
Polling Based Per-core Workqueue Management in
XFS Journaling

Kwangwon Min§, Dohyun Kim§, Seungho Lim and Youjip Won
Department of Electrical Engineering, KAIST, Korea

Abstract—In this paper, we analyze the scalability of XFS
journaling and improve the many-core scalability of XFS jour-
naling. We found that the lock contention in the async and await
mechanisms, such as workqueue and waitqueue, is one of the
main causes for the scalability failure in XFS journaling. We
propose per-core pool workqueue and polling based on-disk logging
to solve these problems. By using per-core pool workqueue, we
resolve the lock contention on thread pool used in the workqueue
module. By using polling based on-disk logging, XFS waits for
the journal thread to finish in polling based mechanism. We
resolve the lock contention on global waitqueue and reduce the
latency of on-disk logging through polling. We implement these
methods based on XFS. In varmail and exim workloads, the
proposed techniques improve the benchmark performance by
57% and 28% against XFS, and 9% and 28% against ScaleXFS,
respectively.

Index Terms—Operating System, Filesystem, XFS, Journaling

I. INTRODUCTION

The filesystem journaling ensures that the integrity of the

filesystem is not compromised in case of the unexpected

system failure [1], [2]. The filesystem journaling writes the log

data to the journal region first, journaling, and later migrates

the log data to its original location, checkpoint. With the

advancement of hardware systems, the journaling of filesystem

has emerged as a major reason for hindering the scalability

in many-core systems [3], [4]. Many studies are being con-

ducted with the aim of improving the scalability of filesystem

journaling [5]–[7]. They separate centralized journaling data

structures to per-core basis [7], or separate journal regions into

multiple [6] to improve the many-core environments. Most

of the existing studies for many-core scalability of filesystem

journaling are for EXT4 filesystem [8]. These techniques

cannot be readily applied to the other journaling filesystems

such as XFS. ScaleXFS [9] addresses the many-core scala-

bility of XFS filesystem journaling. The studies dealing with

the scalability of existing filesystem journaling have mainly

targeted specific filesystems, especially EXT4 [10]. XFS is

popular filesystem, as it is used as the basic filesystem for Red

Hat Enterprise Linux(RHEL) [11] and as the default filesystem

for Ceph [12], a distributed storage system.

This paper focuses on resolving the scalability bottleneck

of XFS journaling. In particular, we focus on resolving the

contention generated by the async and await mechanisms used

in XFS journaling procedure. ScaleXFS resolves the main

bottleneck of XFS journaling [9]. We find that the contention

§Both of the authors equally contributed to this work.

of the locks on the workqueue and the waitqueue in on-disk

logging of ScaleXFS is substantial.

We propose two methods to alleviate those contentions.

The first one is enabling per-core pool workqueue. XFS

uses a workqueue [13] to trigger the journaling operation.

Currently, XFS uses a per-NUMA node pool workqueue. In

the per-NUMA node pool workqueue, there is a thread pool,

which manages the pre-allocated threads, for each NUMA

node. Per-core pool workqueue utilizes the existing Linux

kernel’s workqueue module, allowing XFS to use per-core

pool workqueue, not the per-NUMA node pool workqueue.

By adopting per-core pool workqueue, we eliminate the lock

contention on the thread pool. Second method that we propose

is polling based on-disk logging. XFS uses waitqueue [14]

mechanism to wait for the completion of the journal thread

and commit thread in on-disk logging. In XFS, all the threads

calling fsync() try to acquire the single global lock that

protects the waitqueue whenever they go to sleep or wake

up. In many-core environment that many threads can invoke

fsync() concurrently, the lock contention on the waitqueue

becomes severe. By waiting for the completion of the thread

that performed on-disk logging in a polling manner, we

alleviate the contention on the lock of the waitqueue. We

apply per-core pool workqueue and polling based on-disk

logging on most recent variant of XFS, ScaleXFS [9]. With

the physical experiment on 112 core machine, our methods

improve the performance up to by 24% against ScaleXFS on

varmail workload [15], and up to by 28% on exim mail server

[16].

II. BACKGROUND

A. XFS journaling

XFS was developed for Terabyte-scale filesystem supporting

full 64-bit filesystem [2]. XFS is the journaling filesystem that

supports multi-granularity differential logging [17], [18]. The

journaling of XFS consists of two phases; in-memory logging
and on-disk logging. In-memory logging is the process that

creates a log data, the copy of modified metadata. The log

data is inserted into a global list, Committed Item List. In on-

disk logging, XFS constructs a memory buffer by copying the

log data in the committed item list. Then, it writes this buffer

in the journal area on the storage device.

In-memory logging. When a application thread calls the

filesystem operation that modifies the metadata, this thread

performs in-memory logging. First, it acquires the lock on

a metadata and modifies the metadata. Then, it creates the

39

2022 IEEE 11th Non-Volatile Memory Systems and Applications Symposium (NVMSA)

978-1-6654-5078-2/22/$31.00 ©2022 IEEE
DOI 10.1109/NVMSA56066.2022.00016

20
22

 IE
EE

 1
1t

h
N

on
-V

ol
at

ile
 M

em
or

y
Sy

st
em

s a
nd

 A
pp

lic
at

io
ns

 S
ym

po
si

um
 (N

V
M

SA
) |

 9
78

-1
-6

65
4-

50
78

-2
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
N

V
M

SA
56

06
6.

20
22

.0
00

16

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 09,2022 at 01:56:51 UTC from IEEE Xplore. Restrictions apply.

committed item list’s entry, which is called log item, for each

modified metadata. The log item contains the type of metadata

and the start address of log data. After creating the log item,

the application thread creates the log data by copying the

updated region of metadata. For the metadata smaller than

4 Kbyte, the log data becomes the copy of full metadata. For

the metadata which is equal to or larger than 4 Kbyte, XFS

copies the updated region in the units of 128 bytes.

If the same metadata has been updated more than once

before triggering on-disk logging, the log item would be

already in the committed item list. The race condition can

occur when in-memory logging and on-disk logging access

the same log item in this list. To avoid it, before storing

the start address of log data, XFS acquires a shared lock

(read-write semaphore) to allow other in-memory loggings and

block on-disk logging. Then, XFS inserts the log item into the

committed item list. The application thread needs to acquire

the exclusive lock (spin lock) on the committed item list when

it inserts the log item to the committed item list.

On-disk logging. On-disk logging is triggered periodically,

when fsync() is invoked, or when the log data in the

committed item list exceeds 1/8 of the journal region. Default

interval for triggering the on-disk logging is 30 sec. XFS exe-

cutes on-disk logging asynchronously by using the workqueue

[13]. On-disk logging is performed on two different threads.

We call them journal thread and commit thread.

The journal thread is executed asynchronously through the

workqueue when on-disk logging is triggered. It first acquires

an exclusive lock (read-write semahpore) on the committed

item list to block in-memory loggings and other on-disk log-

gings. Subsequently, it creates the on-disk logging context that

contains the information of current on-disk logging process.

The on-disk logging context has its ID and the list of log

data. The context ID is assigned to a value that is one greater

than the context ID of the most recently initiated on-disk

logging. The log data of log item inserted in committed item

list is migrated to the log data list in this context. Then, the

current on-disk logging context is inserted into a global list,

Committing List. The committing list maintains the contexts

of ongoing on-disk loggings. The journal thread inserts the

created on-disk logging context to the committing list and

releases the exclusive lock (read-write semaphore).

The journal thread traverses the log data list in the context

and copies all the log data to the in-memory buffer, which is

called Log Buffer. XFS maintains eight log buffers. Each log

buffer has its own waitqueue. Only one of these buffer can

be active state and the journal thread only can copy the data

to active log buffer. When the active log buffer is full, XFS

chooses the new active log buffer in a round-robin manner.

Once it finishes copying the log data, the commit record that

represents the last log data have to be copied to the log buffer.

The commit record has the context ID. In XFS journaling, the

commit record has to be copied to the log buffer in the order

in which the context ID increases. The on-disk logging context

has the indicator of whether the commit record is copied or

not. The journal thread checks the indicator of each context in

the committing list. If the journal threads needs to wait for the

preceding journal thread, it inserts itself to a global waitqueue.

The committing list and this waitqueue are protected by a

global exclusive lock. After copying all the log data including

the commit record, the journal thread dispatches the data in

log buffer to the journal region on the storage device with

PRE_FLUSH and FUA flags. Then, it updates the indicator of

on-disk logging context and wakes up all the threads inserted

in the global waitqueue. The journal thread terminates without

waiting completion of the log buffer write.

When the completion interrupt of log buffer write occurs,

the commit thread is executed asynchronously through the

workqueue. It first acquires the two locks on the log buffer and

the committing list, respectively. Then, it cleans up all the data

in the log buffer and wakes up the threads in the waitqueue of

log buffer. The context of on-disk logging, where the written

log buffer contains the commit record, is removed from the

committing list. Lastly, the locks are released and the commit

thread terminates.

Application

thread

Journal thread

Commit thread

fsync()is invoked. fsync() returns.

Storage Device
Dispatch

the log data.

Completion

interrupt occurs!

Waitqueue #2Waitqueue #1

Handle the

interrupt.

Copy log data

to log buffer.

1

2

3

4

5

Fig. 1: fsync() in XFS.

fsync() in XFS. XFS handles fsync() in two stages.

XFS leaves the processing of journaling to the journal thread

and commit thread. The application thread calling fsync()
waits for the completion of each thread at each step.

First, 1© the application thread initiates the on-disk logging

by using the workqueue. Then, it waits for the initiated journal

thread to copy the commit record to the log buffer. To do

this, the application thread first finds the context of on-disk

logging by traversing the committing list. Then, 2© it inserts

itself into a global waitqueue. To avoid race condition, the

application thread acquires and releases the lock that protects

the committing list and the waitqueue when it accesses the

list and waitqueue. Once the journal thread copies the commit

record, 3© it wakes up all the threads waiting in the waitqueue.

Second, the application thread waits for the completion of

on-disk logging. Through the first step, it can the log buffer in

which the commit record of on-disk logging is copied. The

start address of log buffer is stored at the context of on-

disk logging. 4© The application thread inserts itself to the

waitqueue of log buffer. After the data in log buffer is persisted

to the storage, 5© the commit thread wakes up all the threads

waiting in the waitqueue of log buffer.

40

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 09,2022 at 01:56:51 UTC from IEEE Xplore. Restrictions apply.

B. Workqueue

Workqueue is the queue that maintains the functions to

execute. It manages the multiple pre-created threads and

allocates the queued function to one of those threads. It

is often used when asynchronous execution of processes or

interrupt handling are required [13]. The workqueue consists

of the three main components; work item, thread pool, and

pool workqueue. First, the work item is the unit of execution

request. It holds the pointer of function to be executed. If a

thread needs to execute the function asynchronously, it should

first create the work item which has the function pointer to

be executed. The thread pool is a pool of multiple threads

that waits for the work item to be allocated. These threads are

waiting in an IDLE state. Each thread pool has its own queue,

pool workqueue, which maintains the queued work items.

The workqueue keep checking the status of pool workqueue.

Once the new work item is inserted into the pool workqueue,

the workqueue wakes up one of the waiting threads in the

thread pool that owns the pool workqueue. The awaken thread

becomes running state and removes the work item from the

pool workqueue. Then, it calls the function stored in the work

item.

C. Waitqueue

Waitqueue is the queue that maintains the contexts of

threads waiting for a certain condition to be true [14]. When

a thread needs to sleep until some threads finished their

activities, it inserts its thread context to the waitqueue. Then,

it yields the CPU. The threads waiting in waitqueue are

set to be uninterruptible to be never woken up by CPU

scheduling. To wake up the waiting threads, an another thread

removes the context in the waitqueue and sets it to be running.

Then, waiting threads in waitqueue are woken up by CPU

scheduling. Usually, the waitqueue and the variables that can

identify the condition are shared across the multiple threads.

To prevent race condition among these threads, the other

methods, such as a lock, that control the access of multiple

threads is required.

III. MOTIVATION

0.0

0.2

0.4

0.6

 0 20 40 60 80 100 120

(a) Varmail-ptd

T
h
ro

u
g
h
p
u
t

(M
o
p
s/

se
c)

cores

XFS
S-XFS

0

5

10

15

20

 0 20 40 60 80 100 120

(b) Exim

T
h
ro

u
g
h
p
u
t

(K
m

sg
/s

ec
)

cores

Fig. 2: Throughput of varmail-ptd and exim on XFS and

ScaleXFS.

To analyze the many-core scalability of XFS journaling, we

conduct an experiment with varying the number of cores. We

use 112 core machine (HPE ProLiant DL580, 28 core/socket,

4 sockets, Intel Xeon Platinum 8276) with 512 GByte DRAM.

We examine XFS and ScaleXFS [9] on Intel Optane 905p [19]

with Filebench varmail [15] and Exim [16] workload. We

modify the varmail workload so that each thread operates

on its own directory, not the shared one, to eliminate the

contention on the shared directory. The exim workload is

configured to call fsync() for all message deliveries. In

Fig. 2, XFS fails to scale when the number of cores is greater

than 20. The throughput of XFS saturates or even drops on

both workloads. ScaleXFS greatly improves the performance

on varmail-ptd workload. However, in exim, ScaleXFS perfor-

mance drops as XFS does.

TABLE I: Top 5 hottest locks and waitqueues in ScaleXFS.

Variable name Wait time Pall Plock

iclog->ic_force_wait 437 s 20.3 % -
cil->xc_push_lock 333 s 15.5 % 23.7 %

cil->xc_commit_wait 307 s 14.3 % -
log->l_iclog_lock 137 s 6.4 % 9.8 %

pool->lock 111 s 5.2 % 8.0 %

To identify the cause for scalability failure in XFS and

ScaleXFS, we examine the wait time of various locks and

waitqueues in the filesystem by using lockstat [20]. The

wait time is the time for acquiring the lock or sleeping in the

waitqueue. The Pall and Plock columns show the percentage of

the wait time of single object in the wait time of all objects or

all locks, respectively. Table. I shows the top five XFS-related

locks and waitqueues with respect to the wait time. We use

112 core machine with Optane SSD. We use modified varmail

workload where each thread works on its own directory.

The top five locks and waitqueues on the table are as

follows. First, iclog->ic_force_wait represents the

waitqueue which waits for the log data in the log buffer to

be written to the journal region on the storage device. Most

of the wait time in this waitqueue is caused by disk I/O to

finish. The lock cil->xc_push_lock protects the com-

mitting list and the waitqueue, cil->xc_commit_wait.

The third one, cil->xc_commit_wait, represents the

waitqueue used to wait for the journal thread to copy the com-

mit record. Then, the lock log->l_iclog_lock protects

log buffer and its waitqueue, iclog->ic_force_wait.

Lastly, pool->lock is the lock besides in the workqueue.

It controls the access of thread pool and pool workqueue.

The main lock contention overhead is from the locks that

protect the waitqueues. If we do not consider the wait time of

waitqueue, which is not the lock overhead, the wait time of

cil->xc_push_lock and log->l_iclog_lock be-

comes 33.5% of all lock’s wait time. When the journal thread

or the commit thread terminates, it wakes up all the threads in

the waitqueue at a time. In many-core environment and for the

journaling-intensive workloads that frequently call fsync(),

multiple threads try to acquire the same lock on the waitqueue

at the same time. Due to this, the lock contention on the

waitqueue becomes severe.

The wait time of pool->lock is 8.0% of the wait time of

all locks. It is similar with the one of the locks for waitqueue.

Currently, XFS uses an unbound workqueue that maintains

the thread pool for each NUMA node. In this design, the

41

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 09,2022 at 01:56:51 UTC from IEEE Xplore. Restrictions apply.

threads operated on the same NUMA node access the same

thread pool to insert the work item. Since multiple threads try

to acquire the lock on the thread pool, the lock contention

becomes noticeable in XFS journaling.

IV. DESIGN

We identify two lock contentions in XFS journaling. One

is the contention among the multiple threads that try to

acquire the lock on the thread pool and pool workqueue

in the workqueue. The other is caused by waiting for the

completion of on-disk logging in the waitqueue. To resolve the

overhead caused by workqueue, we propose to use per-core
pool workqueue. To resolve the overhead caused by waiting

in the waitqueue, we propose polling based on-disk logging.

A. Per-core pool workqueue

Once a XFS filesystem is mounted, XFS creates the

workqueues used for on-disk logging. The workqueues

are generated with assigning WQ UNBOUND flag. If the

WQ UNBOUND flag is assigned, the workqueue creates the

thread pools in a per-NUMA node basis. When a thread tries

to execute the work asynchronously, it inserts the work item

into the pool workqueue located in the NUMA node where

it is operating. When the number of cores per NUMA node

increases, such as in a server environment, multiple cores

access a single pool workqueue. This leads to a situation where

threads running on multiple cores compete with each other for

acquiring the lock of pool workqueue, pool->lock.

IDLE

pool

workqueue

Core #1

IDLEIDLE

pool

workqueue

Core #2
IDLE

IDLERUNNING

pool

workqueue

Core #3
IDLE

IDLERUNNING

Fig. 3: Structure of per-core pool workqueue.

To alleviate the lock contention on workqueue, we propose

to use Per-core pool workqueue. If a workqueue is generated

without assigning WQ UNBOUND flag, the workqueue cre-

ates the thread pools in a per-core basis. Since each thread pool

has its own pool workqueue, there is a pool workqueue for

each core. We call this workqueue per-core pool workqueue.

In per-core pool workqueue, a thread pool and its workqueue

is located on each core. When thread try to execute a function

asynchronously , it creates and inserts the work item with

the function pointer into the pool workqueue located in the

core where it is operating. Since the two or more threads

cannot access the same pool workqueue at the same time, the

lock contention on the workqueue disappears. Also, per-core

management for workqueue no longer determines the core to

not end!

wait on waitqueue

awake

Journal thread
not end!

keep check

Journal thread

Fig. 4: Structure of polling based on-disk logging.

be execute the work item according to workqueue’s properties

[21]. The procedure of mapping between the work and thread

can be passed so per-core pool workqueue executes the work

faster than per-NUMA node workqueue.

B. Polling based on-disk logging

XFS uses the waitqueues to block the thread that calls

fsync() until on-disk logging is done. If the multiple threads

share the same waitqueue, the lock contention for accessing

the waitqueue may become scalability issue. To avoid this

problem, the polling based method can be applied. With the

polling mechanism, the waitqueue and associated exclusive

lock are no longer needed. However, the polling based method

uses busy-wait that occupies a CPU core. To well optimize the

await mechanism, both lock contention and wasted CPU cycles

should be considered.

To optimize the await mechnism in XFS journaling, we

propose Polling based on-disk logging that uses the polling

based method to wait for the completion of the journal thread.

In XFS, the execution of fsync() consists of two parts. Each

part waits for the completion of each thread’s activity in on-

disk logging by using the waitqueue. The first part is waiting

for the commit record to be copied to the log buffer. Another

part is waiting for the data in log buffer to be persisted in the

journal region. The latter case is a wait for the completion of

the I/O requests to the storage device. Polling based I/O may

incur the waste of CPU cycle [22]. Accordingly, in this case,

busy-waiting is not appropriate to optimize the mechanism.

For the first part, busy-waiting would waste fewer CPU

cycles than the latter part. The journal thread spends most

of its time copying the log data to the log buffer. Copying

the log data relatively takes small amount of time compared

with writing it to the storage device. In practice, the wait time

of waitqueue in the first part, cil->xc_commit_wait, is

less than that of latter part, iclog->ic_force_wait, as

shown in Table. I. Also, Adopting polling to the first part

resolves more significant lock contention and can lead to

higher performance benefits. In Table. I, the lock contention on

waitqueue of the first part, cil->xc_push_lock, is more

severs than that of latter part, log->l_iclog_lock.

To apply the polling based method, the threads that call

fsync() keep checking whether the commit record is copied

to the log buffer or not. The journal thread also keeps checking

the preceding journal thread to copy the commit record. The

waitqueue that is required to wait for the journal thread is

completely removed. The completion of the commit record

copy can be detected by reading the indicator in the context of

on-disk logging. The journal thread updates this indicator right

after it copies the commit record to the log buffer. The threads

42

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 09,2022 at 01:56:51 UTC from IEEE Xplore. Restrictions apply.

that call fsync() and the journal thread should traverse the

committing list to find the context to be checked. To avoid

the race condition, the exclusive lock of committing list is

required. This lock is the same one that protects the waitqueue

used to wait for the journal thread. Although polling based

on-disk logging cannot eliminate all the contention of lock

cil->xc_push_lock, it can reduce the lock contention

overhead caused by the lock acquisition for the waitqueue.

V. EXPERIMENT

A. Experiment Setup

We perform the physical experiment to examine the per-

formance effect of the proposed techniques. For the experi-

ments, we use a 112-core server (HPE ProLiant DL580, 28

core/socket, 4 sockets, Intel Xeon Platinum 8276) with 512

GByte DRAM. We use CentOS 7.4 operating system. We

use kernel version 5.8.5. We use Intel Optane 905p NVMe

SSD [19] and 256 GByte Ramdisk. We compose four different

versions of XFS; XFS(stock XFS), ScaleXFS [2], ScaleXFSP

(ScaleXFS with per-core pool workqueue) and ScaleXFSPB

(ScaleXFS with per-core pool workqueue and polling based

on-disk logging).

 0

 30

 60

 90

 120

X
FS

S-X
FS

S-X
FS

P

S-X
FS

PB

w
ai

t
ti

m
e

(s
ec

)

(a) pool->lock

 0

 100

 200

 300

 400

X
FS

S-X
FS

S-X
FS

P

S-X
FS

PB

w
ai

t
ti

m
e

(s
ec

)

(b) cil->xc_push_lock

Fig. 5: Wait time for acquiring the lock.

B. Lock Contention

To analyze the effect of per-core pool workqueue and

polling based on-disk logging, we conduct an experiment with

varmail-ptd workload that each thread operates on its own

directories. We modify the varmail workload so each threads

works on its own separate directory. We call this modified

variant of varmail workload varmail-ptd.

Fig. 5a and Fig. 5b shows the wait time of pool->lock
(pool lock wait time) and cil->xc_push_lock (push lock

wait time) with 112 threads on 112 cores and Intel Optane

SSD, respectively. The wait time of each lock increases in

ScaleXFS compared to XFS. The pool lock wait time of

ScaleXFS is 8.7× higher than that of XFS. The push lock

wait time of ScaleXFS is 3.6× higher than that of XFS.

ScaleXFS resolves the main cause of the scalability failure; the

contention of locks on committed item list [9]. In ScaleXFS,

the overhead of lock contention on waitqueue and workqueue

still remains and even worse than XFS.

The experiment result shows that the wait time of each lock

decreases significantly, compared to XFS and ScaleXFS with

our techniques. By applying our techniques, the pool lock

wait time decreased by 53% and 95% compared with XFS

and ScaleXFS, respectively. Also, the push lock wait time de-

creased by 73% and 93% compared with XFS and ScaleXFS,

respectively. Per-core pool workqueue resolves the contention

on the lock of thread pool, pool->lock, and polling based

on-disk logging resolves the contention on the waitqueue,

cil->xc_push_lock. Per-core pool workqueues allow

on-disk logging to be triggered by leveraging distributed thread

pools, indicating that threads running on multiple cores rarely

access to the same thread pool at the same time. At the

same time, polling based on-disk logging will no longer use

waitqueue to wait for the previous journal thread to complete.

It eliminates the need for accessing the single global waitqueue

and acquire the lock that protects the waitqueue.

C. Benchmark Performance

0.0

0.2

0.4

0.6

0.8

 0 20 40 60 80 100 120

(a) Optane
T

h
ro

u
g

h
p

u
t

(M
o

p
s/

se
c)

cores

XFS
S-XFS
S-XFSP
S-XFSPB

0.0

0.3

0.6

0.9

1.2

 0 20 40 60 80 100 120

(b) Ramdisk
cores

Fig. 6: Throughput of varmail-ptd workload.

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120

(a) OptaneT
h

ro
u

g
h

p
u

t
(K

m
sg

/s
ec

)

cores

XFS
S-XFS
S-XFSP
S-XFSPB

 0

 6

 12

 18

 24

 0 20 40 60 80 100 120

(b) Ramdisk
cores

Fig. 7: Throughput of Exim workload.

We measure the benchmark performance of four filesystems.

Fig. 6 shows the result with varying number of cores. In

Optane, ScaleXFSP shows the performance improvement of

up to about 4% compared to ScaleXFS. In ScaleXFSPB, it

shows up to about 9% improvement in performance compared

to ScaleXFS and about 6% improvement in 112 cores. When

using Ramdisk, the performance increase becomes more sig-

nificant. For ScaleXFSP, there is a performance improvement

of up to about 23% against ScaleXFS and about 12% on 112

cores. ScaleXFSPB improves performance up to about 24%

compared to ScaleXFS and about 18% on 112 cores.

Fig. 7 shows the results about an exim workload [16], a type

of mail server. Exim consists of different types of filesystem

operations such as creating, deleting, and renaming small files.

The operation of the exim workload consists of the following:

receive mail using the SMTP connection, and put it in the

shared spool directory one after another. After that, attach it to

the per-user mail file, delete the mail, and record this delivery

in the shared log file. We use the version of exim server used

by FxMark [3]. In order to observe the impact of on-disk

43

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 09,2022 at 01:56:51 UTC from IEEE Xplore. Restrictions apply.

logging in XFS, we configured it to turn on the option to call

fsync() for each message delivered.

The result shows that ScaleXFSP improves performance by

up to about 10% on Optane and up to 12% on Ramdisk

over ScaleXFS, respectively. ScaleXFSPB shows performance

improvement of up to about 28% on Optane and up to

about 47% on Ramdisk compared to ScaleXFS, respectively.

In ScaleXFSP and ScaleXFSPB, the optimization of on-disk

logging of XFS shows performance improvements over XFS

and ScaleXFS. It also alleviates the performance collapse at a

large number of cores.

In both varmail-ptd workload and exim mail server,

ScaleXFSP and ScaleXFSPB show significant performance

improvements over ScaleXFS when a large number of cores

are operating. This is because the lock contention on the

workqueue and waitqueue is reduced by using our methods.

VI. RELATED WORKS

The most essential way to address the many-core scalability

is changing a single global structure to multiple structures such

as a per-core based one. SpanFS [6] separates the file system

partition into several units called domains and allows parallel

journaling in each domain. Z-journal [7] allocates the trans-

actions and the journal threads in per-core basis and allows

journaling to proceed independently at each core. iJournal-

ing [23] effectively reduces the overhead of journal synchro-

nization by introducing file-level transactions and separated

journal regions in per-core basis. ScaleFS [24] demonstrates

the separation of in-memory and on-disk filesystem and the

use of oplog [25] to achieve scalability. Several studies have

also proposed the use of optimized lock structures to address

the contention generated by the global lock of filesystems.

MAX [26] proposes a reader pass-through semaphore using

a scheduler to mitigate the contention on the global counter.

Son et al. [27] resolve the high lock contention that occurs in

the journaling of EXT4 using the lock-free structure.

VII. CONCLUSION

In this study, we analyze the scalability bottleneck of XFS

journaling. We find that lock contention by the async and

await mechanism used in on-disk logging of XFS was severe.

The associated overhead is caused by the lock contention

on the workqueue or the waitqueue. We use per-core pool

workqueue for triggering on-disk logging, eliminating the lock

contention caused by the thread pool. By adopting the polling

based method to the waiting mechanism, we eliminate the lock

contention on the global waitqueue and alleviate the overhead

of the corresponding lock. We improve the performance up

to 1.3× compared with ScaleXFS with Intel Optane SSD

by optimizing the use of workqueue and waitqueue in XFS

journaling.

Acknowledgements. This work was in part supported by

IITP, Korea (No. 2018-0-00549), NRF, Korea (No. NRF-

2020R1A2C3008525), and SNU-SK Hynix Solution Research

Center (S3RC) (No. MOUS002S).

REFERENCES

[1] S. C. Tweedie et al., “Journaling the linux ext2fs filesystem,” in Proc.
of Annual Linux Expo. Durham, North Carolina, 1998.

[2] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and
G. Peck, “Scalability in the xfs file system.” in Proc. of USENIX ATC,
vol. 15, 1996.

[3] C. Min, S. Kashyap, S. Maass, and T. Kim, “Understanding manycore
scalability of file systems,” in Proc. of USENIX ATC, 2016, pp. 71–85.

[4] J. Kang, C. Hu, T. Wo, Y. Zhai, B. Zhang, and J. Huai, “Multilanes:
Providing virtualized storage for os-level virtualization on manycores,”
ACM TOS, vol. 12, no. 3, pp. 1–31, 2016.

[5] Y. Won, J. Jung, G. Choi, J. Oh, S. Son, J. Hwang, and S. Cho, “Barrier-
enabled io stack for flash storage,” in Proc. of USENIX FAST, 2018, pp.
211–226.

[6] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai, “Spanfs: A
scalable file system on fast storage devices,” in Proc. of USENIX ATC,
2015, pp. 249–261.

[7] J. Kim, C. Campes, J.-Y. Hwang, J. Jeong, and E. Seo, “Z-journal:
Scalable per-core journaling,” in Proc. of USENIX ATC, 2021, pp. 893–
906.

[8] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
“The new ext4 filesystem: current status and future plans,” in Proc. of
Linux symposium, vol. 2. Citeseer, 2007, pp. 21–33.

[9] D. Kim, K. Min, J. Oh, and Y. Won, “Scalexfs: Getting scalability of
xfs back on the ring,” in Proc. of USENIX FAST, 2022, pp. 329–344.

[10] C. Hellwig, “Xfs: the big storage file system for linux,” ; login:: the
magazine of USENIX & SAGE, vol. 34, no. 5, pp. 10–18, 2009.

[11] “Red hat enterprise linux,” https://www.redhat.com/en/technologies/
linux-platforms/enterprise-linux.

[12] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.
of USENIX OSDI, 2006, pp. 307–320.

[13] T. Heo and F. Mickler, “Concurrency managed workqueue (cmwq),”
2010, https://www.kernel.org/doc/Documentation/core-api/workqueue.
rst.

[14] R. Russell, “Unreliable guide to hacking the linux kernel,” https://www.
kernel.org/doc/Documentation/kernel-hacking/hacking.rst.

[15] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible framework
for file system benchmarking,” USENIX; login, vol. 41, no. 1, pp. 6–12,
2016.

[16] “Exim,” https://www.exim.org.
[17] Y.-R. Kim, K.-Y. Whang, and I.-Y. Song, “Page-differential logging:

an efficient and dbms-independent approach for storing data into flash
memory,” in Proc. of ACM SIGMOD, 2010, pp. 363–374.

[18] J. Lee, K. Kim, and S. K. Cha, “Differential logging: A commutative and
associative logging scheme for highly parallel main memory database,”
in Proc. of ICDE. IEEE, 2001, pp. 173–182.

[19] “Intel optane 905p,” https://www.intel.
com/content/www/us/en/products/sku/129833/
intel-optane-ssd-905p-series-1-5tb-12-height-pcie-x4-20nm-3d-xpoint/
specifications.html.

[20] “Lockstat,” https://www.kernel.org/doc/html/latest/locking/lockstat.html.
[21] “Workqueue flags and constants.” https://elixir.bootlin.com/linux/latest/

source/include/linux/workqueue.h.
[22] J. Yang, D. B. Minturn, and F. Hady, “When poll is better than interrupt.”

in Proc. of USENIX FAST, vol. 12, 2012, pp. 3–3.
[23] D. Park and D. Shin, “ijournaling: Fine-grained journaling for improving

the latency of fsync system call,” in Proc. of USENIX ATC, 2017, pp.
787–798.

[24] S. S. Bhat, R. Eqbal, A. T. Clements, M. F. Kaashoek, and N. Zeldovich,
“Scaling a file system to many cores using an operation log,” in Proc.
of SOSP, 2017, pp. 69–86.

[25] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich,
“Oplog: a library for scaling update-heavy data structures,” MIT Com-
puter Science and Artificial Intelligence Laboratory, Cambridge, NA,
Tech. Rep., Sept. 2014.

[26] X. Liao, Y. Lu, E. Xu, and J. Shu, “Max: A multicore-accelerated file
system for flash storage,” in Proc. of USENIX ATC, 2021, pp. 877–891.

[27] Y. Son, S. Kim, H. Y. Yeom, and H. Han, “High-performance transaction
processing in journaling file systems,” in Proc. of USENIX FAST, 2018,
pp. 227–240.

44

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on November 09,2022 at 01:56:51 UTC from IEEE Xplore. Restrictions apply.

