
Youjip Won

EE488: System Software Design
Fall 2022



2Youjip Won

gdb



3Youjip Won

GDB, the tool

What is GDB?

Default debugger for GNU software system

GDB can trace execution of program and support other functionalities.

How to compile file that can be debugged by gdb?

$ gcc -g gdb_test.c -o gdb_test

Run gdb

$ gdb [FILENAME]

How to pass arguments to program in gdb?

$ gdb [FILENAME]

(gdb) set args [argument]



4Youjip Won

GDB - basic commands

(gdb) continue or c 

Continue execution of program

(gdb) step or s 

Run a line of code in program. If the code calls function, it enter to inside of function

(gdb) next or n 

Run a line of code in program. If the code calls function, it not enter to inside of function but execu

te next line.

(gdb) finish 

Continue execution of program until current function returns

(gdb) return value 

Stop the execution of current function, and use value as return value



5Youjip Won

GDB - basic commands (Cont.)

(gdb) list 90

Print source code at 90 line

(gdb) list badfunc

Print the source code of specific function that you specified

(gdb) set listsize n

Set the number of lines that is printed when the list command is excuted

default is 10



6Youjip Won

GDB - print

When you want to examine some variables

(gdb) whatis [variable] : Print the type of variable

(gdb) print [variable] : Print the value of variable

Print

(gdb) print a->member

(gdb) print add(1,2)

(gdb) print /x value

(gdb) print p->state

(gdb) print p->pid

(gdb) print (*p)

You can specify the format of output as use x, u, o, c keyword



7Youjip Won

GDB - break

When you want to stop execution of program at position you want

(gdb) break 31

(gdb) break func

(gdb) break hello.c:main

(gdb) break utilc:300

(gdb) info break

(gdb) delete 1 : (If you not specify number, all breakpoints are deleted)

Print the backtrace information in current function

(gdb) backtrace

(gdb) backtrace n



8Youjip Won

gdb_test.c

1.  #include <stdio.h>

2. 

3.  void print() {

4.      printf(“hello world!\n”);

5.  }

6. 

7.  int main() {

8. 

9.     int i;

10.    for (i=0; i<10; i++) print();

11.    return 0;

12. }



9Youjip Won

GDB(Cont.)



10Youjip Won



11Youjip Won



12Youjip Won



13Youjip Won



14Youjip Won



15Youjip Won



16Youjip Won

normal booting & debug mode booting

make qemu

qemu-system-i386 -serial mon:stdio -drive 

file=fs.img,index=1,media=disk,format=raw -drive 

file=xv6.img,index=0,media=disk,format=raw -smp 2 -m 512

make qemu-gdb

qemu-system-i386 -serial mon:stdio -drive 

file=fs.img,index=1,media=disk,format=raw -drive 

file=xv6.img,index=0,media=disk,format=raw -smp 2 -m 512  -S 

-gdb tcp::25501

Difference between two upper command is “-S -gdb tcp::25501”

-S : suspend the debug target just before the booting starts

-gdb tcp::[port]

port number that is used to accept the command from gdb.



17Youjip Won

First, run the debug target

execute upper command from the shell.

QEMU stops and waits for the gdb

command.

$ qemu-system-i386 -serial mon:stdio -drive file=fs.img, index=1,media=disk, 

format=raw -drive file=xv6.img, index=0,media=disk,format=raw -smp 2 -m 512 -S  

-gdb tcp::25501



18Youjip Won

Second, run the debugger

Open a new terminal.

Go to the directory where kernel binary resides.

Execute gdb with loading the target binary.

$ gdb [binary file to load]

$ gdb kernel                // linux & WSL

$ i386-elf-gdb kernel       // macOS

Output of WSL



19Youjip Won

.gdbinit

GDB reads the .gdbinit first and executes the commands in this file. 

.gdbinit helps to automatically execute the commands you need to 

execute each time.

target remote localhost:26000

Git repository of xv6-public already has .gdbinit file. 

If gdb is not connected to QEMU automatically, please check whether 

there is the .gdbinit file or not.



20Youjip Won

connect the gdb to debug target

Load the kernel to gdb.

It loads the program information and the symbols.

It was not connected to the actual debug target.



21Youjip Won

connect to the debug target

(gdb) target remote localhost:[port]

Specify the port number with the one you

setup the break point.

(gdb) br main             // set the breakpoint at main

(gdb) c                   // continue



22Youjip Won

connect to the debug target

(gdb) list

(gdb) br userinit

(gdb) c

(gdb) n or s

s: step into

n: next



23Youjip Won

ctags

Materials from EE485 taught by 
Youjip Won and Kyungsoo Park



24Youjip Won

ctags

ctags

A tool for making “tag file” which contains the location of function, variable, stri

ng, and etc. of a source file.

You can use ”tag file” to find the objects by name.

ctags installation (linux)

$ sudo apt-get install ctags



25Youjip Won

Setup ctags (1)

Step1. building tag file

$ ctags [option] [filename(s)]

example

$ ctags hello.c :making tag file which include index of “hello.c”

$ ctags -R :making the tag file for all subdirectories under current directory.

option list

option PATH

-R Scan all subdirectory recursively.

--exclude=[pattern]
Exclude files and directories which have ‘pattern’ in name fr
om creating tag file.

-x Print tags as table to stdout without creating tag file.



26Youjip Won

Setup ctags (2)

Step2. Setting Tag file for Vim

open vim and type command below in vim command mode

set tags=[path of tag file]

adding above command in ~/.vimrc will save this configuration



27Youjip Won

Download the source code of bash with below command

Move to the glibc directory in and Make tags file with below command

If you are using an old version of ctags so you cannot use the –R option, 

make tags file with below command (The eelab5 server has an old 

version)

Prepare the practice for ctags (1)

$ git clone https://sourceware.org/git/glibc.git

$ cd glibc

$ ctags -R

$ cd glibc

$ find . -name "*.[chS]" | ctags -



28Youjip Won

Open the ~/.vimrc file

Type below text in ~/.vimrc file

Prepare the practice for the ctags (2)

$ vi ~/.vimrc

set tags+=“Path of tha tags file you made”



29Youjip Won

Save and quit the vi

Open vi in glibc directory and run below command for testing

Prepare the practice for the ctags (3)

:wq

:tj fgets



30Youjip Won

ctags command in vim

Command Description of the command

:ta [tagname] Jump to definition of tagname

:po Jump back to previous position

Ctrl + ] Shorcut of command ‘ta’.
The tagname is a string pointed by current cursor.

Ctrl + t Shorcut of command ‘po’.

:ts [tagname] Print list of definition of tagname

:tj [tagname] Jump to definition of tagname if there is single definition
Otherwise, print list of definition of tagname

:tn Jump to next definition in list printed by command ts

:tp Jump to previous definition in list printed by command ts

:tags Print history of jump using ctags

:sts Same with command ‘ts’, but split windows



31Youjip Won

The command ‘ta’

“:ta fgets”:
Jump to definition of fgets



32Youjip Won

Shorcut of the command ‘ta’

“Ctrl-]”:
Jump to definition of function pointed by current cursor

Type Ctrl-]



33Youjip Won

The command “po” and its shortcut

“:po” & “Ctrl-t”:
Jump to previous position (Continue to previous slide...)

Type po or Ctrl-t



34Youjip Won

The command “ts”

“:ts fgets”:
Print list of definition of fgets



35Youjip Won

The command “tj”

“:tj fgets”:
Print the list of definition of fgets

*It has multiple definitions

“:tj __fgets_chk”:
Jump to definition of_fgets_chk

*It has single definition

Type the number of tag you want



36Youjip Won

The command “tn” and “tp” (Cont. to “tj fgets”)

“:tp”:
Jump to previous definition of fgets

“:tn”:
Jump to next definition of fgets



37Youjip Won

The command “tags” (Cont. to prev. slide)

“:tags”:
Print history of jump using ctags



38Youjip Won

The command “sts” (Cont. to prev. slide)

“:sts __fgets_chk”:
Same with command ‘ts’, but split windows



39Youjip Won

cscope

Materials from EE485 taught by 
Youjip Won and Kyungsoo Park



40Youjip Won

cscope

The tool supports functionalities that are not in ctags.

The functionalities include:

Find the definition of symbol.

Find the positions where a given function is called or a variable is accessed.

Find the functions that specific function calls.

Find text string.

Installation (Linux)

$ sudo apt-get install cscope



41Youjip Won

Setup cscope (1)

Step 1. Make a file “cscope.files” containing list of files what you want to 

analyze in the glibc directory.

Result:

$ find . –name “*.[chS]” > cscope.files



42Youjip Won

Setup cscope (2)

Step 2. Make a file “cscope.out” which is a database file for cscope with 

below command

Result:

$ cscope –i cscope.files

* You can leave the cscope with Ctrl-D

The cscope.out has the information of each file in cscope.files



43Youjip Won

Setup cscope (3)

Step 3. Set the cscope in vim with the command below.

Add above command in ~/.vimrc will save this configuration.

: cs add ./cscope.out



44Youjip Won

command

Find the functions that “call” a given function or that “is called” by a given function.

Find all functions that call malloc()

Find all functions that are called by malloc().

44

Command Description

s Find C symbol String

g Find definition String

d Find functions called by function String

c Find functions calling function String

t Find text String

e Find egrep pattern String

f Find file String

i Find files #including file String

cs find <Command Character> <String>



45Youjip Won

Usage of cscope in vim

“cs find s printf”:
Search the symbol “printf”



46Youjip Won

Usage of cscope in vim

“cs find e ..printf”:
Search the symbol ..printf with regular expression



47Youjip Won

Usage of cscope in vim

“cs find c printf”:
Prints the functions calling the symbol printf



48Youjip Won

Usage of cscope in vim

“cs find d printf”:
Print the functions called by the symbol printf.



49Youjip Won

Usage of cscope in vim

“cs find g printf”:
Search position defining the symbol printf



50Youjip Won

make

Materials from EE485 taught by 
Youjip Won and Kyungsoo Park



51Youjip Won

What Is Makefile?

A file that helps decide which parts of a large program need to be recompiled.

Makefile = a configuration file for partial build.

Example: build a wordprocessor with 10,000 source code files.

Don’t want to recompile them all if you edit just one line.

Recompile only those files that have changed.

make (a tool) enables this task.

A GNU tool that executes the “appropriate” rules in makefile.

$ make

… (recompilation)



52Youjip Won

make & makefile

make executes rules in 'makefile' (or ‘Makefile’ or ‘GNUMakefile’).

‘makefile’ content:

hello: hello.c

gcc hello.c –o hello

$ make hello // make takes a specific target for building

gcc hello.c –o hello

$ make // no target? Then, the first target (default target) is run.

target: prerequisites

command

“Run the target if the
target file is older than
the prerequisite files”

=>target file is out of date



53Youjip Won

Targets and Prerequisites

‘makefile’ contains a set of rules to build an application.

Can have multiple rules in one file.

Each rule can have (multiple) dependencies.

Default rule = the first rule in ‘makefile’.

Default rule is executed if make runs without any arguments.

A rule consists of a target, prerequisite(s), and command(s).

target: prereq1 prereq2

<tab> commands

Important! no spaces other than a
single tab (‘\t’) before the
commands



54Youjip Won

Example Rules in Makefile

target=foo, prerequisites=foo.o, libfoo.o, and foo.h

command=gcc foo.o libfoo.o -o foo

How to evaluate a rule?

1. It finds the files for the prerequisites and the target.

2. If the prerequisites have associated rules, evaluate them recursively.

3. If any prerequisite is newer (modified more recently) than the target, the target is 

rebuilt by executing the command(s).

Each command line is run in its own shell.

If any command fails, building of the target terminates and make exits.

foo: foo.o libfoo.o foo.h

gcc foo.o libfoo.o –o foo

foo.o: foo.c foo.h

gcc –c foo.c



55Youjip Won

An Example for Evaluating Rules

$ make

gcc –c count_words.c

flex –t lexer.l > lexer.c

gcc –c lexer.c

gcc count_words.o lexer.o –lfl –o count_words

count_words: count_words.o lexer.o -lfl

gcc count_words.o lexer.o –lfl –o count_words

count_words.o: count_words.c

gcc –c count_words.c

lexer.o: lexer.c

gcc –c lexer.c

lexer.c: lexer.l

flex –t lexer.l > lexer.c

1. Searches for libfl.so first
2. Searches for libfl.a if (1) fails

flex is a lexical analyzer (tool) that translates
a lex source code file (lexer.l) intoa C source code

Assumptions for this example
1. 'count_words.c' exists
2. ‘lexer.c' does not exist



56Youjip Won

A Few Tips on Rules

A rule can have multiple targets.

Each target has the same set of prerequisites.

Not all prerequisites need to be defined all at once.

vpath.o variable.o: make.h config.h getopt.h gettext.h dep.h

vpath.o: make.h config.h getopt.h gettext.h dep.h

variable.o: make.h config.h getopt.h gettext.h dep.h

vpath.o: make.h config.h getopt.h gettext.h dep.h

vapth.o: filedep.h hash.h job.h commands.h variable.h vapth.h

vpath.o: lexer.c

…

vpath.o: vpath.c

Whenever lexer.c is updated, vpath.o must be updated.
The prerequisite is always updated before the target is updated.



57Youjip Won

Wildcards and Variables

make supports wildcards. (*, ~, ?, […], [^…] )

*: replaced with all file names in the current directory. (*.c: all ‘.c’ files in current directory)

~: replaced with the home directory.

$(variable-name): expand the variable whose name is variable-name.

Format: variable-name = value

Variables can contain almost any text

Automatic variables

$@: the filename that represents the target.

$<: The filename of the first prerequisite.

$? : the names of all prerequisites newer than the target, separated by spaces.

$^: the filename of all the prerequisites, separated by spaces. (with duplicate files removed)

$+: Similar to $^, but allows duplicate files.

$*: the stem of the target filename, “stem” = a filename without its suffix.

CC = gcc

prog: *.c

$(CC) –o $@ $^

gcc –o prog *.c



58Youjip Won

Practicing with Wildcards

count_words: count_words.o counter.o lexer.o –lfl

gcc $^ -o $@

count_words.o: count_words.c

gcc –c $<

counter.o: counter.c

gcc –c $<

lexer.o: lexer.c

gcc –c $<

lexer.c: lexer.l

flex –t $< > $@

gcc count_words.o counter.o lexer.o –lfl –o count_words

gcc –c counter.c

gcc –c count_words.c

gcc –c lexer.c

flex –t lexer.l > lexer.c



59Youjip Won

Files in Different Directories?

$ make

make: *** No rule to make target 'count_words.c’, 

needed by 'count_words.o’. Stop.

Why?  ‘count_words.c‘ is not found in the current directory (it’s in src/) nor 

there is a rule to build the file. The error messages refers to the latter.

count_words: count_words.o counter.o lexer.o –lfl

gcc $^ -o $@

count_words.o: count_words.c include/counter.h

gcc –c $<

counter.o: counter.c include/counter.h include/lexer.h

gcc –c $<

lexer.o: lexer.c include/lexer.h

gcc –c $<

lexer.c: lexer.l

flex –t $< > $@

How to fix this problem?



60Youjip Won

VPATH & CPPFLAGS

VPATH = src

CPPFLAGS = -I include

count_words: count_words.o counter.o lexer.o –lfl

gcc $(CPPFLAGS) $^ -o $@

count_words.o: count_words.c include/counter.h

gcc $(CPPFLAGS) –c $<

counter.o: counter.c include/counter.h include/lexer.h

gcc $(CPPFLAGS) –c $<

lexer.o: lexer.c include/lexer.h

gcc $(CPPFLAGS) –c $<

lexer.c: lexer.l

flex –t $< > $@

vpath %.c src

vpath %.l src

vpath %.h include

VPATH: environment variable. tells 

make where to look for the files.

CPPFLAGS: provides an option to gcc

for finding the header files.

CPPFLAGS: preprocessor options

CFLAGS: c compiler options

vpath directive – more precise

Look for .c or .l files in “src/”.

Look for .h in “include/” .

No need for include/X in 

prerequisites.



61Youjip Won

Phony Targets

Phony target: a target that does not represent a file.

Always out of date, so always evaluate the rule.

$ make clean //  always executes ‘rm –f *.o lexer.c’.

What if there happens to be a file, ‘clean’, in the current directory?

$ make clean

make: ‘clean’ is up to date.

Problem: make does not know whether a target is phony or not.

.PHONY to explicitly tell make that ‘clean’ is a phony target.

clean:

rm –f *.o lexer.c

.PHONY: clean

clean:

rm –f *.o lexer.c



62Youjip Won

Popular Phony Targets

Typical phony targets & typical meaning

all: perform all tasks to build the application.

install: create an installation of the application from the compiled binaries.

clean: delete the binary files, temporary files generated from source files.

distclean: delete all the generated files not in the original source distribution.

TAGS: create a tag tale for use by editors. (ctags/etags)

info: create GNU info files from their Texinfo sources.

check: Run any tests associated with this application.



63Youjip Won

Pattern Rules

Can simplify makefile with built-in rules for well-known file types.

Built-in rules = implicit pattern rules

Pattern rules = normal rules except the stem of the file is expressed as %.

The first target expanded by the implicit pattern rule, ‘%: %.o’.

% = count_words, %.o = count_words.o

Next target = count_words.o, its rule expanded by ‘%.o: %.c’.

src/count_words.c exists, and it does not have a prerequisite => run the command & move on.

VPATH = src include

CPPFLAGS = -I include

count_words: counter.o lexer.o –lfl

count_words.o: counter.h

counter.o: counter.h lexer.h

lexer.o: lexer.h

%.o: %.c

$(COMPILE.c) $(OUTPUT_OPTION) $<

%.c: %.l

@$(RM) $@

$(LEX.l) $< > $@

%: %.o

$(LINK.o) $^ $(LOADLIBES) $(LDLIBS) –o $@

Assume variables below (COMPILE.c, RM, 
LEX.l, ...) are defined somewhere else

count_words: count_words.o counter.o lexer.o –lfl

count_words.o: count_words.c counter.h

a name without a suffix



64Youjip Won

Pattern Rules

Next target = counter.o

(expanded by %.o: %.c)

Next target = lexer.o (expanded by %.o: %.c)

But src/lexer.c does NOT exist! 

This triggers the rule, ‘%.c: %.l’

VPATH = src include

CPPFLAGS = -I include

count_words: counter.o lexer.o –lfl

count_words.o: counter.h

counter.o: counter.h lexer.h

lexer.o: lexer.h

%.o: %.c

$(COMPILE.c) $(OUTPUT_OPTION) $<

%.c: %.l

@$(RM) $@

$(LEX.l) $< > $@

%: %.o

$(LINK.o) $^ $(LOADLIBES) $(LDLIBS) –o $@

counter.o: counter.c counter.h lexer.h

lexer.o: lexer.c lexer.h

lexer.c: lexer.l

@$(RM) $@

$(LEX.l) $< > $@



65Youjip Won

Predefined Variables in Built-in Rules

$ make –p // will show all predefined/default variables

COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) –c

CC = cc,  can be redefined to the path of an alternate C compiler.

CFLAGS: options for $(CC) command. none by default. 

CPPFLAGS:  options for cpp. none by default .

TARGET_ARCH: architecture-specific options. none by default.

LINK.o = $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS)

LDFLAGS: options for ld; none by default.

%.o: %.c

$(COMPILE.c) $(OUTPUT_OPTION) $<

%.c: %.l

@$(RM) $@

$(LEX.l) $< > $@

%: %.o

$(LINK.o) $^ $(LOADLIBES) $(LDLIBS) –o $@

LEX.l = $(LEX) $(LFLAGS) –t

LEX = lex

LFLAGS = options for lex, 

none by default.

RM = rm –f 



66Youjip Won

Practice Writing Makefile

Want to build progK. (program binary name)

C source code consists of fileA.c, fileB.c, and fileC.c

fileA.c includes a1.h and a2.h, fileB.c includes b1.h, and fileC.c includes c1.h.

All files (.c or .h) can be modified any time.

Let's write reasonable makfefile.

Version 1:

Problem: no prerequisites – don’t recompile even if any files are modified.

Version 2:

Problem? Recompile every file if any prerequisite files are modified.

all:

gcc –c fileA.c fileB.c fileC.c –o progK

all: fileA.c fileB.c fileC.c a1.h a2.h b1.h c1.h
gcc –c fileA.c fileB.c fileC.c –o progK



67Youjip Won

Practice Writing Makefile (Continued)

Version 3:

A reasonable one that does

Partial/incremental build.

Properly uses built-in pattern rules.

Properly overrides CFLAGS with –Wall (print all warnings) –Werror (make all warnings 

into errors).

OBJFILES = fileA.o fileB.o fileC.o

CC = gcc

CFLAGS = -Wall –Werror

All: $(OBJFILES)

$(CC) $(OBJFILES) –o progK

fileA.o: a1.h a2.h

fileB.o: b1.h

fileC.o: c1.h



68Youjip Won

In 1997, Pathfinder on Mars has stopped. OS has 

crashed due to the priority inversion.

Debugging is not easy.


