
Youjip Won

2Youjip Won

Contents

Outline

Race condition

Spinlock

Using lock

Deadlock

Interrupt handler

__sync_synchronize

Sleep Lock

Limitations of locks

3Youjip Won

struct list {
int data;
struct list *next;

};

struct list *list = 0;

void
insert(int data)
{
struct list *l;

l = malloc(sizeof *l);
l->data = data;
l->next = list;
list = l;

}

Race condition

Situation in which a memory location is accessed concurrently, and at least

one access is a write

Concurrency in insert operation

insert_1

insert_2

4Youjip Won

struct list {
int data;
struct list *next;

};

struct list *list = 0;

void
insert(int data)
{
struct list *l;

l = malloc(sizeof *l);
l->data = data;
l->next = list;
list = l;

}

Race condition (Cont.)

Situation in which a memory location is accessed concurrently, and at least

one access is a write

Concurrency in insert operation

insert_1

insert_2

①

5Youjip Won

struct list {
int data;
struct list *next;

};

struct list *list = 0;

void
insert(int data)
{
struct list *l;

l = malloc(sizeof *l);
l->data = data;
l->next = list;
list = l;

}

Race condition (Cont.)

Situation in which a memory location is accessed concurrently, and at least

one access is a write

Concurrency in insert operation

insert_1

insert_2

①

②

6Youjip Won

struct list {
int data;
struct list *next;

};

struct list *list = 0;

void
insert(int data)
{
struct list *l;

l = malloc(sizeof *l);
l->data = data;
l->next = list;
list = l;

}

Race condition (Cont.)

Situation in which a memory location is accessed concurrently, and at least

one access is a write

Concurrency in insert operation

insert_1

insert_2

①

②

③

7Youjip Won

struct list {
int data;
struct list *next;

};

struct list *list = 0;

void
insert(int data)
{
struct list *l;

l = malloc(sizeof *l);
l->data = data;
l->next = list;
list = l;

}

Race condition (Cont.)

Situation in which a memory location is accessed concurrently, and at least

one access is a write

Concurrency in insert operation

insert_1

insert_2

①

②

③

④

8Youjip Won

struct list *list = 0;
struct lock listlock;

void
insert(int data)
{
struct list *l;

acquire(&listlock);
l = malloc(sizeof *l);
l->data = data;
l->next = list;
list = l;
release(&listlock);

}

Race condition (Cont.)

Race conditions can be solved by locking

9Youjip Won

10Youjip Won

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

acquire(L);

do_something();

release(L);

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

acquire(L);

do_something();

release(L);

t1 t2

11Youjip Won

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

𝑡

acquire(L);

do_something();

release(L);

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

acquire(L);

do_something();

release(L);

t1 t2

t1-①

①
②

t1-②

12Youjip Won

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

𝑡

acquire(L);

do_something();

release(L);

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

acquire(L);

do_something();

release(L);

t1 t2

①
②

③
④

⑤

t2-③ t2-④ t2-⑤t1-① t1-②

13Youjip Won

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

𝑡

acquire(L);

do_something();

release(L);

void acquire(struct spinlock *lk) {
for (;;) {

if (!lk->locked) {
lk->locked = 1;
break;

}
}

}

acquire(L);

do_something();

release(L);

t1 t2

①
②

③
④

⑤

t2-③ t2-④ t2-⑤t1-① t1-② t1-⑥

⑥

14Youjip Won

Atomic Instruction: xchg

xchg(mem, val);

memval

1. Exchange

2. Return the value that was in the memory

15Youjip Won

// Mutual exclusion lock.
struct spinlock {
uint locked; // Is the lock held?

// For debugging:
char *name; // Name of the lock.
struct cpu *cpu; // The cpu holding the lock.
uint pcs[10]; // The call stack (an array of program counters)

// that locked the lock.
};

Spinlock

The xv6 has 2 types of locks: spinlock and sleep-lock

Spinlock structure

primitives

acquire(struct spinlock *lk)

release(struct spinlock *lk)

16Youjip Won

void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
if(holding(lk))
panic("acquire");

// The xchg is atomic.
while(xchg(&lk->locked, 1) != 0)
;

// Tell the C compiler and the processor not to move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();

// Record info about lock acquisition for debugging.
lk->cpu = mycpu();
getcallerpcs(&lk, lk->pcs);

}

acquire in spinlock

17Youjip Won

void
getcallerpcs(void *v, uint pcs[])
{
uint *ebp;
int i;

ebp = (uint*)v - 2;
for(i = 0; i < 10; i++){
if(ebp == 0 || ebp < (uint*)KERNBASE

|| ebp == (uint*)0xffffffff)
break;

pcs[i] = ebp[1]; // saved %eip
ebp = (uint*)ebp[0]; // saved %ebp

}
for(; i < 10; i++)
pcs[i] = 0;

}

Spinlock (Cont.)

getcallerpcs(void *v, uint pcs[])

18Youjip Won

Spinlock (Cont.)

getcallerpcs(void *v, uint pcs[])

getcallerpcs() follows the latest ten stack frames, and records the

caller address (return address) to pcs.

XV6 uses getcallerpcs() for debugging purpose.

Unrecorded elements of pcs array are set to 0.

19Youjip Won

Spinlock (Cont.)

getcallerpcs (void *v, uint pcs[])

(uint*)v - 2

pcs

v

Return address

Saved %ebp

pcs[10]

ebp[0]

ebp[1]

i=0

pcs

v

Return address

Saved %ebp

.
.
.

i=1

Move to the next
stack frame

.
.
.

Return address
of i=0

Return address
of i=1

Stack

Low Address

High Address

20Youjip Won

void
release(struct spinlock *lk)
{
if(!holding(lk))
panic("release");

lk->pcs[0] = 0;
lk->cpu = 0;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical
// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and
// stores; __sync_synchronize() tells them both not to.
__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk->locked) :);

popcli();
}

release () in spinlock

21Youjip Won

Caution

Locking should be used properly, not too much.

Too many locks reduce parallelism.

xv6 uses a few data-structure specific locks.

22Youjip Won

Thread A Thread B

acquire(&L1) acquire(&L2)

acquire(&L2) acquire(&L1)

① ②
③ ④

Deadlock

Deadlock: The situation that two threads require each other’s lock and wait

indefinitely.

To avoid deadlock, the callers must invoke functions in a way that causes locks to

be acquired in the agreed-on order.

Thread A Thread B

acquire(&L1) acquire(&L1)

acquire(&L2) acquire(&L2)

① ②
③ ④

blocked

blockedblocked

23Youjip Won

Interrupt and lock

Spinlocks are used by the interrupt handler as well as the user thread.

int tickinterrupt handler sys_sleep
update read

Important!!!

You have to disable the interrupt when you hold the spinlock that is used by the interrupt

handler.

It is difficult to determine whether the given lock is used by the interrupt handler or not.

XV6 blindly disables the interrupt when you hold the spinlock.

Turn off interrupt before you acquire spinlock.

idelockiderw ideintr
lock/
unlock

lock/
unlock

24Youjip Won

void
ideintr(void)
{

struct buf *b;

// First queued buffer is the active request.
acquire(&idelock);

acquire(&idelock); //DOC:acquire-lock

void
iderw(struct buf *b)
{

struct buf **pp;

while((b->flags & (B_VALID|B_DIRTY)) != B_VALID)
sleep(b, &idelock);

release(&idelock);

Interrupt and lock

25Youjip Won

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real OS would use C atomics here.
asm volatile("movl $0, %0" : "+m" (lk->locked) :);

popcli();

void
acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
if(holding(lk))
panic("acquire");

// The xchg is atomic.
while(xchg(&lk->locked, 1) != 0)
;

Interrupt handler

Disable interrupt.

Enable interrupt.

26Youjip Won

void
pushcli(void)
{
int eflags;

eflags = readeflags();
cli();
if(mycpu()->ncli == 0)
mycpu()->intena = eflags & FL_IF;

mycpu()->ncli += 1;
}

void
popcli(void)
{
if(readeflags()&FL_IF)
panic("popcli - interruptible");

if(--mycpu()->ncli < 0)
panic("popcli");

if(mycpu()->ncli == 0 && mycpu()->intena)
sti();

}

Disable and enable interrupt

• pushcli/popcli are like cli/sti except that they are matched: it

takes two popcli to undo two pushcli.

• If interrupts are off, then pushcli, popcli leaves them off.

27Youjip Won

Instructions and Memory Ordering

Compilers may reorder instructions.

Many complier and processor execute code out of order to achieve

higher performance.

i = 1;

j = j * 2 ;

j = j * 2;

i = 1;

28Youjip Won

Instructions and Memory Ordering (Cont.)

There is bad example. Line 6 can runs before Line 3, 4, 5 by other cores.

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

No!

29Youjip Won

acquire(struct spinlock *lk)
{
pushcli(); // disable interrupts to avoid deadlock.
if(holding(lk))
panic("acquire");

// The xchg is atomic.
while(xchg(&lk->locked, 1) != 0)
;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory
// references happen after the lock is acquired.
__sync_synchronize();

__sync_synchronize

__sync_synchronize tell the hardware and compiler not to perform re-orderings.

__sync_synchronize can guarantees execution order in critical section by being

called in acquire and release.

30Youjip Won

__sync_synchronize (Cont.)

acquire(&listlock);

l = malloc(sizeof *l);

l->data = data;

l->next = list;

list = l;

release(&listlock);

__sync_synchronize()

__sync_synchronize()

31Youjip Won

Sleep lock

Sometimes a process needs to hold a lock for a long time.

When a thread that wants to hold lock is looping, another thread that is holding lock

cannot release lock.

Sleep lock: yield CPU to others while waiting for the lock!

32Youjip Won

// Long-term locks for processes
struct sleeplock {
uint locked; // Is the lock held?
struct spinlock lk; // spinlock protecting this sleep lock

// For debugging:
char *name; // Name of lock.
int pid; // Process holding lock

};

Data structure and API’s for sleep lock

For debugging

lock: put itself into sleep.

unlock: wake up one of the processes that have been waiting for the lock.

33Youjip Won

process structure for the sleep lock

specify the lock which it is waiting for. : called sleep channel.

34Youjip Won

void
acquiresleep(struct sleeplock *lk)
{

acquire(&lk->lk);
while (lk->locked) {

sleep(lk, &lk->lk);
}
lk->locked = 1;
lk->pid = myproc()->pid;
release(&lk->lk);

}

sleep lock

acquiresleep

going to sleep with holding a lock?

35Youjip Won

sleep()

void sleep(void *chan, struct spinlock *lk)

Place the caller to chan, release lk and put the state of the caller process to sleep.

thread

thread

thread

sleep lock: chan

36Youjip Won

peek on sleep()

void sleep(void *chan, struct spinlock *lk) {

struct proc *p = myproc();

if(p == 0)

panic("sleep");

if(lk == 0)

panic("sleep without lk");

if(lk != &ptable.lock){ //DOC: sleeplock0

acquire(&ptable.lock); // Lock the page table.

release(lk);

}

// Go to sleep.

p->chan = chan;

p->state = SLEEPING;

sched();

p->chan = 0;

if(lk != &ptable.lock){ //DOC: sleeplock2

release(&ptable.lock);

acquire(lk);

}

}

ptable

sleep
chan

37Youjip Won

void

releasesleep(struct sleeplock *lk)

{

acquire(&lk->lk);

lk->locked = 0;

lk->pid = 0;

wakeup(lk);

release(&lk->lk);

}

sleep unlock

releasesleep

Clears the sleeplock lk.

Wakes up all sleeping processes by calling wakeup().

38Youjip Won

void
wakeup(void *chan)
{
acquire(&ptable.lock);
wakeup1(chan);
release(&ptable.lock);

}

wakeup1 vs. wakeup

Lock the process table and call wakeup1().

After wakeup1(), unlock the process table.

39Youjip Won

// Wake up all processes sleeping on chan.
// The ptable lock must be held.
static void
wakeup1(void *chan)
{
struct proc *p;

for(p = ptable.proc; p < &ptable.proc[NPROC]; p++)
if(p->state == SLEEPING && p->chan == chan)
p->state = RUNNABLE;

}

O(n)!!!

wakeup1 vs. wakeup

ptable

sleep
chan

sleep

sleep p

Wake up all processes that wait for the channel.

All are put into ready state. Only one of them actually runs.

Why do we wake up all processes that wait for the channel?

40Youjip Won

Better Sleep lock design

41Youjip Won

42Youjip Won

lock ordering (mm/filemap.c)

/*
* Lock ordering:
*
* ->i_mmap_rwsem (truncate_pagecache)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->i_pages lock
*
* ->i_mutex
* ->i_mmap_rwsem (truncate->unmap_mapping_range)
*
* ->mmap_sem
* ->i_mmap_rwsem
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
*
* ->mmap_sem
* ->lock_page (access_process_vm)
*
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->i_pages lock (try_to_unmap_one)
* ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
* ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->i_pages lock (page_remove_rmap->set_page_dirty)
* bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
* ->inode->i_lock (page_remove_rmap->set_page_dirty)
* ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
* bdi.wb->list_lock (zap_pte_range->set_page_dirty)
* ->inode->i_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)

43Youjip Won

Limitations of locks

Function uses a data that needs to be protected by a lock.

The caller may hold a lock.

The caller may not hold a lock.

Solution

Function with a lock and function without a lock: wakeup1 and wakeup

Ask caller to hold lock always.: sched

Recursive lock: the caller hold the lock and callee re-acquire the lock.

44Youjip Won

sched()

A process calls sched() to yield CPU.

Hand CPU over to other processes.

Put itself to the ready queue.

Cases

- A process uses up its time quantum.

- A process goes to sleep.

- A process exits.

45Youjip Won

void
sched(void)
{

int intena;
struct proc *p = myproc();

if(!holding(&ptable.lock))
panic("sched ptable.lock");

if(mycpu()->ncli != 1) {
cprintf("panic! ncli: %d\n", mycpu()->ncli);
panic("sched locks");

}
if(p->state == RUNNING)

panic("sched running");
if(readeflags()&FL_IF)

panic("sched interruptible");
intena = mycpu()->intena;
swtch(&p->context, mycpu()->scheduler);
mycpu()->intena = intena;

}

peek on sched()

46Youjip Won

Importance of system software and os

47Youjip Won

