp), %edx //new

TESP —h

*new

**old

ret addr

For Your Information,

seax = old = & (p->context);
// Pointer to the old thread’s stack pointer
$edx = new = new—->context;

// New thread’s stack pointer

Kernel stack

*new

**old

ret addr

sebp

$ebx

$esi

$esi

Kernel stack of

of
thr
old thread new thread
W@ llel *new
$eax $edx

KA'ST OSLab Youjip Won

Operating Systems Laboratory

15

swich(struct context **old, struct context *new)

Pushes the registers (Save context of old)
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

*new

**old

ret addr

sebp

o
pushl OebX

$esi

sesp = Sedil

Kernel stack

*new

**old

ret addr

sebp

$ebx

$esi

$esi

Kernel stack of

of
thr
old thread new thread
W@ llel *new
$eax $edx

KA'ST OSLab Youjip Won

Operating Systems Laboratory

16

swich(struct context **old, struct context *new)

*new *new
* % * %
For who may be confusing, old old
p->context = *old = (%eax) = %esp; et addE e
// Save current stack pointer at the p->context
zesp = %edx = new %ebp %ebp
// Set current stack pointer to the new kernel
el %ebx %ebx
zesi v sesi
$edi Sesp = %esi
Switch stack.
movl %esp, (%eax) //Saves %esp at *old *old— *esp
movl %edx, %esp //Restore %esp from new
Kernel stack
Kernel stack of
of new thread
old thread
**old *new
%eax Fedx

KA'ST OSLab Youjip Won

Operating Systems Laboratory

17

swich(struct context **old, struct context *new)

*new *new
**o0ld **old
ret addr sesp = ret addr
A
sebp
o
sebx popl
zesi v
. sedi
Load registers (Restore context of new)
popl %edi
popl %esi
DO AEIoP Kernel stack
popl %ebp of Kernel stack of
o1d thread new thread
**old *new
seax sedx
KAIST OSLab

Operating Systems Laboratory

Youjip Won

18

swich(struct context **old, struct context *new)

*new *new
**old S llel
ret addr sesp == ret addr
sebp
Sebx bopl
$esi v
Sedi
Kernecl fstack Kernel stack of
014 thread new thread
make return address as %eip
ret
. wwe el *new
It Is returned to sched () or scheduler () !!!
Seax Sedx

KA'ST OSLab Youjip Won

Operating Systems Laboratory

19

Releasing the CPU

® The function to release the CPU
sched ()
® (Cases to release the CPU
e Determined by process’s action: yield ()
e Exit of process: exit ()
e Wait for something such as 10 completion or pipe IO: sleep ()
® Actually doing
. Switch to scheduler ()
KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P

20

Releasing the CPU

yield ()

yield ()
exit () > sched ()=»swtch ()= scheduler ()»swtch ()= sched ()< exit ()
sleep () sleep ()

® A process that wants to give up the CPU must

acquire the process table lock ptable.lock.

release any other locks it is holding

update its own state (proc->state) to RUNNABLE.

and then call sched () .

® vyield(), sleep() and exit() follow this convention.

KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P 21

yield()

// Give up the CPU for one scheduling round.

void yield(void) {
acquire (&ptable.lock); //DOC: yieldlock

myproc () ->state = RUNNABLE;

sched () ;
release (&ptable.lock);

KAIST OSLab Youjip Won

Operating Systems Laboratory

22

sched ()

<:> RUNNABLE
swtch ()
sleep () » |scheduler () :@ RUNNARLE
sched ()
> swtch () <:> RUNNABLE
® A thread in execution can call sched () in three cases.
° exit ()
e yield()

o sleep ()

KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P

23

sched ()

® hand the control over to the scheduler function.
® Dbe sure that interrupts are disabled.

® save the current context in proc->context and switch to the scheduler

context in cpu->scheduler.

KAIST OSLab Youjip Won

Operating Systems Laboratory

24

sched ()

void sched (void) {
int intena;

struct proc *p = myproc():;

if ('holding (&ptable.lock)) // make sure the ptable is locked.
panic ("sched ptable.lock");

if (mycpu () ->ncli != 1)// make sure interrupt is disabled.
panic ("sched locks");

if (p->state == RUNNING) //sleep, yield, exit
panic ("sched running");

i1f (readeflags () &FL IF)
panic ("sched interruptible");

intena = mycpu()->intena;

swtch (&p->context, mycpu () ->scheduler) ;

mycpu () -—>intena = intena;
}
KAIST OSLab Youjip Won
Operating Systems Laboratory

scheduler ()

® Independent thread by each CPU

® Select CPU to run and switch to the thread

scheduler () scans ‘RUNNABLE’ process and switch to

It

PROC Table

01 2 3

RUNNABLE

SLEEP

NPROC - 1

UNUSED

KAIST OSLab

Operating Systems Laboratory

Youjip Won

26

scheduler ()

void scheduler (void) {

for(;;){

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {
if (p—>state != RUNNABLE)
continue;
c—>proc = p;
switchuvm (p) ;
p—>state = RUNNING;
swtch (& (c—>scheduler), p—>context);

switchkvm() ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

Switching the address space

® scheduler () isresponsible for switching the address space.

® When the scheduler () switches to the user process,

® Select the process to run. — Address space switch (switchuvm())
— Call swtch ()

® Once it has returned from swtch () address space switch (switchkvm())

scheduler() cat

switchuvm () ;
swtch () ;

v

swtch() ;
switchkvm () ;

A

KA'ST OSLab Youjip Won 28

Operating Systems Laboratory

RECAP : switchuvm()

® switchuvm () switches the stack from kernel to user.

It sets the entry at index 5 in GDT to Task state segment

It sets the $CR3 to the process’s page directory

157 void switchuvm(struct proc *p) {
166 pushcli () ;
167 mycpu () ->gdt [SEG_TSS] = SEG16 (STS T32A, &mycpu()->ts,
168 sizeof (mycpu()->ts)-1, 0);
169 mycpu () ->gdt [SEG TSS].s = 0;
170 mycpu () ->ts.ss0 = SEG KDATA << 3;
171 mycpu () -—>ts.esp0 = (uint)p->kstack + KSTACKSIZE;
175 ltr (SEG_TSS << 3);
176 lcr3 (V2P (p->pgdir)); // switch to process's address space
177 popcli () ;
178 1}
KAIST OSLab Youjip Won 29

Operating Systems Laboratory

RECAP : switchkvm ()

® switchkvm () switches from user to kernel address space.

e |tsets the $CR3 to the kernel’'s page directory

149 void
150 switchkvm (void)
151 {

153 }

152 lcr3 (V2P (kpgdir)) ;

// switch to the kernel page table

KAIST OSLab

Operating Systems Laboratory

Youjip Won

30

swtch () & scheduler ()

yield ()

yield ()

exit () > sched ()=»swtch ()= scheduler ()»swtch ()= sched ()< exit ()

sleep ()

[e)

[o)

Sesi
Sebx

sleep ()

volid scheduler (void) {

for(;;){

for(p = ptable.proc; p < &ptable.proc[NPROC]; pt+) {

if(p—>state != RUNNABLE)
continue;

c—>proc = p;
switchuvm (p) ;
p->state = RUNNING; (2)

» swtch (& (c—>scheduler), p—>context);<:>
switchkvm () ; @

}

KAIST OSLab

Operating Systems Laboratory

Youjip Won

31

acquire & release for ptable.lock

yield()

exit () E;)sched(%»swtch(%»scheduler()»swtch(}—*schej0<éz

sleep ()

<
<

»
>

Holding ptable.lock

yield()
exit ()
sleep ()

void yield(void) {
acquire (&ptable.lock) ;

sched () ;
release (&ptable.lock);

void

myproc () —>state = RUNNABLE; sched() ;

p->chan = 0;

if (1lk !'= &ptable.lock) {
release (&ptable. lock)
acquire(lk);

}

.
14

sleep (void *chan, struct spinlock) {

KAIST OSLab

Operating Systems Laboratory

Youjip Won

32

Managing ptable.lock

® Generally, the thread that has acquired a lock is responsible for releasing.
® However, thread that is calling sched () is not.
® optable.lock isacquired before swtch () calling

® the thread that is scheduled newly release ptable.lock.

process A

void yield(void) {

process B

void yield(void) {

acquire (&ptable.lock) ; acquire (&ptable.lock) ;
myproc () —>state = RUNNABLE; myproc () —>state = RUNNABLE;
sched () ; sched () ;

release (&ptable.lock) ; > release (&ptable.lock) ;

}

OSLab

Operating Systems Laboratory

Youjip Won

33

Scheduling pattern

yield() yield()
exit () > sched ()= swtch ()= scheduler ()=»swtch ()y—»sched ()< exit ()
sleep () sleep ()

void yield(void) { »void sched (void) {
acquire (&ptable.lock) ; .
myproc () —>state = RUNNABLE; swtch (&p—>context, mycpu () —>scheduler) ;
sched () ; mycpu () —>intena = intena;
release (&ptable.lock); }
}
KAIST OSLab

Youjip Won

Operating Systems Laboratory

34

Scheduling pattern

yield() yield()
exit () > sched ()=»swtch ()= scheduler ()=»swtch (—>sched ()< exit ()
sleep () sleep ()

void sched(void){ | | | .
. popl %edi
swtch (&p—>context, mycpu () —>scheduler) ; popl %esi

mycpu () —>intena = intena; popl %ebx
} popl S%Sebp
ret
KAIST OSLab Youjip Won

Operating Systems Laboratory

Scheduling pattern

yield () yield()
exit () > sched ()=»swtch ()= scheduler ()=»swtch ()—>sched ()< exit ()
sleep () sleep ()

void scheduler (void) {
swtch for(;;){
;o;l Sedi for (p=ptable.proc;p<&ptable.proc [NPROC];p++) {
popl %esi =
popl %ebx swtch (& (c—>scheduler), p—->context);
popl %ebp > switchkvm () ;
ret .

}
}
}
KAIST OSLab Youjip Won 36

Operating Systems Laboratory

Scheduling pattern

yield ()

exit () ;;)sched(%»swtch(%»scheduler()»swtch()—»sch@j0<fz

sleep ()

void scheduler (void) {

for(;;){

for (p=ptable.proc;p<é&ptable.proc[NPROC] ;p++) {

yield()
exit ()
sleep ()

swtch (& (c—>scheduler), p—>context);
switchkvm () ;

Sedi
%esi
Tebx
sebp

KAIST OSLab Youjip Won

Operating Systems Laboratory

37

Scheduling pattern

yield () yield()
exit () > sched ()=swtch ()= scheduler ()-»swtch()—»sched()< exit ()
sleep () sleep ()
swtch: void sched(void) {
popl %edi swtch (&p—>context, mycpu()—->scheduler) ;
popl %esi mycpu () —>intena = intena;
popl %Sebx }
popl %ebp
ret
KAIST OSLab Youjip Won

Operating Systems Laboratory

start scheduler

® mpmain () isstartedin main ().

int
main (void)

{

startothers () ;

kinit2 (P2V (4*1024

// start other processors

*1024), P2V (PHYSTOP)); // must come after startothers ()

userinit () ; // first user process
mpmain () ; // finish this processor's setup
}
KAIST OSLab Youjip Won 39

Operating Systems Laboratory

Start scheduler(Cont.)

® scheduler () isstartedin mpmain () .

static void

mpmain (void)

{
cprintf ("cpu%d: starting %d\n", cpuid(), cpuid());
idtinit () ; // load idt register
xchg (& (mycpu () ->started), 1); // tell startothers() we're up
scheduler () ; // start running processes

}

KAIST OsSLab Youjip Won

Operating Systems Laboratory

40

scheduler()

® The scheduler loops over the process table looking for a runnable

process, one that has p->state == RUNNABLE.

® Once it finds a process
e it sets the per-CPU current process variable proc
e switches to the process’s page table with switchuvm ()
e marks the process as RUNNING

e andthencalls swtch () to start running it

KA'ST OSLab Youjip Won

Operating Systems Laboratory

41

scheduler()

voilid scheduler (void) {
struct proc *p;

struct cpu *c = mycpu()

c->proc = 0;

for (;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire (&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++) {

c->proc = p;
switchuvm (p) ;
p->state = RUNNING;

swtch (& (c—=>scheduler), p->context);
switchkvm () ;

// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;

KAIST OSLab Youjip Won

Operating Systems Laboratory

42

scheduler ()

volid scheduler (void) {
struct proc *p;
struct cpu *c = mycpul();

c->proc = 0;

for(;:){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.

acquire (&ptable.lock) ;

ror (p = ptable.proc; p < &ptable.proc [NPROC]; p++) 1{
if (p->state != RUNNABLE)
continue;

swtch (& (c—->scheduler), p->context);
switchkvm () ;

]

release (&ptable.lock);

KAIST OSLab Youjip Won

Operating Systems Laboratory

43

scheduler ()

® Quterloop
e Interrupt is enabled.: if the scheduler left interrupts disabled all the time, the 1/0O
would never arrive.
e ptable.lock isreleased at the end of each iteration.

e If anidling scheduler looped with the lock continuously held, no other
CPU that was running a process could ever perform a context switch or
any process-related system call.

e can never mark a process as RUNNABLE so as to break the idling CPU out

of its scheduling loop.

KA'ST OSLab Youjip Won 44

Operating Systems Laboratory

mycpu () and myproc ()

® struct cpu

e contains per-processor state: the currently running process, hardware id for

that processor (apicid).

e When a processor must find it’'s per-cpu state, it reads its identifier from its

local APIC and uses that identifier to find its state in the array.

// Per-CPU state

struct cpu {

uchar apicid; //
struct context *scheduler; //
struct taskstate ts; //

struct segdesc gdt[NSEGS]; //

Local APIC ID
swtch () here to enter scheduler
Used by x86 to find stack for interrupt

x86 global descriptor table

volatile uint started; // Has the CPU started?
int ncli; // Depth of pushcli nesting.
int intena; // Were interrupts enabled before pushcli?
struct proc *proc; // The process running on this cpu or null
i
KAIST OSLab Youjip Won 45

Operating Systems Laboratory

mycpu ()

® Scanthe array of a struct cpu and returns the address of struct
cpu.

® inefficient!!!

struct cpu* mycpu(void) {
int apicid, i;
1f (readeflags () &FL IF)
panic ("mycpu called with interrupts enabled\n");

apicid = lapicid();

for (i = 0; i < ncpu; ++i) {
if (cpus[i] .apicid == apicid)
return &cpus[i];

}

panic ("unknown apicid\n");

KAIST OSLab Youjip Won

Operating Systems Laboratory

46

myproc ()

® findthe struct proc for the process that is running on the current
Processor.

® nmyproc () disables interrupts, and invokes mycpu ().

struct proc* myproc (void) {
struct cpu *c;
struct proc *p;
pushcli () ;
c = mycpu();
P = c—>proc;
popcli () ;

return p;

KAIST OSLab Youjip Won

Operating Systems Laboratory

47

sleep and wakeup

® |et the processes to interact with each other!

® Sleep and wakeup allows one process to sleep waiting for an event and

another process to wake it up once the event has happened.

® Sleep and wakeup are often called sequence coordination or conditional

synchronization mechanisms.

® Make sure that they do not miss each other!!!

KA'ST OSLab Youjip Won 48

Operating Systems Laboratory

producer/consumer with busy waiting

® Operation

. send () : loops until the queue is empty and then puts the pointer p in the

queue.

e recv(): loops until the queue is non-empty and takes the pointer out.

® Problem: waste of CPU

e |f the sender sends rarely, the receiver will spend most of its time spinning(busy).

100 struct g { 112 void*

101 void *ptr; 113 recv(struct g *q)
102 }; 114 {

103 115 void *p;

104 void* 116

105 send(struct g *qg, void *p) 117 while((p = g->ptr) == 0)
106 { 118 ;

107 while (g->ptr != 0) 119 g->ptr = 0;
108 ; 120 return p;

109 q->ptr = p; 121 }

110 }

KAIST OSLab Youjip Won

Operating Systems Laboratory

producer/consumer with sleep and wake up

® Problem: lost wakeup

201 void* 210 void*
202 send(struct g *gq, void *p) 211 recv(struct g *q)
203 { 212 A
204 while (g->ptr != 0) 213 void *p;
205 ; 214 test
206 g->ptr = p; 215 while ((p = g->ptr) == 0)
207 wakeup (9) ; 216 sleep(q);
208 } 217 g->ptr = 0;
218 return p;
219 }
215 216)
wait for wakeup forever
test sleep
recv >
T Time
send >
206 207 204 205
storep wakeup test spin forever
KAIST OSLab Youjip Won 50

Operating Systems Laboratory

producer/consumer in sleep and wake up

® |ncorrect solution to lost wakup: deadlock
e While receiver is waiting, the send cannot send.
400 struct g { 415
401 struct spinlock lock; 416 void*
402 void *ptr; 4177 recv (struct g *q)
403 }; 418 {
404 419 void *p;
405 void* 420
406 send(struct g *q, void *p) 421 acquire (&g->lock) ;
407 { 422 while((p = g->ptr) == 0)
408 acquire (&g->lock) ; «—— 272 423 sleep (q); Sleep with
409 while (g->ptr != 0) 424 g->ptr = 0; lock held.
410 ; 425 release (&g->1lock) ;
411 q->ptr = p; 426 return p;
412 wakeup (q) ; 427 '}
413 release (&g->1lock) ;
414 }
KA'ST OSLab Youjip Won 51

Operating Systems Laboratory

producer/consumer with sleep and wakeup

within sleep, release the lock before it sets the process to sleep.

400 struct g { 415
401 struct spinlock lock; 416 void¥*
402 void *ptr; 417 recv (struct g *q)
403 }; 418 {
404 419 void *p;
405 void* 420
406 send(struct g *g, void *p) 421 acquire (&g->1lock) ;
407 | 422 while((p = g->ptr) == 0)
408 acquire (&g->lock) ; 423 sleep (g, &g->lock);
409 while (g—->ptr != 0) 424 g->ptr = 0;
410 ; 425 release (&g->1lock) ;
411 g->ptr = p; 426 return p;
412 wakeup (q) ; 427 '}
413 release (&g->1lock) ;
414 }
KAIST OSLab Youjip Won 52

Operating Systems Laboratory

code: sleep

sleep () : mark the current process as SLEEPING and then call sched ()

to release the processor.

KAIST OSLab Youjip Won

Operating Systems Laboratory

53

sleep()

2873 void
2874 sleep(void *chan, struct spinlock *1k) {
2876 struct proc *p = myproc();
2877
2878 if(p == 0)
2879 panic ("sleep");
2881 if(1lk == 0)
2882 panic ("sleep without 1lk");
2890 if (1lk != &ptable.lock) {
2891 acquire (&ptable.lock) ;
2892 release (lk);//release the lock.
2893 }
2895 p->chan = chan; Hand CPU over.
2896 p—>state = SLEEPING;
2898 sched() ;"
2901 p->chan = 0; | Get back from s|leep and
2904 if(1k != &ptable.lock) { wake up|
2905 release (&ptable.lock);
2906 acquire (1lk);//acquire the lock.
2907 }
2908 }
KA'ST OSLab Youjip Won 54

Operating Systems Laboratory

Code: sleep () and wakeup ()

® wakeup () looks for a process sleeping on the given wait channel and
marks it as RUNNABLE.
2962 // Wake up all processes sleeping on chan.
2963 void
2964 wakeup (void *chan)
2965 {
2966 acquire (&ptable.lock) ;
2967 wakeupl (chan) ;
2968 release (&ptable.lock) ;
2969 }
KA'ST OSLab Youjip Won 55

Operating Systems Laboratory

wakeup

2950 // Wake up all processes sleeping on chan.
2951 // The ptable lock must be held.
2952 static void

2953 wakeupl (void *chan)

2954 {

2955 struct proc *p;

2956

2957 for (p = ptable.proc; p < &ptable.proc[NPROC]; p++)
2958 if (p—->state == SLEEPING && p—>chan == chan)
2959 p—>state = RUNNABLE;

2960 }

® Put all threads waiting for the channel to RUNNABLE.

® Inefficient: O(n)

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Summary

® switch: It switch the process to another process for running on the CPU.
® sched(): Release the CPU and switch to scheduler thread.

® schedule (): Called by Independent thread by each CPU, switch to new

RUNNABLE thread

® sleep() and wakeup ()

KA'ST OSLab Youjip Won 57

Operating Systems Laboratory

