Locking

Youjip Won

KAIST

Contents

O OQutline

O Race condition

© Spinlock

O Using lock

O Deadlock

O Interrupt handler

O sync_synchronize
O Sleep Lock

O Limitations of locks

KAIST OSLab Youjip Won

Operating Systems Laboratory

Race condition

O Situation in which a memory location is accessed concurrently, and at least

one access is a write

struct list {
int data;
struct list *next;

b g

insert 1 struct list *list = 0;

— ° > lo- .
void
| insert (int data)

= {

struct list *1;

1l = malloc(sizeof *1);

insert 2 l1->data = data;
1->next = list;
lise = 1¢

Concurrency in insert operation

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Race condition (Cont.)

O Situation in which a memory location is accessed concurrently, and at least

one access is a write

struct list {
int data;
struct list *next;

b g

insert 1 struct list *list = 0;

*——» ® > | '
7 | void
i insert (int data)

= {
é @ struct list *1;

1l = malloc(sizeof *1);
insert 2 l1->data = data;
l1->next = list;

list = 1;

Concurrency in insert operation

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Race condition (Cont.)

O Situation in which a memory location is accessed concurrently, and at least

one access is a write

struct list {
() int data;
struct list *next;

b g

insert 1 { struct list *1list = 0;

| ° > o .

& void

| insert (int data)
k @ struct list *1;

1l = malloc(sizeof *1);
insert 2 l1->data = data;
l1->next = list;

list = 1;

Concurrency in insert operation

KAIST OSLab Youjip Won

Operating Systems Laboratory

Race condition (Cont.)

O Situation in which a memory location is accessed concurrently, and at least

one access is a write

struct list {

() int data;
(® struct list *next;
b g

insert 1 struct list *list = 0;

¢ > *] void
__}_ insert (int data)
= {
é C) struct list *1;

1l = malloc(sizeof *1);
insert 2 l1->data = data;
l1->next = list;

list = 1;

Concurrency in insert operation

KAIST OSLab Youjip Won

Operating Systems Laboratory

Race condition (Cont.)

O Situation in which a memory location is accessed concurrently, and at least

one access is a write

struct list {

3*‘ () int data;

A i struct list *next;

b g

insert 1 2 ® struct list *list = 0;

° > lo- .
void
| insert (int data)

@
= {
C) struct list *1;
o

1l = malloc(sizeof *1);

insert 2 l1->data = data;
1->next = list;
lise = 1¢

Concurrency in insert operation

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Race condition (Cont.)

O Race conditions can be solved by locking

struct list *list = 0;
struct lock listlock;

void
insert (int data)

{
struct list *1;

acquire (&listlock);

1l = malloc(sizeof *1);

l->data = data;

1->next = list;

list = 1;
(

release (&listlock) ;

iy
ek]

Lo Lo,

2

ﬁnsevk_67§_
Asnde vy
// cody —@M m%ef'i'-

UM\onQD

§
o

7

KAIST OSLab

Operating Systems Laboratory

Youjip Won

Q)L@J? lode 8, oW \ocle

votd. atc%)ﬂre,(%hut qlode k) ¢
S 1) 1
S Cledtodead) § WY I L S
le o o KR | **
break.

3

KAIST OSLab Youjip Won

Operating Systems Laboratory

—O— — O—

acquire (L) ; acquire (L) ;

tl t2
do_ something () ; do_something () ;
release (L) ; release (L) ;
. J/ . J/
void acquire (struct spinlock *1k) { void acquire (struct spinlock *1k) {
for (;7) A for (;7) A
if (!lk->locked) { if (!l1k->locked) {
lk->locked = 1; lk->locked = 1;
break; break;

KA'ST OSLab Youjip Won

Operating Systems Laboratory

—®— —@—

acquire (L) ; acquire (L) ;

tl t2
do something () ; do something () ;
release (L) ; release (L) ;
. J/ . J/
void acquire (struct spinlock *1k) { void acquire (struct spinlock *1k) {
-~ @ for (;7) { for (;7) {
.................... » @ if ('lk->locked) { if (!lk->locked) {
lk->locked = 1; lk->locked = 1;
break; break;
} }
} }
} }
t ® ® >
tl-@ tl1-@
MIST gpse!‘-;atilzg Systems Laboratory Youjip Won

—®— —0O—

acquire (L) ; acquire (L) ;

tl t2
do something () ; do something () ;
release (L) ; release (L) ;
. J/ . J/
void acquire (struct spinlock *1k) { void acquire (struct spinlock *1k) {
@ for (;;) { e > ® for (;;) { ,

@ if (!lk—>locked) {_ .. @ if (!'lk->locked) { ==
lk->locked = 1; ® lk->locked = 1; ¢~
break; break;

} }
} }
} }
t ® ® ® ® ® >
t1-@ tl1-Q@ t2-Q t2-@ t2-0®
MIST gpse!‘-;atilzg Systems Laboratory Youjip Won

tl

void acquire (struct spinlock *1k)

— —

acquire (L) ;

do something () ;

release (L) ;

. /

® for (;;) {
@ if ('lk->locked) {

® lk->locked = 1; <«

t2

void acquire (struct spinlock *1k)

— —

acquire (L) ;
do something () ;

release (L) ;

. /

® for (;;) {
@ if ('lk->locked) {

break;

® lk->locked = 1;
break;

{

t1-@ tl1-@

t2-Q) t2-@ t2-05

t1-®

A 4

KAIST OSLab

Operating Systems Laboratory

Youjip Won

13

Atomic Instruction: xchg

xchg (mem, wval);

1. Exchange

2. Return the value that was in the memory

I

val § ren

N

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Spinlock

O The xv6 has 2 types of locks: spinlock and sleep-lock
O Spinlock structure
O primitives

° acquire(struct spinlock *1k)

° release(struct spinlock *1k)

// Mutual exclusion lock.
struct spinlock {
uint locked; // Is the lock held?

// For debugging:

char *name; // Name of the lock.
struct cpu *cpu; // The cpu holding the lock.
uint pcs[10]; // The call stack (an array of program counters)

// that locked the lock.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

15

acquire in spinlock

void
acquire (struct spinlock *1k)

{

pushcli(); // disable interrupts to avoid deadlock.
if (holding (1k))
panic ("acquire") ;

// The xchg is atomic.
while (xchg (&lk->1ocked, 1) != 0)

4

// Tell the C compiler and the processor not to move loads or stores
// past this point, to ensure that the critical section's memory

// references happen after the lock is acquired.
__sync_synchronize() ;

// Record info about lock acquisition for debugging.
lk->cpu = mycpu() ;
getcallerpcs (&1lk, lk->pcs);

KAIST OSLab Youjip Won

Operating Systems Laboratory

16

Spinlock (Cont.)

O getcallerpcs (void *v,

void

uint pcs([])

getcallerpcs (void *v, uint pcs[])

{
uint *ebp;
int 1i;

ebp = (uint*)v - 2;

for(i = 0;

if (ebp ==

break;

pcs[i] =

i < 10; i++){

| | ebp < (uint*)KERNBASE

ebp == (uint*)Oxffffffff)

ebp([1]; // saved %eip

ebp = (uint*)ebp[0]; // saved %ebp

}

for(; i < 10; i++)
pcs[i] = 0;

KAIST OsSLab

Operating Systems Laboratory

Youjip Won

17

Spinlock (Cont.)

O getcallerpcs (void *v, uint pcs[])

O getcallerpcs () follows the latest ten stack frames, and records the

caller address (return address) to pcs.
O XV6 uses getcallerpcs () for debugging purpose.

O Unrecorded elements of pcs array are set to 0.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

18

Spinlock (Cont.)

O getcallerpcs (void *v, uint pcs[])

High Address

pcs

v

Return address

Saved %ebp

Move;’s to the next
sté;ck frame

1i=0 cs Return address

P of i=0
M pcs[10]
l Return address ebp[1] +
(uint*)v - 2 Saved %ebp ebp[0] T
Return address

Low Address : of i=1

Stack
KAIST OSLab Youjip Won
Operating Systems Laboratory

release () in spinlock

void
release(struct spinlock *1k)

{

if ('holding(1lk))
panic ("release");

lk->pcs[0] = 0;
lk->cpu = 0;

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that all the stores in the critical

// section are visible to other cores before the lock is released.
// Both the C compiler and the hardware may re-order loads and

// stores; sync synchronize() tells them both not to.

__sync_synchronize();

// Release the lock, equivalent to lk->locked = 0.

// This code can't use a C assignment, since it might
// not be atomic. A real 0OS would use C atomics here.
asm volatile ("movl $0, %0" : "+m" (lk->locked) :);

popcli () ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

20

Caution

O Locking should be used properly, not too much.

O Too many locks reduce parallelism.

O xv6 uses a few data-structure specific locks.

Lock
bcachelock
cons.lock
ftablelock
icache.lock
idelock
kmem.lock
log.lock

pipes p->lock
ptable.lock
tickslock
inode’s ip->lock
buf’s b->lock

Description

Protects allocation of block buffer cache entries

Serializes access to console hardware, avoids intermixed output
Serializes allocation of a struct file in file table

Protects allocation of inode cache entries

Serializes access to disk hardware and disk queue

Serializes allocation of memory

Serializes operations on the transaction log

Serializes operations on each pipe

Serializes context switching, and operations on proc->state and proctable
Serializes operations on the ticks counter

Serializes operations on each inode and its content

Serializes operations on each block buffer

KAIST OSLab

Operating Systems Laboratory

Youjip Won

21

Deadlock

© Deadlock: The situation that two threads require each other’s lock and wait

indefinitely.

Thread A Thread B
ach|re(&L1) >< acquire(&L2)
blocked =———p @ acquire(&L2) @ acquire(&L1) <= blocked
© To avoid deadlock, the callers must invoke functions in a way that causes locks to
be acquired in the agreed-on order.

Thread A Thread B

l @ acquire(&L1) «—— @ acquire(&L1) ¢ blocked

@ acquire(&L2) @ acquire(&L2)

KAIST OSLab Youjip Won

Operating Systems Laboratory

22

Interrupt and lock

© Spinlocks are used by the interrupt handler as well as the user thread.

sys sleep]

° You have to disable the interrupt when you hold the spinlock that is used by the interrupt

read

SEEER

interrupt handler int tick |«
update

O Important!!!

handler.
° It is difficult to determine whether the given lock is used by the interrupt handler or not.
° XV6 blindly disables the interrupt when you hold the spinlock.

° Turn off interrupt before you acquire spinlock.

[iderw } idelock “ { ideintr }

lock/ lock/
unlock unlock

KAIST OSLab Youjip Won 23

Operating Systems Laboratory

Interrupt and lock

void
iderw (struct buf *b)

{
struct buf **pp;

acquire (&idelock); //DOC:acquire-lock

while ((b->flags & (B _VALID|B DIRTY)) != B VALID)
sleep (b, &idelock);

e, et

¢y

Gu%.me (i[53 \@ W?JMU—T, \@

release (&idelock) ;
T«'(‘evwv't, Hondles \

= G227, .
PZEZ. veleage (V)3 void
velane (1), ideintr (void)

{
struct buf *b;

// First queued buffer is the active request.
acquire (&idelock) ;

KAIST OSLab Youjip Won 24

Operating Systems Laboratory

Interrupt handler

void
acquire (struct spinlock *1k)

{

pushcli(); // disable interrupts to avoid deadlock. | Disable interrupt.
TT (NOIAIng (LK))
panic ("acquire") ;

// The xchg is atomic.
while (xchg (&1lk->1ocked, 1) != 0)

r

// Release the lock, equivalent to lk->locked = 0.
// This code can't use a C assignment, since it might
// not be atomic. A real 0OS would use C atomics here.

asm volatile ("movl S0, %0" : "+m" (lk->locked) :);
popcli () ; Enable interrupt.
KAIST OSLab Youjip Won 25

Operating Systems Laboratory

Disable and enable interrupt

* pushcli/popcli arelike cli/sti except that they are matched: it

void takes two popcli to undo two pushcli.

pushcli (void) « If interrupts are off, then pushcli, popcli leaves them off.
{

int eflags;

eflags = readeflags();

cli();

if (mycpu () ->ncli == 0)
mycpu () ->intena = eflags & FL IF;

mycpu () ->ncli += 1;

}

void
popcli (void)
{
if (readeflags () &FL IF)
panic ("popcli - interruptible");
if (--mycpu()->ncli|< 0)
panic ("popcli");

if (mycpu()->ncli == 0 && mycpu()->intena)
} SiEd 1) 7 #define FL_IF 0x00000200 // Interrupt Enable
MIST gpsel‘-;latilzg Systems Laboratory Youjip Won 26

Instructions and Memory Ordering

_ et

)) 7
3 =73 * 2 ; i=1;

© Compilers may reorder instructions.

© Many complier and processor execute code out of order to achieve

higher performance.

KAIST OSLab Youjip Won

Operating Systems Laboratory

27

Instructions and Memory Ordering (Cont.)

O There is bad example. Line 6 can runs before Line 3, 4, 5 by other cores.

acquire (&listlock);

|_l
Il

malloc (sizeof *1);

release (&listlock) ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

28

(&)

&)

sync_synchronize

__sync_synchronize tell the hardware and compiler not to perform re-orderings.

__sync_synchronize can guarantees execution order in critical section by being

called in acquire and release.

acquire (struct spinlock *1k)

{

pushcli(); // disable interrupts to avoid deadlock.
if (holding (1k))
panic ("acquire") ;

// The xchg is atomic.
while (xchg (&1lk->1ocked, 1) != 0)

’

// Tell the C compiler and the processor to not move loads or stores
// past this point, to ensure that the critical section's memory

// references happen after the lock is acquired.
__sync_synchronize() ;

KAIST

OSLab

Youjip Won
Operating Systems Laboratory J'P 29

__sync_synchronize (Cont.)

acquire (&listlock) ;
----------------------- __sync_synchronize ()
malloc (sizeof *1);

|_l
|

l->data = data;

l->next = list;

list = 1;
-------------------- 4[___sync_synchronize () }
release (&listlock) ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

30

Sleep lock

© Sometimes a process needs to hold a lock for a long time.

© When a thread that wants to hold lock is looping, another thread that is holding lock

cannot release lock.

O Sleep lock: yield CPU to others while waiting for the lock!

D P

?
C oW
\bc)&() =<\ (;mku d&

JL 5pTn\0d= 5 parﬁr.w(m% pad L
. \

Vace. LSPM\Q C\O de == (RUE) 5 -\—Q&
3ran
YQ’?&J @

KAIST OSLab Youjip Won

Operating Systems Laboratory

31

Data structure and API’s for sleep lock

// Long-term locks for processes
struct sleeplock {

uint locked; // Is the lock held?
struct spinlock lk; // spinlock protecting this sleep lock

// For debugging:
char *name; // Name of lock.
int pid; // Process holding lock

I
For debugging

O lock: put itself into sleep.

O unlock: wake up one of the processes that have been waiting for the lock.

KAIST OSLab Youjip Won

Operating Systems Laboratory

process structure for the sleep lock

O specify the lock which it is waiting for. : called sleep channel.

/ Per-process state

Size of process memory (bytes)
Page table
char *kstack; Bottom of kernel stack for this process
enum procstate state; Process state
int pid; Process ID
struct proc *parent; Parent process

struct trapframe *tf; Trap frame for current syscall
struct context *context: swtch() here tao _run nrocess
void *chan; If non-zero, sleeping on chan
1int killed; It non-zero, have been killed
struct file *ofile[NOFILE]; Open files

struct inode *cwd; Current directory

char name[16]; Process name (debugging)

KAIST OSLab Youjip Won

Operating Systems Laboratory

sleep lock

O acquiresleep

going to sleep with holding a lock?

void /?

acquiresleep (struct sleeplock *1k) A
{ 7

acquire (&1lk->1k) ;
while (lk->locked) {

sleep (1k, &lk->1k);
ks

lk->1locked = 1;
lk->pid = myproc()->pid;
release (&lk->1k) ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

sleep ()

void sleep (void *chan, struct spinlock *1k)

Place the caller to chan, release 1k and put the state of the caller process to sleep.

thread

sleep lock: chan

thread —l -

—>

thread

KAIST OSLab Youjip Won

Operating Systems Laboratory

35

peek on sleep ()

void sleep(void *chan, struct spinlock *1k) {

struct proc *p = myproc():;

if(p == 0)
panic ("sleep");

if (1lk == 0)

panic ("sleep without 1k");

if(lk != &ptable.lock) {

acquire (&ptable.lock);

(T - :

// Go to sleep.
p—>chan = chan;
p->state = SLEEPING;
sched() ;

p->chan = 0;

// Lock the page table.

sleeplockO

ptable

chan

sleep

if(1lk !'= &ptable.lock) { sleeplock?
release (&ptable.lock) ;
! st
}
KAIST OSLab Youjip Won 36

Operating Systems Laboratory

sleep unlock

O releasesleep
O Clears the sleeplock 1k.
O Wakes up all sleeping processes by calling wakeup ().
void
releasesleep (struct sleeplock *1k)
{
acquire (&1k->1k) ;
lk->locked = 0;
lk->pid = 0;
wakeup (1k) ;
release (&1k->1k) ;
}
KA'ST OSLab Youjip Won 37

Operating Systems Laboratory

wakeupl vS. wakeup

void

wakeup (void *chan)

{
acquire (&ptable.lock) ;
wakeupl (chan) ;
release (&ptable.lock);

Lock the process table and call wakeupl () .

After wakeupl (), unlock the process table.

KAIST OSLab Youjip Won

Operating Systems Laboratory

38

wakeupl vS. wakeup

// Wake up all processes sleeping on chan.
// The ptable lock must be held.
static void
wakeupl (void *chan)
{
struct proc *p; O(n)!!!

ptable

for (p = ptable.proc; p < &ptable.preoc[NPROE| ; ptt)

if (p->state == SLEEPING && p->chan == chan) chan
p->state = RUNNABLE; —

sleep

Wake up all processes that wait for the channel.

sleep

All are put into ready state. Only one of them actually runs.

Why do we wake up all processes that wait for the channel?

sleep [P

KAIST OSLab Youjip Won

Operating Systems Laboratory

39

Better Sleep lock design

-
(\'.3 <oy
ol one
Gl 7

ERN tf%?rouuww MTJCT%’%"NMCIQ !

L

o lock: —.\'g lock. s oS G\IOCIKU&HC, neert ’\I‘hSﬁ\'Q qu
e tnked (st amd ‘9(@«9‘.

s wlock: scam twe binked Lt omd wake ons “p.

KAIST OSLab Youjip Won 40

Operating Systems Laboratory

C:mebda mMstdo g?‘m\odk‘. me\.

—_—

E\MAL\) %. ‘QYUW\C}-C-\{ @
Spiade (L), o, s deaplode (L2,
frw,\o_c i :——:> —L.'(“ﬁ',
4 Aasoldagh
S\)Td\um\ac.ll-(L)) OZ\Q'L? o d&C L)‘))

$

KAIST OSLab Youjip Won

Operating Systems Laboratory

41

lock ordering (mm/filemap.c)

/*

* Lock ordering:

*

* =>1 mmap rwsem (truncate pagecache)

* ->private lock (__free pte-> set page dirty buffers)

* ->swap_ lock (exclusive swap page, others)

* ->i pages lock

*

* ->1 mutex

* ->i mmap rwsem (truncate->unmap mapping range)

*

* ->mmap sem

* ->i mmap rwsem

* ->page table lock or pte lock (various, mainly in memory.c)

* ->i pages lock (arch-dependent flush dcache mmap lock)

*

* ->mmap sem

* ->lock page (access process vm)

*

* ->page table lock or pte lock

* ->swap_ lock (try to unmap one)

* ->private lock (try to unmap one)

* ->i pages lock (try to unmap one)

* ->zone lru lock (zone) (follow page->mark page accessed)

* ->zone lru lock (zone) (check pte range->isolate lru page)

* ->private lock (page remove rmap->set page dirty)

* ->i pages lock (page remove rmap->set page dirty)

* bdi.wb->1ist lock (page remove rmap->set page dirty)

* ->inode->i_ lock (page remove rmap->set page dirty)

* ->memcg->move_lock (page remove rmap->lock page memcg)

* bdi.wb->1ist lock (zap_pte range->set page dirty)

* ->inode->i_ lock (zap _pte range->set page dirty)

* ->private lock (zap_pte range-> set page dirty buffers)
MIST gpse!;at!:g Systems Laboratory Youjip Won

Limitations of locks

O Function uses a data that needs to be protected by a lock.
o The caller may hold a lock.
o The caller may not hold a lock.
O Solution
o Function with a lock and function without a lock: wakeup1 and wakeup
o Ask caller to hold lock always.: sched

o Recursive lock: the caller hold the lock and callee re-acquire the lock.

KA'ST OSLab Youjip Won

Operating Systems Laboratory 43

sched ()

A process calls sched () to yield CPU.

Hand CPU over to other processes.
Put itself to the ready queue.

Cases

- A process uses up its time quantum.
- A process goes to sleep.

- A process exits.

KAIST OSLab Youjip Won

Operating Systems Laboratory

44

peek on sched ()

void
sched (void)
{
int intena;
struct proc *p = myproc();

11 ¢

if (mycpu()->ncli != 1) {
cprintf ("panic! ncli: %d\n",
panic ("sched locks");

}

if (p—->state == RUNNING)
panic ("sched running");

if (readeflags () &FL IF)

panic ("sched interruptible");

intena = mycpu()->intena;

mycpu () ->ncli) ;

swtch (&p—->context, mycpu () ->scheduler) ;

mycpu () -—>intena = intena;

KA'ST OSLab Youjip Won

Operating Systems Laboratory

45

Importance of system software and os

Toyota’s killer firmware: Bad design and
its consequences

Michael Dunn -October 28, 2013

129 Comments
2 toptal

+ Toyota’s electronic throttle control system (ETCS) source code is of unreasonable quality. *

« Toyota’s source code is defective and contains bugs, including bugs that can cause i o0
unintended acceleration (UA).
+ Code-quality metrics predict presence of additional bugs. 2

« Toyota’s fail safes are defective and inadequate (referring to them as a ‘“house of cards” safety
architecture).
« Misbehaviors of Toyota’s ETCS are a cause of UA.

FUEL CELL CARS

Toyota calls back all the Mirais for
software bug

It only affects about 2,800 vehicles around the world.

BY ANDREW KROK | FEBRUARY 16, 2017 11:19 AM PST

f ¥y Fr s @

KAIST OSLab Youjip Won 46

Operating Systems Laboratory

What is the programming language u
jets?

Using Linux in Air Traffic Control
Ad by JetBrains
Level up your code with IntelliJ IDEA.

An IDE built for professional development. Make developing enjo Hardware and Operating System Platforms

[Free trial at jetbrains.com

6 Answers

Gerolf Ziegenhain
" Ajay Pandey, Equal Opportunity Skull Buster

saay Answered Jun 23 2018 - Author has 87 answers and 304.8k answe Fos D E
i i : i Janson
I am saddened reading this answer from a narrative builder what : 'org

2017-02-05

experts in Quora. I can’t resist to write a counter instead of an ans

Programming language doesn’t really matter. Giving emphasis to o B
language is just a non-expert attempt to add credibility. I am not saying C++ is not
powerful. I myself is a C++ programmer for 24 years and saw the evolution from C to

C++98 up to all modern standards of C++11/14/17.

Domain driven and specially designed propriety languages starts taking over any complex
domain. Specially when you can meet the program-ability requirement of hardware by
porting/cross-compilation or automatic generation of code. I myself programmed in
Matlab and designed systems in Simulink and auto generated C++ code to feed into
Hardware; once simulated system succeeds.

The series of false claims is revealing that the poster appears don’t have any experience in
basic Embedded systems. Expecting aviation and defense specific expertise is way too
much.

Here is small list from Ahmed Siddique’s answer:

1. Most ot the Eghters i'ets use Ada. - Not true, initial libraries were developed

in Ada hence leading defense vendors carried it as far as possible. Most Non-
western systems are not Ada unless they purchased Ada component libraries
under ToT agreement.

Steve Anderson
—NATS Head of Airport Transformation

2. Pakistan air force made a unique decision. Instead of using ADA (k)
programming language they used C++. - Not a unique decision, C++ is
widely used language for interaction with Hardware even in defense applications.

3. Because there were literally tens of thousands of young highly London City Airport and NATS to introduce the UK's first digital air traffic control tower

KAIST OSLab Youjip Won

Operating Systems Laboratory

47

