EE488: System Software Design
Fall 2022

GDB, ctags, cscope and make

Youjip Won

KAIST

KAIST OSLab Youjip Won 2

Operating Systems Laboratory

GDB, the tool

© What is GDB?

o Default debugger for GNU software system

o GDB can trace execution of program and support other functionalities.
O How to compile file that can be debugged by gdb?

°© $ gcc -g gdb test.c -o gdb test
© Run gdb

°© $ gdb [FILENAME]

O How to pass arguments to program in gdb?

°© $ gdb [FILENAME]

°© (gdb) set args [argument]

KA'ST OSLab Youjip Won

Operating Systems Laboratory

GDB - basic commands

O (gdb) continue or c

o Continue execution of program
O (gdb) step or s

o Run a line of code in program. If the code calls function, it enter to inside of function
O (gdb) next or n

o Run a line of code in program. If the code calls function, it not enter to inside of function but execu

te next line.
O (gdb) finish
o Continue execution of program until current function returns

O (gdb) return value

o Stop the execution of current function, and use value as return value

KA'ST OSLab Youjip Won

Operating Systems Laboratory

GDB - basic commands (Cont.)

© (gdb) list 90

o Print source code at 90 line
© (gdb) list badfunc

° Print the source code of specific function that you specified
O (gdb) set listsize n

o Set the number of lines that is printed when the list command is excuted

o defaultis 10

KAIST OSLab Youjip Won

Operating Systems Laboratory

GDB - print

9 When you want to examine some variables

° (gdb)
° (gdb)
O Print
° (gdb)
° (gdb)
° (gdb)
° (gdb)
° (gdb)
° (gdb)

(@]

whatis

print

print
print
print
print
print
print

[variable] : Printthe type of variable

[variable] : Print the value of variable

a->member
add (1, 2)
/x value
p—>state
p->pid
(*P)

You can specify the format of output as use x, u, o, ¢ keyword

KAIST OSLab

Operating Systems Laboratory

Youjip Won

GDB - break

© When you want to stop execution of program at position you want
° (gdb) break 31
°© (gdb) break func
© (gdb) break hello.c:main
°© (gdb) break utilc:300
© (gdb) info break

o (gdb) delete 1 :(If you not specify number, all breakpoints are deleted)

O Print the backtrace information in current function
°© (gdb) backtrace

°© (gdb) backtrace n

KAIST OSLab Youjip Won

Operating Systems Laboratory

gdb test.c

1. #include <stdio.h>

3. wvoid print() {

4. printf (“hello world!\n”);
5. }
6.
77 1int main () {
8.
9. int 1i;
10. for (i=0; 1i<10; i++) print():
11. return 0;
12. }
KAIST OsLab Youjip Won

Operating Systems Laboratory

GDB(Cont.)

Reading symbols from gdb_test...done.

(gdb) break 7

Breakpoint 1 at 0x40053f: file gdb_test.c, line 7.
(gdb) break print

Breakpolnt 2 at 0x40052a: file gdb_test.c, line 4.
(gdb) run

Starting program: /home/sundoo/gdb_test

Breakpoint 1, main () at gdb_test.c:10

warning: Source file is more recent than executable.

10 for (i=0; i < 10; i++) print();
(gdb) continue

Continulng.

Breakpoint 2, print () at gdb_test.c:4

4 printf("Hello World!\n");
(gdb) next

Hello World!

5 }

(gdb) continue

Continuing.

Breakpoint 2, print () at gdb_test.c:4

4 printf("Hello World!\n");
(gdb) bt

#0 praint () at gdb_test.c:4

#1 0x0000000000400552 in main () at gdb_test.c:10
(gdb) q

A depbugging session is active.

Inferior 1 [process 20018] will be killed.

Quit anyway? (y or n) y

KAIST OSLab Youjip Won

- Operating Systems Laboratory

Deb\\.abtha'

hile tha e > vanniy
ekoawving Tha ‘wo-zram be,\\autov*.

n‘llllnnlm

KA'ST OSLab Youjip Won 10

Operating Systems Laboratory

(a.ouj—J _ b

- - g5
Aebugger =
0S

P‘kvauz Qa%&ew\ COK.QQ.: - Qrocans contyel s (,1,./\59\ ULDNTNQL
e ofvay P

KAIST OSLab Youjip Won 11

Operating Systems Laboratory

\—j\om '&'o Ae.\m_?) 0 S 7.

We. wad & debug 0 11/

CIR o U,/

EdQBwﬁgef

3

b4

KAIST OSLab Youjip Won

Operating Systems Laboratory

De,bu.jgtré o

%ew.i%

%

Q'W\evm:k [TR-+P

c\e\: u:nof

ﬂlvﬂﬁ

bw-hta gl\mmv\'r%
F’: \.'h\w;
X

e

"Vw\gd"

KAIST OSLabg S alaie Youjip Won

13

Debuey 0S thare day

-
&
Jb';'s R 4 J"‘;ﬂs*
5 [lape oo |
3 S oM | .

oS | \
\ k/('

\ffe becomes wuch casiec]

KAIST OSLab Youjip Won

Operating Systems Laboratory

KAIST OSLab

Operating Systems Laboratory

Youjip Won

15

normal booting & debug mode booting

© make gemu

=}

gemu-system-i1386 -serial mon:stdio -drive
file=fs.img, index=1,media=disk, format=raw -drive

file=xv6.1img, index=0,media=disk, format=raw -smp 2 -m 512

© make gemu-gdb

(®]

gemu-system-1386 -serial mon:stdio -drive
file=fs.img, index=1,media=disk, format=raw -drive

file=xv6.img, index=0,media=disk, format=raw -smp 2 -m 512

-gdb tcp::25501

-S

O Difference between two upper command is “-S -gdb tcp::25501”

(®]

Q

-S : suspend the debug target just before the booting starts
-gdb tcp::[port]

o port number that is used to accept the command from gdb.

KAIST OSLab Youjip Won

Operating Systems Laboratory

16

First, run the debug target

$ gemu-system-i386 -serial mon:stdio -drive file=fs.img, index=1,media=disk,
format=raw -drive file=xv6.img, index=0,media=disk,format=raw -smp 2 -m 512 -S
-gdb tcp::25501

O execute upper command from the shell.

© QEMU stops and waits for the gdb
command.

QEMU

KAIST OSLab Youjip Won

s Operating Systems Laboratory

17

Second, run the debugger

© Open a new terminal.
© Go to the directory where kernel binary resides.

© Execute gdb with loading the target binary.
$ gdb [binary file to load]

S gdb kernel // linux & WSL
$ 1386-elf-gdb kernel // macOS

Japl .html>

| and'other

ftwa

or commands related to "word"...

»

Output of WSL

KAIST OSLab Youjip Won

Operating Systems Laboratory

18

.gdbinit

O GDB reads the .gdbinit first and executes the commands in this file.

© .gdbinit helps to automatically execute the commands you need to
execute each time.

target remote localhost:26000
© Git repository of xv6-public already has .gdbinit file.

© If gdb is not connected to QEMU automatically, please check whether

there is the .gdbinit file or not.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

19

connect the gdb to debug target

ic$ gdb kernel

online at:

O Load the kernel to gdb.
O |t loads the program information and the symbols.

© It was not connected to the actual debug target.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

20

connect to the debug target

(gdb) target remote localhost: [port]

O Specify the port number with the one you

O setup the break point.
. (gdb) br main // set the breakpoint at main

° (gdb) c // continue

T omain
int 1 i . line

KA'ST OSLab Youjip Won

Operating Systems Laboratory

21

connect to the debug target

(gdb) 1list

(gdb) br userinit
(gdb) c
(gdb) n or s

s: step 1into

n: next

KAIST OSLab

Operating Systems Laboratory

Youjip Won

22

Materials from EE485 taught by
Youjip Won and Kyungsoo Park

KAIST OSLab Youjip Won 23

Operating Systems Laboratory

ctags

O ctags
o Atool for making “tag file” which contains the location of function, variable, stri
ng, and etc. of a source file.
o You can use "tag file” to find the objects by name.
O ctags installation (linux)
o $ sudo apt-get install ctags
l(AIST gpselr-aatilgg Systems Laboratory Youjip Won 24

Setup ctags (1)

O Step1. building tag file

o $ ctags [option] [filename (s)]

o example

$ ctags hello.c :making tag file which include index of “hello.c”

$ ctags —-R :making the tag file for all subdirectories under current directory.

o option list

option

PATH

-R

Scan all subdirectory recursively.

--exclude=[pattern]

Exclude files and directories which have ‘pattern’ in name fr
om creating tag file.

-X

Print tags as table to stdout without creating tag file.

KAIST OSLab

Operating Systems Laboratory

Youjip Won

25

Setup ctags (2)

O Step2. Setting Tag file for Vim

o open vim and type command below in vim command mode

set tags=[path of tag file]

o adding above command in ~/.vimrc will save this configuration

KAIST OSLab Youjip Won

Operating Systems Laboratory

26

Prepare the practice for ctags (1)

Q

Download the source code of bash with below command

$ git clone https://sourceware.org/git/glibc.git

Move to the glibc directory in and Make tags file with below command

$ cd glibc

$ ctags -R

If you are using an old version of ctags so you cannot use the —R option,
make tags file with below command (The eelab5 server has an old

version)

$ cd glibc

$ find . -name "*.[chS]" | ctags -

KA'ST OSLab Youjip Won

Operating Systems Laboratory

27

Prepare the practice for the ctags (2)

© Open the ~/.vimrc file

S vi ~/.vimrc

© Type below textin ~/ .vimrc file

set tags+=“Path of tha tags file you made”

=~/glibc/tagl

"afovimrc” 1 line --100%--

KAIST OSLab Youjip Won

s Operating Systems Laboratory

28

Prepare the practice for the ctags (3)

O Save and quit the vi

twq

© Open viin glibc directory and run below command for testing

:t] fgets
by Bram Moolenaar et al.
Modified by pkg-vim-maintainers@lists.alioth.debian.org
Vim is open source and freely distributable
Help poor children in Uganda!
type :help iccf for information
type :q to exit
type :help or for on-line help
type :help version8 for version info
1. F
110
2 F
define fgets(buf, len, s) fgets_unlocked (buf, 1
Type number and <Enter> (empty cancels): I
KAIST OSLab Youjip Won
= Operating Systems Laboratory

ctags command in vim

Command

Description of the command

:ta [tagname]

Jump to definition of tagname

:po Jump back to previous position
Ctrl + | Shorcut of command ‘ta’.

The tagname is a string pointed by current cursor.
Ctrl + t Shorcut of command ‘po’.

:ts [tagname]

Print list of definition of tagname

:t] [tagname]

Jump to definition of tagname if there is single definition
Otherwise, print list of definition of tagname

:tn Jump to next definition in list printed by command ts
1tp Jump to previous definition in list printed by command ts
:tags Print history of jump using ctags
:sts Same with command ‘ts’, but split windows
KA'ST OSLab Youjip Won 30

Operating Systems Laboratory

The command ‘ta’

“:ta fgets”:
Jump to definition of fgets

:ta fgets||

258 __wur _ warnattr (

259 Y

260

261 _ fortify function _ wur _ attr_access ((__write only , ', 7))

262 [jgets (* pestrict s, _n, * restrict _ stream)

263 {

264 if (__glibc objsize (__s) != () -1)

265 {

266 if (!__builtin_constant_p (_n) || _n <= ")

267 return _ fgets_chk (__s, _ glibc _objsize (_s), _ n, _ stream);
"libio/bits/stdio2.h™ 399L, 13353C 262,1 66%

KAIST OSLab Youjip Won

s Operating Systems Laboratory

31

Shorcut of the command ‘ta’

“Ctrl-]”:

Jump to definition of function pointed by current cursor

258 __wur __ warnattr (

259)3

260

261 fortify function wur _ attr access ((_ write only , ',))
262 fgets (* restrict __s; _n, * restrict _ stream)
263 {

264 if (__glibc_objsize (__s) != () -1)

265 {

266 if (!__builtin_constant p (_n) || _n <= 1)

267 return [lfgets chk (s, _ glibc objsize (__s), _n, _ stream);
267,10-17 66%

‘ Type Ctrl-]

*

32 | _fgets_chk (*buf,

[
L

count;
*result;
: CHECK_FILE (fp,):
37 if (n <= 0)
"debug/fgets chk.c" 60L, 2234C

KAIST OSLab

s Operating Systems Laboratory

Youjip Won

32

The command “po” and its shortcut

“:po” & “Ctrl-t”:
Jump to previous position (Continue to previous slide...)

x

__fgets _chk (*puf,

f
L

count;
*result;
CHECK_FILE (fp,
if (n <= 1)

‘ Type po or Ctrl-t
263 {

264 if (__glibc objsize (__s) 1= () -1)

265 {

266 if (! _builtin constant p (_ n) || _n <= 1)

267 return _[ifgets chk (__s, _ glibc objsize (__s), _n, _ stream);

268

269 if (() _n> glibc objsize (__s))

270 return _ fgets chk warn (__s, _ glibc objsize (_s), _n,
eam);

271 }

"libio/bits/stdio2.h™ 399L, 13353C 267,10-17 67%

KAIST OSLab Youjip Won 33

s Operating Systems Laboratory

The command ‘“ts”

“:ts fgets”:
Print list of definition of fqets

__wur __warnattr (

);

__fortify function __wur _ attr_access ((__write only , ',))
fgets (* restrict _ s, n, * restrict _ stream)
:

1
if (__glibc objsize (__s) != () =)
{
if (!_builtin_constant_p (_n) || _n <= ")

return _ fgets chk (s, _glibc objsize (__s), _n, _ stream);

e |

if (! _builtin constant p (_ n) || _n <= ")
return _ fgets chk (__s, glibc objsize (__s), _n, _ stream);

fgets (char *__restrict __s, int _ n, FILE *_ restrict _ str
eam)

2FS d
110
3FS d
111
Type number and <Enter> (empty cancels): :

KAIST OSLab

s Operating Systems Laboratory

Youjip Won

34

The command “tj”

‘:ty fgets chk”:
Jump to definition of fgets chk
*It has single definition

_wur __ warnattr (

)s

__fortify function _ wur _ attr_access ((__write only , 1, 7))
gets (* restrict s, _n, * restrict _ stream)

if (__glibc_objsize (__s) != () -1)

__builtin_constant_p (_n) || _n <= ")

__fgets_chk (_s, _ glibc_objsize (__s), _n, _ stream);

| fgets_chk (*buf,

count;
5 *result;
36 CHECK_FILE (fp,);
37 if (n <= @)
"debug/fgets chk.c" 60L, 2234C

‘:t] fgets”:
Print the list of definition of fgets
*It has multiple definitions

__wur _ warnattr (

)s

__fortify function _wur __ attr_access ((__write_only , ', 7))
* restrict _s, _n, * _restrict _ stream)
if (__glibc_objsize (__s) != () -1)
I
L
if (!_builtin_constant_p (_n) || _n <= 1)
_ fgets chk (__s, _ glibc objsize (_s), n,

return __stream);

4 5 fgetsl

if (!_builtin_constant_p (_n) || _n <= 0)

return _ fgets chk (__s, _ glibc_objsize (__s), _ n, _ stream);

fgets (char *__restrict _s, int _ n, FILE *_ restrict _ str
eam)

2Fs d
110

JES W
113

Type number and <Enter> (empty cancels):

Type the number of tag you want

KAIST OSLab

s Operating Systems Laboratory

Youjip Won 35

The command “tn” and “tp” (Cont. to “tj fgets”)

2 fgets (

63 1

1906
107
108

109

110 &2

111
112
113
114
115

\ : tn// :

Jump to next definition of fgets

_wur _ warnattr (

)s

_ fortify function _ wur _ attr_access ((__write_only_,
* restrict _ s, __IAy
I

) -1)

if (__glibc_objsize (_s) != (
I

!
if (!__builtin _constant p (_ n) || _n <= ")
return _ fgets chk (__s, _ glibc_objsize (__s),

"intl/localealias.c" 431L, 10468C

¥ restrict __

_n, _ stream);

AN : tp// :
Jump to previous definition of fgets

s 2))

stream)

);
» 2))

i * restrict _ stream)

) -1)

if (__glibc_objsize (__s) != (

r
L

if (1 _builtin constant p (_ n) || _n <= 1)
return _ fgets_chk (__s, _ glibc_objsize (_s),
"libio/bits/stdio2.h" 399L, 13353C 262,1

_n, _ stream);
66%

KAIST OSLab

s Operating Systems Laboratory

Youjip Won 36

The command “tags” (Cont. to prev. slide)

“:itags”:
Print history of jump using ctags

258 __wur __warnattr (

259) 3

260

261 _ fortify function _ wur _ attr_access ((__write only , 1, 7))
262 fgets (* restrict _s, __ i, * restrict _ stream)
263 {

264 if (__glibc_objsize (__s) != () -1)

265 {

266 if (! __builtin constant p (_n) || _n <= 0)

267 return _ fgets chk (__s, _ glibc_objsize (__s), _ n, _ stream);
:tags|j

263 {

264 if (__glibc_objsize (_s) != () -1)

265 {

266 if (! _builtin constant p (_ n) || _n <= 1)

267 return _ fgets_chk (_s, _ glibc_objsize (__s), _ n, _ stream);
1tags

1 1 fgets
2 1 fgets

KAIST OSLab Youjip Won

s Operating Systems Laboratory

The command “sts” (Cont. to prev. slide)

“:sts fgets chk”:
Same with command ‘ts’, but split windows

_wur __attr_access ((__write_only , 1,));
* REDIRECT (_ fgets alias,
(__restrict _s, _n,
* restrict _ stream), fgets)
__wur __ attr_access ((_write only , 1,));
*__REDIRECT (__fgets_chk warn,
¢ *_ restrict _s, _ size, B
*_restrict _ stream), _ fgets_chk)
__wur __warnattr (

)s

261 _ fortify_function __ wur __ attr_access ((_write_only_, 1, 7))
262 fgets (* res t . s; *__restrict _ stream)
I

if (_glibc_objsize (_s) != (y <43

builtin_constant_p (_n) || _n <=)

'n _ fgets chk (__s, pglibc objsize (_s), _n, _ stream);
) _n > _glibc objsize (__s))

rn _ fgets chk warn (__s, _ glibc objsize (_s),

n _ fgets_alias (_ s, _ n, _ stream);

__fread_chk (* restrict _ ptr,
__size, _n,
* _ restrict _ stream) _ wur;

__REDIRECT (__fread_alias,

__ptrlen,

:sts _ fgets_chkl]

_n, _ stream);

*

2 [l fgets chk (*buf,
{

1
count;
*result;
CHECK_FILE (fp, I
if (n <=)

*_restrict _s, __size,
* restrict _ stream), _ fgets_chk)

)s
fortify function _ wur _ attr_access ((_write only , ',))
gets (* restrict _ s, _n, * restrict _ stream)
if (__glibc_objsize (_s) != () -1)
I
1 e
if (!__builtin_constant p (_n) || _n <= 1)
return _ fgets_chk (__s, _ glibc_objsize (__s),

libio/bits/stdio2.h
“debug/fgets_chk.c" 60L, 2234C

32,1
—n

_n, __stream);

261,70

KAIST OSLab

s Operating Systems Laboratory

Youjip Won

38

CSCOPE

Materials from EE485 taught by
Youjip Won and Kyungsoo Park

KAIST OSLab Youjip Won 39

Operating Systems Laboratory

cscope

© The tool supports functionalities that are not in ctags.
O The functionalities include:
° Find the definition of symbol.

° Find the positions where a given function is called or a variable is accessed.
° Find the functions that specific function calls.

° Find text string.

O Installation (Linux)

¢ S sudo apt-get install cscope
KA OSLab i
IST Operating Systems Laboratory Youjip Won 40

Setup cscope (1)

© Step 1. Make a file “cscope.files” containing list of files what you want to

analyze in the glibc directory.

$ find . —-name “*.[chS]” > cscope.files

O Result:

20205219@eelab5:~/glibc$ find ./ -name "*.[chS]" > cscope.files
20205219@eelab5:~/glibc$ head -n 10 cscope.files
./resource/ulimit.c

./resource/getrlimit.c

./resource/setrlimit.c

./resource/vlimit.c

./resource/setrlimit64.c

./resource/getpriority.c
./resource/getrusage.c
./resource/vtimes.c
./resource/nice.c
./resource/setpriority.c
20205219@eelab5:~/glibcs

KAIST OSLab Youjip Won

s Operating Systems Laboratory

41

Setup cscope (2)

O Step 2.

Make a file “cscope.out” which is a database file for cscope with

below command

S cscope -1 cscope.files

© Result:

The cscope.out has the information of each file in cscope.files

Cscope version 15.8b nce... Press the ? key for help

Find this C symbol: []

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Find assignments to this symbol:

* You can leave the cscope with Ctrl-D

KAIST OSLab

s Operating Systems Laboratory

Youjip Won 42

Setup cscope (3)

O Step 3. Set the cscope in vim with the command below.

cs add ./cscope.out

© Add above command in ~/.vimrc will save this configuration.

1 set +=~/glibc/tags
cs add =/glibc/c scope.out

~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~

"~f.vimrc" [Modified] 2 lines --100%--

KAIST OSLab Youjip Won

s Operating Systems Laboratory

command

© Find the functions that “call” a given function or that “is called” by a given function.

° Find all functions that call malloc()

° Find all functions that are called by malloc().

cs find <Command Character> <String>

S Find C symbol String

g Find definition String

d Find functions called by function String
c Find functions calling function String

t Find text String

e Find egrep pattern String

f Find file String

i Find files #including file String

KAIST OSLab Youjip Won

Operating Systems Laboratory

Usage of cscope in vim

“cs find s printf”:
Search the symbol “printf”

elf/tst-auditmodl.c <<GLOBAL>>

printf ("pltexit: symname=%s, st_value=%#lx, ndx=%u, retval=%tu\n",
elf/tst-dlsym-error.c <<GLOBAL>>

printf ("error: asprintf: %m\n");

elf/tst-dlsym-error.c <<GLOBAL>>

printf ("error: %s: found symbol \"no_such_symbol\"\n", name);
elf/tst-dlsym-error.c <<GLOBAL>>

printf ("error: %s: missing error message\n", name);
elf/tst-dlsym-error.c <<GLOBAL>>

printf ("error: %s: unexpected error message: %s\n", name, message);
elf/tst-dlsym-error.c <<GLOBAL>>

printf ("error: %s: unexpected error message: %s\n", name, message);
elf/tst-dlsym-error.c <<GLOBAL>>

printf ("error: cannot dlopen %s: %s\n", LIBC_SO, dlerror ());
libio/bits/stdio2.h <<GLOBAL>>

#define printf(...) \

KAIST OSLab

s Operating Systems Laboratory

Youjip Won

45

Usage of cscope in vim

“cs find e ..printf”:
Search the symbol . .printf with regular expression

argp/argp-fmtstream.c <<<unknown>>>
__fxprintf (fs->stream, "%.*s", (int) (fs->p - fs->buf), fs->buf);
argp/argp-fmtstream.c <<<unknown>>>
___fxprintf (fs->stream, "%.*s\n",
argp/argp-fmtstream.c <<<unknown>>>
__fxprintf (fs->stream, "%.*s", (int) (fs->p - fs->buf), fs->buf);
400 argp/argp-fmtstream.c <<<unknown>>>
__argp_fmtstream printf (struct argp fmtstream *fs, const char *fmt,
argp/argp-fmtstream.c <<<unknown>>>
out = _ vsnprintf_internal (fs->p, avail, fmt, args, 0);
argp/argp-fmtstream.c <<<unknown>>>
weak_alias (__argp fmtstream_printf, argp fmtstream_printf)
argp/argp-fmtstream.h <<<unknown>>>
#define __ argp fmtstream_printf fprintf
argp/argp-fmtstream.h <<<unknown>>>
#define argp_ fmtstream printf fprintf

KAIST OSLab Youjip Won

s Operating Systems Laboratory

46

Usage of cscope in vim

“cs find ¢ printf”:
Prints the functions calling the symbol printf

argp/argp-test.c <<weak_alias>>
printf ("NO SUB ARGS\n");
argp/argp-test.c <<sub parse opt>>
printf ("NO SUB ARGS\n");
argp/argp-test.c <<weak_alias>>
printf ("SUB ARG: %s\n", arg);
argp/argp-test.c <<sub_parse_opt>>
printf ("SUB ARG: %s\n", arg);
argp/argp-test.c <<weak alias>>
printf ("SUB KEY %c\n", key);
argp/argp-test.c <<sub_parse_opt>>
printf ("SUB KEY %c\n", key);
argp/argp-test.c <<popt>>

printf ("KEY %s: %s\n", buf, arg);
argp/argp-test.c <<popt>>

printf ("KEY %s\n", buf);

KAIST OSLab Youjip Won

s Operating Systems Laboratory

Usage of cscope in vim

“cs find d printf”:
Print the functions called by the symbol printf.

libio/bits/stdio2.h <<__ printf_chk>>

return __ printf _chk (__USE_FORTIFY LEVEL - 1, fmt, _va arg pack ());
libio/bits/stdio2.h <<__ va_arg pack>>

return _ printf_chk (__USE_FORTIFY_LEVEL - 1, _ fmt, _ va_arg_pack ());
libio/bits/stdio2.h <<__ printf_chk>>

__printf_chk (__USE_FORTIFY_LEVEL - 1, _ VA ARGS_)
sysdeps/ieee754/1dbl-opt/nldbl-printf.c <<va_start>>

va_start (arg, fmt);

sysdeps/ieee754/1dbl-opt/nldbl-printf.c <<_ nldbl vfprintf>>

done = _ nldbl vfprintf (stdout, fmt, arg);
sysdeps/ieee754/1dbl-opt/nldbl-printf.c <<va_end>>

va_end (arg);

Jusr/include/bits/stdio2.h <<_ printf chk>>

return _ printf_chk (__USE_FORTIFY LEVEL - 1, fmt, _ va arg pack ());
Jusr/include/bits/stdio2.h <<_va arg pack>>

return _ printf_chk (__USE_FORTIFY_LEVEL - 1, _ fmt, _ va_arg_pack ());

KAIST OSLab Youjip Won

s Operating Systems Laboratory

48

Usage of cscope in vim

“cs find g printf”:
Search position defining the symbol printf

libio/bits/stdio2.h <<printf>>
printf (const char *__restrict __ fmt,

libio/bits/stdio2.h <<printf>>
#define printf(...) \
sysdeps/ieee754/1dbl-opt/nldbl-printf.c <<printf>>
printf (const char *fmt, ...)

102 /Jusr/include/bits/stdio2.h <<printf>>
printf (const char *_ restrict _ fmt,

107 /usr/include/bits/stdio2.h <<printf>>
#define printf(...) \

Type number and <Enter> (empty cancels): I

KAIST OSLab Youjip Won

s Operating Systems Laboratory

49

Materials from EE485 taught by
Youjip Won and Kyungsoo Park

KAIST OSLab Youjip Won 50

Operating Systems Laboratory

What Is Makefile?

o Afile that helps decide which parts of a large program need to be recompiled.
o Makefile = a configuration file for partial build.
o Example: build a wordprocessor with 10,000 source code files.
o Don’t want to recompile them all if you edit just one line.
o Recompile only those files that have changed.
> make (a tool) enables this task.

o A GNU tool that executes the “appropriate” rules in makefile.

S make

(recompilation)

KA'ST OSLab Youjip Won

Operating Systems Laboratory

make & makefile

o make executes rules in 'makefile' (or ‘Makefile’ or ‘GNUMakefile’).

‘makefile’ content:

hello:

[hello.

c |

lgcc hello.c —o hellc}

target:

prerequisites

» command |

“Run the target if the
target file 1is older than
the prerequisite files”

=>target file is out of date

$ make hello // make takes a specific target for building
gcc hello.c —o hello
$ make // no target? Then, the first target (default target) is run.
KAIST OSLab Youjip Won 52

Operating Systems Laboratory

Targets and Prerequisites

Q

o

o

o

‘makefile’ contains a set of rules to build an application.

Can have multiple rules in one file.

Each rule can have (multiple) dependencies.

Default rule = the first rule in ‘makefile’.

Default rule is executed if make runs without any arguments.

A rule consists of a target, prerequisite(s), and command(s).

<tab>

target: prereql prereqZ2

commands

single tab
commands

(*\t")

before

Important! no spaces other than a

the

KAIST

OSLab

Operating Systems Laboratory

Youjip Won

53

Example Rules in Makefile

foo: foo.o libfoo.o foo.h

gcc foo.o libfoo.o -o foo

o target=foo, prerequisites=foo.0, libfoo.o, and foo.h
o command=gcc foo.o libfoo.o -o foo
o How to evaluate a rule?
1. It finds the files for the prerequisites and the target.

2. If the prerequisites have associated rules, evaluate them recursively.

foo.o: foo.c foo.h

gcc —-c foo.c
3. If any prerequisite is newer (modified more recently) than the target, the target is

rebuilt by executing the command(s).
o Each command line is run in its own shell.

o If any command fails, building of the target terminates and make exits.

KAIST OSLab Youjip Won 54

Operating Systems Laboratory

An Example for Evaluating Rules

count words: |count words.o||lexer.o||-1fl

gcc count words.o lexer.o —-1fll —o count words
_ ek _

count _words.o: count words.c 1. Searches for libfl.so first

gcc -c count words.c 2. Searches for libfl.a if (1) fails

A

lexer.o: |lexer.c

gcc —-c lexer.c

Assumptions for this example
lexer.c: lexer.l 1. 'count_words.c' exists
ol =t loxer.l > lexer.e 2. ‘lexer.c' does not exist

_ flex is a lexical analyzer (tool) that translates

»

o $ make a lex source code file (lexer.l) intoa C source code

gcc —c count words.c
flex -t lexer.l > lexer.c
gcc —c lexer.c

gcc count words.o lexer.o -1lfl -o count words

KA'ST OSLab Youjip Won 55

Operating Systems Laboratory

A Few Tips on Rules

o Arule can have multiple targets.

o Each target has the same set of prerequisites.

vpath.o variable.o: make.h config.h getopt.h gettext.h dep.h

|

vpath.o: make.h config.h getopt.h gettext.h dep.h

variable.o: make.h config.h getopt.h gettext.h dep.h

o Not all prerequisites need to be defined all at once.

vpath.o: make.h config.h getopt.h gettext.h dep.h

vapth.o: filedep.h hash.h job.h commands.h variable.h vapth.h

T A P R Whenever lexer.c is updated, vpath.o must be updated.
— : The prerequisite is always updated before the target is updated.

vpath.o: vpath.c

KAIST OSLab

Youjip Won
Operating Systems Laboratory J1p 56

Wildcards and Variables

° make supports wildcards. (*, ~, ?, [...], [*...])
° *: replaced with all file names in the current directory. (*.c: all .c’ files in current directory)

° ~: replaced with the home directory.

° $ (variable-name) : expand the variable whose name is variable-name.

0 Format: variable-name = value
CC = gcc

° Variables can contain almost any text
prog: *.c

o Automatic variables S(CC) -o s@ s~

° $@: the filename that represents the target.

o $<: The filename of the first prerequisite. > gcc —o prog *.c
° $? : the names of all prerequisites newer than the target, separated by spaces.

° $4: the filename of all the prerequisites, separated by spaces. (with duplicate files removed)

o §

+

: Similar to $*, but allows duplicate files.

° $*: the stem of the target filename, “stem” = a filename without its suffix.

KA'ST OSLab Youjip Won 57

Operating Systems Laboratory

Practicing with Wildcards

cou

cou

Ccou

lex

lex

nt words: count words.o counter.o lexer.o —-1fl

gcc $° -o S@ » gcc count_words.o counter.o lexer.o —Ifl —o count_words

nt words.o:

count words.c

gcc —c S<

A 4

gcc —c count_words.c

nter.o: counter.c

gcc —-c S<

v

gcc —c counter.c

er.o: lexer.c

gcc —c S<

\ 4

gcc —c lexer.c

er.c: lexer.l

flex -t $< > s@— flex—tlexer.l > lexer.c

KAIST

OSLab

Operating Systems Laboratory

Youjip Won

58

Files in Different Directories?

count words: count words.o counter.o lexer.o —-1fl

gcc $” -o s@

count words.o: |count words.c|include/counter.h

gcc -c S$<

counter.o: counter.c inclpde/counter.h include/lexer.h

e (T3Sl
gcc —-c S$<
et INClUde | lexer.o: lexer.c include/[lexer.h
[' gcc —-c S$<
s (OUNTETN
o lexerh lexer.c: lexer.l
flex -t $< > $d
SIC
$ make
count_words.c
pm——— make: *** No rule to make target 'count words.c’,
e |eXET| needed by 'count words.o’. Stop.
How to fix this problem?
Why? ‘count_words.c' is not found in the current directory (it's in src/) nor
there is a rule to build the file. The error messages refers to the latter.
KAIST OSLab Youjip Won 59

Operating Systems Laboratory

VPATH & CPPFLAGS

VPATH = src

CPPFLAGS = -I include

count words: count words.o counter.o lexer.o —-1fl

gcc $(CPPFLAGS) $” -o $@

count words.o: count words.c include/counter.h
gcc $ (CPPFLAGS) -c $<

counter.o: counter.c include/counter.h include/lexer.h

gcc $(CPPFLAGS) -c $<
lexer.o: lexer.c include/lexer.h
gcc $ (CPPFLAGS) -c $<

lexer.c: lexer.l

flex -t S$< > 3@

Q

o

VPATH: environment variable. tells
make where to look for the files.

CPPFLAGS: provides an option to gcc
for finding the header files.

° CPPFLAGS: preprocessor options

° CFLAGS: ¢ compiler options

vpath directive — more precise

vpath %.c src

vpath %.1 src

vpath %.h include

° Look for .c or .l files in “src/”.
° Look for .h in “include/” .

o No need for include/X in

prerequisites.

OSLab

Operating Systems Laboratory

KA'ST Youjip Won

60

Phony Targets

o Phony target: a target that does not represent a file.

o Always out of date, so always evaluate the rule.

clean:

rm —f *.o0 lexer.c

© S make clean // always executes ‘rm -f *.o0 lexer.c’.

o What if there happens to be a file, ‘clean’, in the current directory?
o $ make clean
make: ‘clean’ is up to date.
> Problem: make does not know whether a target is phony or not.

o .PHONY to explicitly tell make that ‘clean’ is a phony target.

.PHONY: clean
clean:

rm —f *.o0 lexer.c

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Popular Phony Targets

o

Q

Typical phony targets & typical meaning
all: perform all tasks to build the application.
install: create an installation of the application from the compiled binaries.

clean: delete the binary files, temporary files generated from source files.

distclean: delete all the generated files not in the original source distribution.

TAGS: create a tag tale for use by editors. (ctags/etags)
info: create GNU info files from their Texinfo sources.

check: Run any tests associated with this application.

KAIST

OSLab Youjip Won

Operating Systems Laboratory

62

Pattern Rules

VPATH = src include $.01 %.C
CPPFLAGS = -T include $ (COMPILE.c) $(OUTPUT OPTION) $<
count words: counter.o lexer.o —1fl wo@s ol Assume variables below (COMPILE.c} RM,
count words.o: counter.h || es(rvM) se LEXI, ...) are defined somewhere e|se
counter.o: counter.h lexer.h $(LEX.1) $< > 5@
lexer.o: lexer.h s %.0
L]
$(LINK.o) $~ $(LOADLIBES) $(LDLIBS) -o $@
] “
° Can simplify makefile with built-in rules for well-known file types.
° Built-in rules = implicit pattern rules
° Pattern rules = normal rules except the stem of the file is expressed as %.
a name without a suffix
° The first target expanded by the implicit pattern rule, ‘%: %.0’.
count words: count words.o counter.o lexer.o —-1fl
° % = count_words, %.0 = count_words.o
° Next target = count_words.o, its rule expanded by ‘%.0: %.c’.
count words.o: count words.c counter.h
° src/count_words.c exists, and it does not have a prerequisite => run the command & move on.
KA OSLab i
IST Operating Systems Laboratory Youjip Won 63

Pattern Rules

VPATH = src include $.0: %.cC
CPPFLAGS = -I include S (COMPILE.c) $(OUTPUT_OPTION) S<
count words: counter.o|lexer.o|-1fl s.c: 5.1
count words.o: counter.h @s (RM) S@
counter.o: counter.h lexer.h $(LEX.1) $< > s@
lexer.o: lexer.h $: %5.0
S(LINK.o) $~ $(LOADLIBES) $(LDLIBS)

-0 $Sa

o Next target = counter.o

counter.o: counter.c counter.h lexer.h

(expanded by %.0: %.c)

o Next target = lexer.o (expanded by %.0: %.c)

lexer.o: lexer.c lexer.h

lexer.c: lexer.l
o But src/lexer.c does NOT exis @S (RM) $@
> This triggers the rule, ‘%.c: %! S(LEX.1) $< > 5@
KAIST OSLab

Youjip Won
Operating Systems Laboratory J'p

64

Predefined Variables in Built-in Rules

.0 3.C
S (COMPILE.c) $(OUTPUT_OPTION) $<
$.ct 5.1
@s$ (RM) s@
S(LEX.1) $< > 8@
F: %.0
S (LINK.o) $~ S$(LOADLIBES) $(LDLIBS) -o $d@

©

$ make -p // will show all predefined/default variables
COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) —c g

CC =cc, can be redefined to the path of an alternate C compiler.

CFLAGS: options for $(CC) command. none by default.

CPPFLAGS: options for cpp. none by default .

TARGET_ARCH: architecture-specific options. none by default.

LINK.o = $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

LDFLAGS: options for Id; none by default.

LEX.| = $(LEX) $(LFLAGS) —t
LEX = lex

LFLAGS = options for lex,

none by default.

RM =rm —f

KAIST OSLab

Youjip Won
Operating Systems Laboratory J1p

65

Practice Writing Makefile

£}

Want to build progK. (program binary name)
C source code consists of fileA.c, fileB.c, and fileC.c
fileA.c includes a1.h and a2.h, fileB.c includes b1.h, and fileC.c includes c1.h.

All files (.c or .h) can be modified any time.
Let's write reasonable makfefile.

Version 1:

all:

gcc —c fileA.c fileB.c fileC.c -o progK

Problem: no prerequisites — don’t recompile even if any files are modified.

Version 2:

all: fileA.c fileB.c fileC.c al.h a2.h bl.h cl.h
gcc —c fileA.c fileB.c fileC.c -o progK

Problem? Recompile every file if any prerequisite files are modified.

KAIST

OSLab Youjip Won
Operating Systems Laboratory

66

Practice Writing Makefile (Continued)

° Version 3:

OBJFILES = fileA.o fileB.o fileC.o
CC = gcc
CFLAGS = -Wall —-Werror
All: S (OBJFILES)

S(CC) $(OBJFILES) -o progK
fileA.o: al.h a2.h
fileB.o: bl.h

fileC.o0: cl.h

o A reasonable one that does
o Partial/incremental build.

o Properly uses built-in pattern rules.

o Properly overrides CFLAGS with —Wall (print all warnings) —Werror (make all warnings

KAIST oslib 'S/ Youjip Won

Operating Systems Laboratory

67

Debugging is not easy.
In 1997, Pathfinder on Mars has stopped. OS has

crashed due to the priority inversion.

e The Mars Pathfinder Mission Status Reports — First Week

e The Mars Pathfinder Mission Status Reports — Second Week
¢ The Mars Pathfinder Mission Status Reports — Third Week

e What really happened on Mars?

e A Conversation with Glenn Reeves

How did NASA remotely fix the code on the Mars Pathfinder?

In 1997, NASA remotely fixed a bug that caused priority inversion on their Mars Pathfinder. asked
How did they go about doing this? What kind of communication protocols are used? How do

17 they update the source for an operating system, compile it, and run it from a remote location? ywec 4
This might be simpler than | thought, but to me this seems like quite the feat! active
Story of the bugfix here: hitp://research.microsoft.com/en-
us/um/people/mbj/mars_pathfinder/authoritative_account.html Linked
The author said to email him and he would provide details, but this was almost 20 years ago. n -
Curious to see if anyone else knows how this worked. s|

KAIST OSLab Youjip Won

Operating Systems Laboratory

68

