
Youjip Won

Interrupt and Device Driver

2Youjip Won

Contents

• Interrupts

• LAPIC & IO APIC

• Drivers

• Code: Disk driver

3Youjip Won

Hardware Interrupt

• Interrupt: to tell the kernel about the hardware event

• A device generates a signal to indicate that it needs attention from the OS.

• Kernel handles all interrupts because in most cases, only the kernel has the

required privilege and state.

Device #1

Device #2

Interrupt Signal !

Interrupt Signal !

4Youjip Won

Delivering interrupt

• Interrupt Request (IRQ) Line

• Hardware’s output line that transfer the Interrupt Request.

• Interrupt request is the hardware signal sent to the processor that stops a

running program and allows a interrupt handler.

• It is connected to programmable interrupt controller (PIC) not the processor.

• Programmable Interrupt Controller

• Integrated circuit that helps a processor handles interrupt requests.

5Youjip Won

IRQ (Interrupt ReQuest) Line

• A single output line to raise an interrupt

• All IRQ lines are connected to the input pins of a hardware circuit called

the Programmable Interrupt Controller

Device #1

Device #2

IRQ Line #1

Programmable
Interrupt

Controller

IRQ Line #2

Interrupt
request !

?

6Youjip Won

IRQ (Interrupt ReQuest) Line (Cont.)

• Each IRQ has the number and specific usage.

• 0: Timer interrupt

• 1: Keyboard controller interrupt

7Youjip Won

Programmable Interrupt Controller

• It is an IC that helps a processor handles interrupt requests.

• Interrupt requests can be coming from multiple different resource which may occurs

simultaneously.

Device #1

Device #2

IRQ Line #1

Programmable
Interrupt

Controller

IRQ Line #2

INTR pin

I/O Ports

8Youjip Won

Interrupt Vector

• Index of a gate descriptor in interrupt descriptor table.

• The gate descriptor contains the information about interrupt handler.

IDT
…

…

Interrupt
Vector (n)

Gate Descriptorn %cs & %eip

9Youjip Won

Converting IRQ into interrupt vector

• Once interrupt request is sent,

• PIC converts the interrupt request into a corresponding interrupt vector.

• In xv6, IRQ (n) is converted into interrupt vector (n+32).

• PIC sends the interrupt vector to the processor via I/O ports.

Device #1

Device #2

IRQ Line #1

Programmable
Interrupt

Controller

IRQ Line #2

①
Interrupt
request !

INTR pin

I/O Ports

② Send interrupt vector

10Youjip Won

INTR pin

• If interrupt vector is ready,

• PIC sends the signal to processor’s INTR pin.

• Processor reads interrupt vector and begins to execute corresponding interrupt

handler in IDT.

Device #1

Device #2

IRQ Line #1

Programmable
Interrupt

Controller

IRQ Line #2

③ Activate the signal

INTR pin

I/O Ports

IDT

…
…

Interrupt
Vector

Interrupt handler

11Youjip Won

Programmable Interrupt Controller (Cont.)

1. Monitors the IRQ lines and keep checking the interrupt request. If two or

more IRQs are received, selects the one having the lower number.

2. Once interrupt request is detected,

1) Convert the interrupt request into a corresponding interrupt vector.

2) Store the interrupt vector in PIC I/O port, thus allowing the CPU to read it via

the data bus.

3) Send a signal to the processor’s INTR pin (that is, issues an interrupt).

4) Wait until the CPU acknowledges the interrupt signal by writing into one of

the PIC I/O ports; When this occurs, clear the INTR line.

3. Goes back to step ①.

12Youjip Won

Advanced Programmable Interrupt Controller

• Programmable Interrupt Controller (PIC): old mother boards

• PIC from archaic Intel 8259 processor.

• Advanced Programmable Interrupt Controller (APIC)

• APIC from 82489DX(80486 and early Pentium)

• Split architecture of Local APIC and IO APIC

• IO APIC (in IO device) + local APIC (attached to CPU):

13Youjip Won

IOAPIC and LAPIC

• LAPIC (Local APIC)

• It is integrated into the CPU itself.

• It handles all external interrupts.

• IO APIC

• It is integrated into system bus.

• It contains a redirection table to route the interrupt it receives from peripheral

buses to one or more local APICs.

• CPU can program the entries in the table through memory mapped IO (MMIO).

14Youjip Won

IOAPIC and LAPIC

CPU CPU CPU CPU

Local APIC Local APIC Local APIC Local APIC

IPI’sInterrupt
messages

IPI’sInterrupt
messages

IPI’sInterrupt
messages IPI’sInterrupt

messages

IO APIC

Interrupt
messages

Disk
Network Card User device

External interrupts

15Youjip Won

Setting IOAPIC

• Operating system can modify the mapping between the IRQ line and interrupt vector by

using memory mapped I/O

• Xv6 establishes so that IRQ (n) is mapped in interrupt vector (n+32).

• Memory Mapped I/O

• A method of assigning peripherals with unique addresses.

• The peripheral has the register map than maintains its registers.

• Each register has an index.

16Youjip Won

Structure of IO APIC MMIO

27 // IO APIC MMIO structure: write reg, then read or write data.

28 struct ioapic {

29 uint reg;

30 uint pad[3];

31 uint data;

32 };

• IO APIC provides the structure for memory mapped I/O.

• reg: Index of register.

• data : OS can access the value of register via this variable.

17Youjip Won

Programming IO APIC

34 static uint

35 ioapicread(int reg)
36 {
37 ioapic->reg = reg;
38 return ioapic->data;
39 }
40
41 static void
42 ioapicwrite(int reg, uint data)
43 {
44 ioapic->reg = reg;
45 ioapic->data = data;
46 }

• After writing reg value, OS can read/write the data from/to register through

data variable.

Read the value from register (ID == reg)

Write the value to register (ID == reg)

18Youjip Won

• The IO APIC is initialized when the system is booting up.

• The main function for kernel calls the function ioapicinit().

• The ioapicinit() initializes the mapping between IRQ and interrupt vector.

Initializing IO APIC: main.c

17 int
18 main(void)
19 {

…
26 ioapicinit(); // another interrupt controller

…
35 kinit2(P2V(4*1024*1024), P2V(PHYSTOP));
36 userinit(); // first user process
37 mpmain(); // finish this processor's setup
38 }

19Youjip Won

Initializing IO APIC: ioapic.c

• Checking the status of IO APIC

• Read the ID of IO APIC and compare it with the processor’s configuration.

• Read the maximum entry number of redirection table (Line 54).

9 #define IOAPIC 0xFEC00000 // Default physical address of IO APIC
…

48 void
49 ioapicinit(void)
50 {
51 int i, id, maxintr;
52
53 ioapic = (volatile struct ioapic*)IOAPIC; // IO device to memory
54 maxintr = (ioapicread(REG_VER) >> 16) & 0xFF;
55 id = ioapicread(REG_ID) >> 24;
56 if(id != ioapicid)
57 cprintf("ioapicinit: id isn't equal to ioapicid; not a MP\n");

…
65 }

20Youjip Won

Read maximum entry number: ioapic.c

• Read the maximum entry number of redirection table.

9 #define IOAPIC 0xFEC00000 // Default physical address of IO APIC
…

48 void
49 ioapicinit(void)
50 {
51 int i, id, maxintr;
52
53 ioapic = (volatile struct ioapic*)IOAPIC; // IO device to memory
54 maxintr = (ioapicread(REG_VER) >> 16) & 0xFF;
55 id = ioapicread(REG_ID) >> 24;
56 if(id != ioapicid)
57 cprintf("ioapicinit: id isn't equal to ioapicid; not a MP\n");

…
65 }

REG_VER (0x01)

32 bit register

31 24 23 16 15 8 7 0
reserved reserved

IO APIC
version

Maximum
Redirection Entry

21Youjip Won

Setting a redirection entry

• Each entry has two register.

• Register 1: The configuration for IRQ .

• (i) Disabled or not / (ii) Interrupt vector.

• Register 2: Target CPU that the signal will be sent.

• The index of the first redirection entry is REG_TABLE (== 0x10).

• The indexes of nth entry registers are

• REG_TABLE + n

• REG_TABLE + n + 1

nth entry Register 1 Register 2

REG_TABLE + n REG_TABLE + (n+1)

22Youjip Won

Setting a redirection entry: ioapic.c

• Register 1 (Line 62)

• IRQ is disabled and mapped to interrupt vector (32 + n)

• Register 2 (Line 63)

• Set the target CPU that the signal will be sent.

48 void ioapicinit(void) {
…

58
59 // Mark all interrupts edge-triggered, active high, disabled,
60 // and not routed to any CPUs.
61 for(i = 0; i <= maxintr; i++){
62 ioapicwrite(REG_TABLE+2*i, INT_DISABLED | (T_IRQ0 + i));
63 ioapicwrite(REG_TABLE+2*i+1, 0);
64 }
65 }

T_IRQ0 == 32

23Youjip Won

Disabling the interrupt

• (1) Disable processing of interrupt from a specific IRQ line.

• Set the disable flag (0x1000) at nth IRQ line by using memory mapped I/O.

• Disabled interrupts are not lost; PIC sends them to the CPU as soon as IRQ lines

are enabled again.

• (2) Disable all interrupt.

• cli instruction: Clear the IF flag to the eflags register. ↔ sti instruction

• Ignore all interrupt signal from INTR pin.

Device #1

Device #2

IRQ Line #1

Programmable
Interrupt

Controller

IRQ Line #2

INTR pin

I/O Ports

(1) Disable processing
of IRQ line

(2) Disable all interrupt

24Youjip Won

Enabling IRQ line: ioapic.c

67 void

68 ioapicenable(int irq, int cpunum)

69 {

70 // Mark interrupt edge-triggered, active high,

71 // enabled, and routed to the given cpunum,

72 // which happens to be that cpu's APIC ID.

73 ioapicwrite(REG_TABLE+2*irq, T_IRQ0 + irq);

74 ioapicwrite(REG_TABLE+2*irq+1, cpunum << 24);

75 }

• Enable the IRQ line and set the target CPU.

• If operating system is ready to handle interrupt, calls this function to enable

interrupt.

• (i) Disk driver is ready or (ii) Console is ready.

25Youjip Won

Drivers

• The code in an OS that manages a device.

• Tells the device to do something.

• Configure the device.

• Handle the interrupt from the device.

• Device driver for disk

• Copies data to and from the disk.

• Unit of transfer: 512 byte (sector)

• Host side data structure for sector: struct buf

26Youjip Won

Disk Driver

27Youjip Won

1 struct buf {
2 int flags;
3 uint dev;
4 uint blockno;
5 struct sleeplock lock;
6 uint refcnt;
7 struct buf *prev; // LRU cache list
8 struct buf *next;
9 struct buf *qnext; // disk queue
10 uchar data[BSIZE];
11 };

struct buf

• It has two roles; (i) buffer cache & (ii) hold disk command.

• Buffer cache

• All buffer caches are managed by doubly linked list.

• It contains the data and block number as an ID.

Head of LRU list

BSIZE
512 bytes

NULL

NULL

struct buf struct buf struct buf

28Youjip Won

1 struct buf {
2 int flags;
3 uint dev;
4 uint blockno;
5 struct sleeplock lock;
6 uint refcnt;
7 struct buf *prev; // LRU cache list
8 struct buf *next;
9 struct buf *qnext; // disk queue
10 uchar data[BSIZE];
11 };

struct buf (Cont.)

• Hold disk command

• data is the area that contains the data to be written or empty for reading data.

• The pending commands are maintained by queue.

BSIZE
512 bytes

Command Queue

Command #1

Command #2

qnext

qnext

29Youjip Won

Flag of struct buf

• B_VALID

• This flag is set when data read is done.

• Before sending the read command, OS has to clear this flag.

• B_DIRTY

• This flag is set when data is updated.

• Before sending the write command, OS has to set this flag.

1 struct buf {
2 int flags;
3 uint dev;
4 uint blockno;
5 struct sleeplock lock;
6 uint refcnt;
7 struct buf *prev; // LRU cache list
8 struct buf *next;
9 struct buf *qnext; // disk queue
10 uchar data[BSIZE];
11 };

30Youjip Won

IDE Device Driver

• The layer for controlling the IDE interface device.

• Xv6 uses IDE device drive to control the disk.

• There are the registers that are used to communicate with disk.

• Control register (8 bit)

• Command block registers

• Data register (16 bit)

• 7 registers (7 * 8 bit)

30

31Youjip Won

Control Register

• Address 0x3F6

• 0000 1RE0 (1 Byte)

• The bits with the numerical value (0 or 1) must be set to the same value.

• Control register contains only two valid bits.

• R is the software reset bit, which causes a drive reset when being set to 1.

• E bit 1 is the interrupt enable flag. (Active when set to 0).

0 0 0 0 1 R E 0

7 4 3 0

32Youjip Won

Command Block Registers

• Address 0x1F0 = Data Port (2 Byte)

• Reading or Writing the data via this port.

• Address 0x1F1 = Error (1 Byte)

• Address 0x1F2 = Sector Count (1 Byte)

• Address 0x1F3 = LBA low byte (1 Byte)

• Address 0x1F4 = LBA mid byte (1 Byte)

• Address 0x1F5 = LBA hi byte (1 Byte)

• Address 0x1F6 = SDH register (1 Byte)

• Address 0x1F7 = Command / Status (1 Byte)

33Youjip Won

SDH register

• Address 0x1F6 = SDH register (1 byte)

• “Sector size”, “Drive” and “Head” Register.

• Sector size is unchangeable by the user. It must be fixed.

• The first 3 bits have to be set to 1.

1 1 1 D H

7 4 3 05

34Youjip Won

SDH register (Cont.)

• Drive ID (1 bit)

• This bit distinguishes between the two connected drives when using the

master-slave chain (Master = 0 / Slave = 1).

• OS can change the controlled disk by changing the ID to SDH register.

• LBA Top 4 bit (4 bit)

• The most significant four bit for LBA.

35Youjip Won

LBA registers

• Address 0x1F2 = Sector Count (1 Byte)

• How many sector you read or write.

• Address 0x1F3 = LBA low byte (1 Byte)

• Address 0x1F4 = LBA mid byte (1 Byte)

• Address 0x1F5 = LBA hi byte (1 Byte)

• Address 0x1F6 = SDH ð LBA top (4 bit) 4
bit

8
bit

8
bit

8
bit

Logical Block Address (LBA)

LBA is 28 bit.

IDE interface can cover up to 16 GB, 512 Byte * 2^28.

36Youjip Won

Command / Status Register

• Address 0x1F7 = Command / Status (1 Byte)

• Command register when OS writes the value. READ or WRITE

• Status register when OS reads the value.

• Status Register (8 bit)

• Each bit represents different status.

7 Drive busy Cannot access registers due to internal operations.

6 Drive ready Drive is ready to accept a command.

5 Drive write fault Write is faulted.

4 Drive seek complete When actuator of the drive’s head is on track.

3 Data request Drive is ready for a data transfer.

2 Corrected data flag Set when there was a correctable data error.

1 Index This bit is active once per disk revolution.

0 Error flag This bit is set whenever an error occurs.

37Youjip Won

Error Register

• Address 0x1F1 = Error (1 Byte)

• The register value is valid only when the status’s ERROR bit is 1.

• Each bit represents different error.

7 Bad block

6 Uncorrectable data error

5 Unused

4 Sector ID not found (Wrong sector number.)

3 Unused

2 Command Aborted

1 Track 0 has not been found when recalibrating

0 Unused

38Youjip Won

• The device driver is initialized when the system is booting up.

• The ideinit() enables the interrupt for IDE interface and waits until the disk

is ready.

Initializing device driver: main.c

17 int
18 main(void)
19 {

…
26 ideinit(); // disk

…
35 kinit2(P2V(4*1024*1024), P2V(PHYSTOP));
36 userinit(); // first user process
37 mpmain(); // finish this processor's setup
38 }

39Youjip Won

Setting redirection entry for IDE IRQ: ide.c

• IRQ is enabled and mapped to interrupt vector (32 + n)

• The interrupt is routed to the highest numbed CPU.

50 void
51 ideinit(void)
52 {
53 int i;
54
55 initlock(&idelock, "ide");
56 ioapicenable(IRQ_IDE, ncpu - 1);

…
70 }

67 void
68 ioapicenable(int irq, int cpunum)
69 {

…
73 ioapicwrite(REG_TABLE+2*irq, T_IRQ0 + irq);
74 ioapicwrite(REG_TABLE+2*irq+1, cpunum << 24);
75 }

40Youjip Won

Wait for process of disk-0: ide.c

• Master disk (ID = 0) ð disk-0 / Slave disk (ID = 1) ð disk-1.

• Before enabling the disk-1, xv6 checks the status of disk-0 and waits until the disk-0 is

ready.

50 void
51 ideinit(void)
52 {
53 int i;
54
55 initlock(&idelock, "ide");
56 ioapicenable(IRQ_IDE, ncpu - 1);
57 idewait(0);

…
70 }

38 static int idewait(int checkerr){
…

43 while(((r = inb(0x1f7)) & (IDE_BSY|IDE_DRDY)) != IDE_DRDY)
;

…
47 return 0;
48 }

41Youjip Won

Check the disk-1: ide.c

• Then, switch the controlled disk to disk-1 (Line 60).

• Xv6 checks if disk-1 is present. If it becomes ready in the 1,000 iterations, set the

havedisk1 to 1 (Line 61~66).

• Then, switch back to disk-0 (Line 69).

50 void ideinit(void) {
…

59 // Check if disk 1 is present
60 outb(0x1f6, 0xe0 | (1<<4));
61 for(i=0; i<1000; i++){
62 if(inb(0x1f7) != 0){
63 havedisk1 = 1;
64 break;
65 }
66 }
67
68 // Switch back to disk 0.
69 outb(0x1f6, 0xe0 | (0<<4));
70 }

42Youjip Won

IDE device driver

struct buf struct buf struct buf

Command Queue

① iderw(): Enqueue the command
and waits for completion.

② idestart():
Transfer the command to

disk.
③ ideintr(): Handle I/O

completion interrupt and wake up the
thread that calls iderw().

DISK Inter
rupt!

43Youjip Won

Flag of disk command

• The flag have to be set appropriately according to the type of I/O.

• When reading the data, the valid bit have to be set to 0.

• When writing the data, the dirty bit have to be set to 1.

• The flag is used to detect I/O completion.

• The interrupt handler for I/O completion sets the valid bit and clears the dirty

bit.

B_VALID B_DIRTY

READ 0 -

WRITE - 1
I/O completion

B_VALID B_DIRTY

READ
1 0

WRITE

44Youjip Won

iderw()

When reading or writing the data, xv6 creates the command and calls the iderw().

1. Enqueue the command to the command queue.

1. If the enqueued command is the only entry in the queue, call idestart().

2. Wait for I/O completion.

struct bufWhere, What?
Read vs. Write

Command Queue

45Youjip Won

138 void iderw(struct buf *b)
139 {
140 struct buf **pp;
141

142 if(!holdingsleep(&b->lock))

143 panic("iderw: buf not locked");

144 if((b->flags & (B_VALID|B_DIRTY)) == B_VALID)

145 panic("iderw: nothing to do");

146 if(b->dev != 0 && !havedisk1)

147 panic("iderw: ide disk 1 not present");

…

Checking disk command: iderw()

(i) In case of write: B_DIRTY should be set.

(ii) In case of read: B_VALID should be not set.

(iii) The device should be ready.

46Youjip Won

Enqueueing the command: iderw()

1. Acquire the lock to prevent race condition for command queue.

2. Enqueue the command at the end of command queue.

138 void iderw(struct buf *b){
…

149 acquire(&idelock); //DOC:acquire-lock

150
151 // Append b to idequeue.
152 b->qnext = 0;
153 for(pp=&idequeue; *pp; pp=&(*pp)->qnext) //DOC:insert-queue

154 ;
155 *pp = b;
156
157 // Start disk if necessary.
158 if(idequeue == b)
159 idestart(b);

…

1

2

47Youjip Won

Transfer the command : iderw()

3. If the command is the only entry in the queue, call idestart() to transfer

the command to disk.

If not, interrupt handler transfers this command to disk (more detail later).

138 void iderw(struct buf *b){
…

149 acquire(&idelock); //DOC:acquire-lock

150
151 // Append b to idequeue.
152 b->qnext = 0;
153 for(pp=&idequeue; *pp; pp=&(*pp)->qnext) //DOC:insert-queue

154 ;
155 *pp = b;
156
157 // Start disk if necessary.
158 if(idequeue == b)
159 idestart(b);

…

3

48Youjip Won

Waiting for I/O completion : iderw()

4. Wait for the completion of the I/O.

1) Check the valid bit and dirty bit and goes to sleep.

2) Wait until the valid bit is set to 1 and dirty bit is set to 0.

138 void iderw(struct buf *b){
…

161 // Wait for request to finish.
162 while((b->flags & (B_VALID|B_DIRTY)) != B_VALID){
163 sleep(b, &idelock);
164 }
165
166
167 release(&idelock);
168 }

4

49Youjip Won

idestart()

• Transfer the command to the disk.

• Write the proper value to control block registers of disk.

DISK

Set the register to proper values.

struct buf

50Youjip Won

73 static void idestart(struct buf *b) {
…

87 idewait(0);

Waiting until disk is ready: idestart()

1. Wait until the disk is ready.

This is for waiting the end of internal operation before updating the register.

38 static int idewait(int checkerr) {
…

43 while(((r = inb(0x1f7)) & (IDE_BSY|IDE_DRDY)) !=
IDE_DRDY)
44 ;
45 if(checkerr && (r & (IDE_DF|IDE_ERR)) != 0)
46 return -1;
47 return 0;
48 }

51Youjip Won

Enabling interrupt / Setting sector count: idestart()

2. Enable interrupt for the device

🡺 Clears the E bit at the Control Register (0x3F6).

3. Set the number of sectors for an I/O

🡺 Write the sector count to the sector count register (0x1F2).

73 static void idestart(struct buf *b) {
…

87 idewait(0);
88 outb(0x3f6, 0); // generate interrupt
89 outb(0x1f2, 1); // number of sectors

…

52Youjip Won

Setting LBA / Setting drive ID: idestart()

4. Set the 28 bit logical block address

🡺 Write the LBA to the four registers (0x1F3 ~ 0x1F6).

5. Set the drive ID.

ð Write the drive ID at the upper 4 bit to the SDH register (0x1F6).

ð First 3 bits should be 1 so do bitwise AND 0xe0 and drive ID << 4.

73 static void idestart(struct buf *b) {
…

87 idewait(0);
88 outb(0x3f6, 0); // generate interrupt
89 outb(0x1f2, 1); // number of sectors
90 outb(0x1f3, sector & 0xff); // 1
91 outb(0x1f4, (sector >> 8) & 0xff); // 2
92 outb(0x1f5, (sector >> 16) & 0xff); // 3
93 outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((sector>>24)&0x0f)); // 4

…

53Youjip Won

Transferring the write command: idestart()

6. If the DIRTY bit is 1, transferring the write command.

ð Write the write command to command register (0x1F7).

ð Call outsl(port, address, cnt).

73 static void idestart(struct buf *b) {
…

90 outb(0x1f3, sector & 0xff);
91 outb(0x1f4, (sector >> 8) & 0xff);
92 outb(0x1f5, (sector >> 16) & 0xff);
93 outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((sector>>24)&0x0f));
94 if(b->flags & B_DIRTY){
95 outb(0x1f7, write_cmd); // WRITE
96 outsl(0x1f0, b->data, BSIZE/4); // transfer data
97 } else {

…

54Youjip Won

outsl(port, address, cnt)

• asm

• Inline assembly code for C.

• With extended asm, you can read and write C variables when executing

assembly code.

• Each string means the operation of this asm.

• volatile

• Prevent the optimization by compiler.

33 static inline void
34 outsl(int port, const void *addr, int cnt)
35 {
36 asm volatile("cld; rep outsl" :
37 "=S" (addr), "=c" (cnt) :
38 "d" (port), "0" (addr), "1" (cnt) :
39 "cc");
40 }

55Youjip Won

Instructions: outsl(port, address, cnt)

• There are three instructions (Line 36).

• (i) cld instruction

• It clears the direction flag, so that the following instruction increments %esi or

%edi.

• When the flag is set, following instruction decrements the register instead.

• (ii) rep instruction

• It executes the following instruction %ecx times, decrementing %ecx after each

iteration.

33 static inline void
34 outsl(int port, const void *addr, int cnt)
35 {
36 asm volatile("cld; rep outsl" :
37 "=S" (addr), "=c" (cnt) :
38 "d" (port), "0" (addr), "1" (cnt) :
39 "cc");
40 }

56Youjip Won

Instructions: outsl(port, address, cnt) (Cont.)

• There are three instructions (Line 36).

• (iii) outsl instruction

• It writes a 32-bit value to port %dx from the data at address %esi and then increments %esi

by 4.

33 static inline void
34 outsl(int port, const void *addr, int cnt)
35 {
36 asm volatile("cld; rep outsl" :
37 "=S" (addr), "=c" (cnt) :
38 "d" (port), "0" (addr), "1" (cnt) :
39 "cc");
40 }

57Youjip Won

Output: outsl(port, address, cnt)

• The operations starting with "=" are for saving the value of register to

variable.

• "=S": Write the value of %esi to the addr variable.

• "=c": Write the value of %ecx to the cnt variable.

33 static inline void
34 outsl(int port, const void *addr, int cnt)
35 {
36 asm volatile("cld; rep outsl" :
37 "=S" (addr), "=c" (cnt) :
38 "d" (port), "0" (addr), "1" (cnt) :
39 "cc");
40 }

58Youjip Won

Input: outsl(port, address, cnt)

• The next operations are for setting the register.

• "d": Write the value of port variable to %dx register.

• "0" and "1": Using same registers with outputs.

• Write the value of addr variable to %esi register.

• Write the value of cnt variable to %ecx register.

33 static inline void
34 outsl(int port, const void *addr, int cnt)
35 {
36 asm volatile("cld; rep outsl" :
37 "=S" (addr), "=c" (cnt) :
38 "d" (port), "0" (addr), "1" (cnt) :
39 "cc");
40 }

59Youjip Won

Summary: outsl(port, address, cnt)

• rep outsl

• Repeat the following operations %ecx times.

• Write 4 bytes data at %esi to port (%dx). Then, increase %esi by 4.

33 static inline void
34 outsl(int port, const void *addr, int cnt)
35 {
36 asm volatile("cld; rep outsl" :
37 "=S" (addr), "=c" (cnt) :
38 "d" (port), "0" (addr), "1" (cnt) :
39 "cc");
40 }

port

%dx

Variable

Register

addr

%esi

cnt

%ecx

60Youjip Won

Transferring the write command: idestart() (Cont.)

6. If the DIRTY bit is 1, transfer the write command.

ð Write the write command to command register (0x1F7).

ð Call outsl(port, address, cnt).

ð Write 4 bytes 128 times. (BSIZE/4 == 128)

73 static void idestart(struct buf *b) {
…

90 outb(0x1f3, sector & 0xff);
91 outb(0x1f4, (sector >> 8) & 0xff);
92 outb(0x1f5, (sector >> 16) & 0xff);
93 outb(0x1f6, 0xe0 | ((b->dev&1)<<4) | ((sector>>24)&0x0f));
94 if(b->flags & B_DIRTY){
95 outb(0x1f7, write_cmd); // WRITE
96 outsl(0x1f0, b->data, BSIZE/4); // transfer data
97 } else {

…

61Youjip Won

Transfer the read command: idestart() (Cont.)

6. If the DIRTY bit is 0, transferring the read command.

ð Write the read command to command register (0x1F7).

73 static void idestart(struct buf *b) {
…

93 outb(0x1f6, 0xe0 | ((b->dev&1)<<4) |
((sector>>24)&0x0f));
94 if(b->flags & B_DIRTY){
95 outb(0x1f7, write_cmd); // WRITE
96 outsl(0x1f0, b->data, BSIZE/4); // trnasfer

97 } else {
98 outb(0x1f7, read_cmd); // READ
99 }
100 }

62Youjip Won

ideintr()

• Handle the I/O completion interrupt.

• Dequeue an entry at the head of queue and transfer next command.

DISK

Interrupt occurs!

Command Queue

63Youjip Won

Dequeue the command: ideintr()

This function is invoked once the I/O completion interrupt occurs.

1. Dequeue the command at the head of the queue.

103 void
104 ideintr(void)
105 {
106 struct buf *b;
107
108 // First queued buffer is the active request.
109 acquire(&idelock);
110
111 if((b = idequeue) == 0){
112 release(&idelock);
113 return;
114 }
115 idequeue = b->qnext;

64Youjip Won

Read the data: ideintr()

2. If the valid bit is 0, read the data from the disk.

ð Wait until the disk is ready.

ð Call insl(port, addr, cnt).

103 void
104 ideintr(void)
105 {
106 struct buf *b;
107
108 // First queued buffer is the active request.
109 acquire(&idelock);
110

…
116
117 // Read data if needed.
118 if(!(b->flags & B_DIRTY) && idewait(1) >= 0)
119 insl(0x1f0, b->data, BSIZE/4);

65Youjip Won

insl(port, address, cnt)

• rep insl

• Repeat the following operations %ecx times.

• Read 4 bytes from port (%dx) to %edi. Then, increase %edi by 4.

12 static inline void
13 insl(int port, void *addr, int cnt)
14 {
15 asm volatile("cld; rep insl" :
16 "=D" (addr), "=c" (cnt) :
17 "d" (port), "0" (addr), "1" (cnt) :
18 "memory", "cc");
19 }

port

%dx

Variable

Register

addr

%edi

cnt

%ecx

%edi

66Youjip Won

Read the data: ideintr()

2. If the valid bit is 0, read the data from the disk.

ð Wait until the disk is ready.

ð Call insl(port, addr, cnt).

ð Read 4 byte 128 times (BSIZE/4 == 128).

103 void
104 ideintr(void)
105 {
106 struct buf *b;
107
108 // First queued buffer is the active request.
109 acquire(&idelock);
110

…
116
117 // Read data if needed.
118 if(!(b->flags & B_DIRTY) && idewait(1) >= 0)
119 insl(0x1f0, b->data, BSIZE/4);

67Youjip Won

Waking up sleeping thread: ideintr()

3. Set the valid bit and clear the dirty bit.

4. Wake up the thread that calls iderw().

103 void
104 ideintr(void)
105 {

…
117 // Read data if needed.
118 if(!(b->flags & B_DIRTY) && idewait(1) >= 0)
119 insl(0x1f0, b->data, BSIZE/4);
120
121 // Wake process waiting for this buf.
122 b->flags |= B_VALID;
123 b->flags &= ~B_DIRTY;
124 wakeup(b);

68Youjip Won

Transferring next command: ideintr()

5. Transfer the next command if there is command in the queue.

🡺 The pending commands at iderw() are transferred to the disk by interrupt

handler.

103 void
104 ideintr(void)
105 {

…
125
126 // Start disk on next buf in queue.
127 if(idequeue != 0)
128 idestart(idequeue);
129
130 release(&idelock);
131 }

69Youjip Won

Handling I/O in xv6.

Command Queue

#1 #2

• Xv6 transfers the command to disk only when previous command is done.

• (i) At iderw(), transferring the command is blocked if there is another entry

in the command queue.

• (ii) Interrupt handler dequeues the command at the head of queue and

transfers the next command blocked by an another I/O command.

iderw(#2)

(i) The command #2 is not
transferred to the disk.

Command Queue

#1 #2

ideintr()

(ii) The command #2 is transferred
only when the command #1 is done.

Disk

kernel

70Youjip Won

• Interrupt, exception and system call

• Protection mode

• Trapframe

• System call

• Interrupt and Device driver

Summary

