
Youjip Won

CPU Scheduling

2Youjip Won

Outline

• sharing CPU

• swtch()

• sched()

• switch()

• sleep() and wakeup()

3Youjip Won

4Youjip Won

Multiplexing

• number of processes >> number of processors

• multiplexing the processes onto the hardware processors

• Way to release CPU

• voluntary context switch

• Based on sleep & wakeup

• waits for device or pipe IO to complete

• waits for a child to exit

• involuntary context switch

• Based on timer interrupt

• Multiplexing by scheduler

5Youjip Won

Issues in CPU multiplexing

• context switch mechanism: Which informations are saved and restored

during the switch?

• How to do it transparently: timer interrupt.

• Avoid race condition: Many CPU’s perform context switches concurrently.

How to avoid race condition when multiple processors are switching

processes?

• Release resources: How can exiting process release its resources?

• Maintain information on current processes.

6Youjip Won

Switching the processes in xv6

• Every process has its own kernel stack and register set.

• Each CPU has a its own scheduler thread.

• Switching from one thread to another

• saving the old thread’s CPU registers at the kernel stack.

• restoring the previously-saved registers of the new thread from the associated

kernel stack.

• Kernel stack pointer is saved at the struct context pointed by struct

proc.

7Youjip Won

struct proc

• struct proc represents per-process state.

• struct proc is initialized whenever process is created. (userinit(),

fork())

• struct proc is used for including scheduling process.

// Per-process state
struct proc {
uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

};

8Youjip Won

switching the processes

% cat

shell
cat

User Space

kstack(shell) kstack(scheduler) kstack(cat)

① save registers
at trap frame

④ restore the registers
at the trap frame

②swtch() ③swtch()

context switch

mode
switch

Kernel Space

mode
switch

context switch

mode
switch

{fork();🡪 exec();}

9Youjip Won

Switching the processes

②

③

Shell
(Parent)

Scheduler

① fork(); Creating Child Process

①

Shell(Child)
🡪 By ③ cat

② Context switching to the Scheduler
③ exec(); Load Cat Binary
④ exit(); Terminate the process

Kernel Mode
User Mode

④

Do what we expected !!

10Youjip Won

switching the processes

1. stack switch from user to kernel: old process

2. A context switch to the local CPU’s scheduler thread.

3. A context switch to a new process’s kernel thread.

4. stack switch from kernel to user: new process (A trap return)

shell cat
User

Space

Kernel
Space

kstack(shell) kstack(scheduler) kstack(cat)

①save

④restore

②swtch() ③swtch()

11Youjip Won

separate scheduler thread in xv6

• xv6 scheduler runs on its own thread.

• The process switch accompanies two context switches.

• why?

• simplify the procedure of cleaning up user processes.

• exit()

• kill()

12Youjip Won

swtch(void **old, void* new)

struct context {
uint edi;
uint esi;
uint ebx;
uint ebp;
uint eip;

};

// Per-process state
struct proc {
…
struct context *context;
…
};

• swtch() saves and restores the register sets, called contexts.

• When it is time for a process to give up the CPU, the process’s kernel thread calls

swtch().

• struct context*. It points to a structure stored on the kernel stack involved.

13Youjip Won

swtch(A, scheduler)

Process A scheduler Process B

swtch(scheduler, B)

swtch(B, scheduler)

swtch(scheduler, A)

swtch(struct context **old, struct context
*new)

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

14Youjip Won

swtch(struct context **old, struct context
*new)

load arguments to %eax and %edx
movl 4(%esp), %eax //old
movl 8(%esp), %edx //new

Pushes the registers (Save context of old)
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

Switch stack.
movl %esp, (%eax) //Saves %esp at *old
movl %edx, %esp //Restore %esp from new

Load registers (Restore context of new)
popl %edi
popl %esi
popl %ebx
popl %ebp

make return address as %eip
ret

…

*new

**old

ret addr

…

*new

**old

ret addr

%ebp

%ebx

%esi

%esi

Kernel stack
of

old thread

Kernel stack of
new thread

%esp

%eax %edx

Parameter to swtch

15Youjip Won

swtch(struct context **old, struct context *new)

load arguments to %eax and %edx
movl 4(%esp), %eax //old
movl 8(%esp), %edx //new

…

*new

**old

ret addr

…

*new

**old

ret addr

%ebp

%ebx

%esi

%esi

%esp

**old *new

%eax %edx

Kernel stack
of

old thread

Kernel stack of
new thread

For Your Information,
%eax = old = &(p->context);
// Pointer to the old thread’s stack pointer
%edx = new = new->context;
// New thread’s stack pointer

16Youjip Won

swtch(struct context **old, struct context *new)

Pushes the registers (Save context of old)
pushl %ebp
pushl %ebx
pushl %esi
pushl %edi

…

*new

**old

ret addr

%ebp

%ebx

%esi

%edi

…

*new

**old

ret addr

%ebp

%ebx

%esi

%esi%esp

**old *new

%eax %edx

pushl

Kernel stack
of

old thread

Kernel stack of
new thread

17Youjip Won

swtch(struct context **old, struct context *new)

Switch stack.
movl %esp, (%eax) //Saves %esp at *old
movl %edx, %esp //Restore %esp from new

…

*new

**old

ret addr

%ebp

%ebx

%esi

%edi

…

*new

**old

ret addr

%ebp

%ebx

%esi

%esi%esp

**old *new

%eax %edx

Kernel stack
of

old thread

Kernel stack of
new thread

*old *esp

For who may be confusing,
p->context = *old = (%eax) = %esp;
// Save current stack pointer at the p->context
%esp = %edx = new
// Set current stack pointer to the new kernel
stack

18Youjip Won

swtch(struct context **old, struct context *new)

Load registers (Restore context of new)
popl %edi
popl %esi
popl %ebx
popl %ebp

…

*new

**old

ret addr

%ebp

%ebx

%esi

%edi

…

*new

**old

ret addr%esp

**old *new

%eax %edx

popl

Kernel stack
of

old thread

Kernel stack of
new thread

19Youjip Won

swtch(struct context **old, struct context *new)

make return address as %eip
ret

…

*new

**old

ret addr

%ebp

%ebx

%esi

%edi

…

*new

**old

ret addr%esp

**old *new

%eax %edx

popl

It is returned to sched() or scheduler()!!!

Kernel stack
of

old thread

Kernel stack of
new thread

20Youjip Won

Releasing the CPU

• The function to release the CPU

sched()

• Cases to release the CPU

• Determined by process’s action: yield()

• Exit of process: exit()

• Wait for something such as IO completion or pipe IO: sleep()

• Actually doing

• Switch to scheduler()

21Youjip Won

Releasing the CPU

• A process that wants to give up the CPU must

• acquire the process table lock ptable.lock.

• release any other locks it is holding

• update its own state (proc->state) to RUNNABLE.

• and then call sched().

• yield(), sleep() and exit() follow this convention.

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

22Youjip Won

yield()

// Give up the CPU for one scheduling round.

void yield(void) {

acquire(&ptable.lock); //DOC: yieldlock

myproc()->state = RUNNABLE;

sched();

release(&ptable.lock);

}

23Youjip Won

sched()

• A thread in execution can call sched() in three cases.

• exit()

• yield()

• sleep()

RUNNABLE

RUNNABLE

RUNNABLE

sched()

🡪 swtch()

sleep() scheduler()
swtch()

24Youjip Won

sched()

• hand the control over to the scheduler function.

• be sure that interrupts are disabled.

• save the current context in proc->context and switch to the scheduler

context in cpu->scheduler.

25Youjip Won

sched()

void sched(void) {

int intena;

struct proc *p = myproc();

if(!holding(&ptable.lock)) // make sure the ptable is locked.

panic("sched ptable.lock");

if(mycpu()->ncli != 1)// make sure interrupt is disabled.

panic("sched locks");

if(p->state == RUNNING)//sleep, yield, exit

panic("sched running");

if(readeflags()&FL_IF)

panic("sched interruptible");

intena = mycpu()->intena;

swtch(&p->context, mycpu()->scheduler);

mycpu()->intena = intena;

}

26Youjip Won

• Independent thread by each CPU

• Select CPU to run and switch to the thread

scheduler()

PROC Table

0 NPROC - 1

scheduler()scans ‘RUNNABLE’ process and switch to
it

1 2 3

SLEEPRUNNABLE UNUSED

...

27Youjip Won

scheduler()

void scheduler(void) {

…

for(;;){

…

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p−>state != RUNNABLE)

continue;

c−>proc = p;

switchuvm(p);

p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);

switchkvm();

…

}

…

}

28Youjip Won

Switching the address space

• scheduler() is responsible for switching the address space.

• When the scheduler() switches to the user process,

• Select the process to run. → Address space switch (switchuvm())

→ Call swtch()

• Once it has returned from swtch() ð address space switch (switchkvm())

scheduler() cat
switchuvm () ;

swtch() ;

swtch() ;
switchkvm () ;

29Youjip Won

RECAP : switchuvm()

• switchuvm() switches the stack from kernel to user.

• It sets the entry at index 5 in GDT to Task state segment

• It sets the %CR3 to the process’s page directory

157 void switchuvm(struct proc *p) {
…

166 pushcli();
167 mycpu()->gdt[SEG_TSS] = SEG16(STS_T32A, &mycpu()->ts,
168 sizeof(mycpu()->ts)-1, 0);
169 mycpu()->gdt[SEG_TSS].s = 0;
170 mycpu()->ts.ss0 = SEG_KDATA << 3;
171 mycpu()->ts.esp0 = (uint)p->kstack + KSTACKSIZE;

…
175 ltr(SEG_TSS << 3);
176 lcr3(V2P(p->pgdir)); // switch to process's address space
177 popcli();
178 }

30Youjip Won

RECAP : switchkvm()

• switchkvm() switches from user to kernel address space.

• It sets the %CR3 to the kernel’s page directory

149 void
150 switchkvm(void)
151 {
152 lcr3(V2P(kpgdir)); // switch to the kernel page table
153 }

31Youjip Won

swtch() & scheduler()

void scheduler(void) {
…
for(;;){

…
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
if(p−>state != RUNNABLE)
continue;

c−>proc = p;
switchuvm(p);
p−>state = RUNNING;

swtch(&(c−>scheduler), p−>context);
switchkvm();
…
}

…
}

swtch:
… …
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

①

②
③

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

32Youjip Won

acquire & release for ptable.lock

void yield(void){

acquire(&ptable.lock);

myproc()−>state = RUNNABLE;

sched();

release(&ptable.lock);

}

void
sleep(void *chan, struct spinlock){
...
sched();
p->chan = 0;
if(lk != &ptable.lock){
release(&ptable.lock);
acquire(lk);

}
}

Holding ptable.lock

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

33Youjip Won

Managing ptable.lock

• Generally, the thread that has acquired a lock is responsible for releasing.

• However, thread that is calling sched() is not.

• ptable.lock is acquired before swtch() calling

• the thread that is scheduled newly release ptable.lock.

void yield(void){

acquire(&ptable.lock);

myproc()−>state = RUNNABLE;

sched();

release(&ptable.lock);

}

void yield(void){

acquire(&ptable.lock);

myproc()−>state = RUNNABLE;

sched();

release(&ptable.lock);

}

process A process B

34Youjip Won

Scheduling pattern

void yield(void){
acquire(&ptable.lock);
myproc()−>state = RUNNABLE;
sched();
release(&ptable.lock);

}

void sched(void){
…
swtch(&p−>context, mycpu()−>scheduler);
mycpu()−>intena = intena;

}

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

35Youjip Won

Scheduling pattern

void sched(void){
…
swtch(&p−>context, mycpu()−>scheduler);
mycpu()−>intena = intena;

}

swtch:
… …
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

36Youjip Won

Scheduling pattern

swtch:
… …
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

void scheduler(void) {
…
for(;;){
…
for(p=ptable.proc;p<&ptable.proc[NPROC];p++){
…
swtch(&(c−>scheduler), p−>context);
switchkvm();
…

}
…

}
}

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

37Youjip Won

Scheduling pattern

void scheduler(void) {
…
for(;;){
…
for(p=ptable.proc;p<&ptable.proc[NPROC];p++){
…
swtch(&(c−>scheduler), p−>context);
switchkvm();
…

}
…

}
}

swtch:
… …
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

38Youjip Won

Scheduling pattern

swtch:
… …
popl %edi
popl %esi
popl %ebx
popl %ebp
ret

void sched(void){
…
swtch(&p−>context, mycpu()−>scheduler);
mycpu()−>intena = intena;

}

sched() swtch() scheduler() swtch() sched()
yield()
exit()
sleep()

yield()
exit()
sleep()

39Youjip Won

• mpmain() is started in main().

start scheduler

int

main(void)

{

...

startothers(); // start other processors

kinit2(P2V(4*1024*1024), P2V(PHYSTOP)); // must come after startothers()

userinit(); // first user process

mpmain(); // finish this processor's setup

}

40Youjip Won

Start scheduler(Cont.)

• scheduler() is started in mpmain().

static void

mpmain(void)

{

cprintf("cpu%d: starting %d\n", cpuid(), cpuid());

idtinit(); // load idt register

xchg(&(mycpu()->started), 1); // tell startothers() we're up

scheduler(); // start running processes

}

41Youjip Won

scheduler()

• The scheduler loops over the process table looking for a runnable

process, one that has p->state == RUNNABLE.

• Once it finds a process

• it sets the per-CPU current process variable proc

• switches to the process’s page table with switchuvm()

• marks the process as RUNNING

• and then calls swtch() to start running it

42Youjip Won

scheduler()

void scheduler(void){
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){
...
c->proc = p;
switchuvm(p);
p->state = RUNNING;

swtch(&(c->scheduler), p->context);
switchkvm();

// Process is done running for now.
// It should have changed its p->state before coming back.
c->proc = 0;

}
...

}
}

\

43Youjip Won

scheduler()

void scheduler(void){
struct proc *p;
struct cpu *c = mycpu();
c->proc = 0;

for(;;){
// Enable interrupts on this processor.
sti();

// Loop over process table looking for process to run.
acquire(&ptable.lock);
for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){

if(p->state != RUNNABLE)
continue;

...

swtch(&(c->scheduler), p->context);
switchkvm();

...
}
release(&ptable.lock);

}
}

44Youjip Won

scheduler()

• Outer loop

• Interrupt is enabled.: if the scheduler left interrupts disabled all the time, the I/O

would never arrive.

• ptable.lock is released at the end of each iteration.

• If an idling scheduler looped with the lock continuously held, no other

CPU that was running a process could ever perform a context switch or

any process-related system call.

• can never mark a process as RUNNABLE so as to break the idling CPU out

of its scheduling loop.

45Youjip Won

mycpu() and myproc()

• struct cpu

• contains per-processor state: the currently running process, hardware id for

that processor (apicid).

• When a processor must find it’s per-cpu state, it reads its identifier from its

local APIC and uses that identifier to find its state in the array.

// Per-CPU state

struct cpu {

uchar apicid; // Local APIC ID

struct context *scheduler; // swtch() here to enter scheduler

struct taskstate ts; // Used by x86 to find stack for interrupt

struct segdesc gdt[NSEGS]; // x86 global descriptor table

volatile uint started; // Has the CPU started?

int ncli; // Depth of pushcli nesting.

int intena; // Were interrupts enabled before pushcli?

struct proc *proc; // The process running on this cpu or null

};

46Youjip Won

mycpu()

• Scan the array of a struct cpu and returns the address of struct

cpu.

• inefficient!!!

struct cpu* mycpu(void) {
int apicid, i;
if(readeflags()&FL_IF)
panic("mycpu called with interrupts enabled\n");

apicid = lapicid();

for (i = 0; i < ncpu; ++i) {
if (cpus[i].apicid == apicid)
return &cpus[i];

}
panic("unknown apicid\n");

}

47Youjip Won

myproc()

• find the struct proc for the process that is running on the current

processor.

• myproc() disables interrupts, and invokes mycpu().

struct proc* myproc(void) {

struct cpu *c;

struct proc *p;

pushcli();

c = mycpu();

p = c−>proc;

popcli();

return p;

}

48Youjip Won

sleep and wakeup

• Let the processes to interact with each other!

• Sleep and wakeup allows one process to sleep waiting for an event and

another process to wake it up once the event has happened.

• Sleep and wakeup are often called sequence coordination or conditional

synchronization mechanisms.

• Make sure that they do not miss each other!!!

49Youjip Won

producer/consumer with busy waiting

• Operation

• send(): loops until the queue is empty and then puts the pointer p in the

queue.

• recv(): loops until the queue is non-empty and takes the pointer out.

• Problem: waste of CPU

• If the sender sends rarely, the receiver will spend most of its time spinning(busy).

100 struct q {
101 void *ptr;
102 };
103
104 void*
105 send(struct q *q, void *p)
106 {
107 while(q->ptr != 0)
108 ;
109 q->ptr = p;
110 }

112 void*
113 recv(struct q *q)
114 {
115 void *p;
116
117 while((p = q->ptr) == 0)
118 ;
119 q->ptr = 0;
120 return p;
121 }

50Youjip Won

producer/consumer with sleep and wake up

• Problem: lost wakeup

210 void*
211 recv(struct q *q)
212 {
213 void *p;
214
215 while((p = q->ptr) == 0)
216 sleep(q);
217 q->ptr = 0;
218 return p;
219 }

201 void*
202 send(struct q *q, void *p)
203 {
204 while(q->ptr != 0)
205 ;
206 q->ptr = p;
207 wakeup(q);
208 }

test

51Youjip Won

415
416 void*
417 recv(struct q *q)
418 {
419 void *p;
420
421 acquire(&q->lock);
422 while((p = q->ptr) == 0)
423 sleep(q);
424 q->ptr = 0;
425 release(&q->lock);
426 return p;
427 }

400 struct q {
401 struct spinlock lock;
402 void *ptr;
403 };
404
405 void*
406 send(struct q *q, void *p)
407 {
408 acquire(&q->lock);
409 while(q->ptr != 0)
410 ;
411 q->ptr = p;
412 wakeup(q);
413 release(&q->lock);
414 }

producer/consumer in sleep and wake up

• Incorrect solution to lost wakup: deadlock

• While receiver is waiting, the send cannot send.

Sleep with
lock held.

???

52Youjip Won

producer/consumer with sleep and wakeup

within sleep, release the lock before it sets the process to sleep.

415

416 void*

417 recv(struct q *q)

418 {

419 void *p;

420

421 acquire(&q->lock);

422 while((p = q->ptr) == 0)

423 sleep(q, &q->lock);

424 q->ptr = 0;

425 release(&q->lock);

426 return p;

427 }

400 struct q {

401 struct spinlock lock;

402 void *ptr;

403 };

404

405 void*

406 send(struct q *q, void *p)

407 {

408 acquire(&q->lock);

409 while(q->ptr != 0)

410 ;

411 q->ptr = p;

412 wakeup(q);

413 release(&q->lock);

414 }

53Youjip Won

code: sleep

• sleep(): mark the current process as SLEEPING and then call sched()

to release the processor.

54Youjip Won

sleep()

2873 void
2874 sleep(void *chan, struct spinlock *lk) {
2876 struct proc *p = myproc();
2877
2878 if(p == 0)
2879 panic("sleep");
2881 if(lk == 0)
2882 panic("sleep without lk");
2890 if(lk != &ptable.lock){
2891 acquire(&ptable.lock);
2892 release(lk);//release the lock.
2893 }
2895 p−>chan = chan;
2896 p−>state = SLEEPING;
2898 sched();
2901 p−>chan = 0;
2904 if(lk != &ptable.lock){
2905 release(&ptable.lock);
2906 acquire(lk);//acquire the lock.
2907 }
2908 }

Hand CPU over.

Get back from sleep and
wake up.

55Youjip Won

Code: sleep() and wakeup()

• wakeup() looks for a process sleeping on the given wait channel and

marks it as RUNNABLE.

2962 // Wake up all processes sleeping on chan.

2963 void

2964 wakeup(void *chan)

2965 {

2966 acquire(&ptable.lock);

2967 wakeup1(chan);

2968 release(&ptable.lock);

2969 }

56Youjip Won

wakeup

2950 // Wake up all processes sleeping on chan.

2951 // The ptable lock must be held.

2952 static void

2953 wakeup1(void *chan)

2954 {

2955 struct proc *p;

2956

2957 for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)

2958 if(p−>state == SLEEPING && p−>chan == chan)

2959 p−>state = RUNNABLE;

2960 }

• Put all threads waiting for the channel to RUNNABLE.

• Inefficient: O(n)

57Youjip Won

Summary

• switch: It switch the process to another process for running on the CPU.

• sched(): Release the CPU and switch to scheduler thread.

• schedule(): Called by Independent thread by each CPU, switch to new

RUNNABLE thread

• sleep() and wakeup()

