
Youjip Won

EE488: System Software Design
Fall 2022

2Youjip Won

Operating system organization

The three requirements of operating system

Multiplexing

OS transparently switches the hardware resources from one process to

another. e.g. context switch or virtual memory

Isolation

One process should not affect the execution of the other process.

OS forbids the application to directly access the hardware.

Interaction

Provides a mechanism for the processes to communication

e.g. via pipe or via signal.

3Youjip Won

Multiplexing, isolation, interaction

4Youjip Won

Abstraction layer

5Youjip Won

Abstraction layer (Cont.)

6Youjip Won

Abstraction layer : file system

7Youjip Won

Abstraction layer : memory management

8Youjip Won

User mode / Kernel mode

Strong isolation requires a hard boundary between applications and operating

systems. If the application makes a mistake, we do not want the operating system to

fail.

Processors provide hardware support for strong isolation.

x86 processor has two execution modes: kernel mode & user mode.

An application can execute only user-mode instructions (e.g., adding numbers, etc.) and is

said to be running in user space.

The software in kernel mode can execute privileged instructions and is said to be running

in kernel space. (e.g. reading and writing the disk)

The software running in kernel space (or in kernel mode) is called the kernel.

CPU provides a special instruction to switch the mode from the user mode to the

kernel mode and enters the kernel at an entry point specified by the kernel.

int in x86

9Youjip Won

User
mode

Kernel
mode

User
mode

int return

int instruction

Switch the execution mode from the user mode to the kernel mode.

e.g. An application that wants to read or write a file on disk must transition to

the kernel.

Once the processor has switched to kernel mode, the kernel can then

validate the arguments of the system call, decide whether the application is

allowed to perform the requested operation, and then deny it or execute it.

10Youjip Won

System call

11Youjip Won

System call

12Youjip Won

Kernel Organization

What part of the operating system should run in kernel mode?

Monolithic kernel

Entire OS resides in the kernel.

This organization is convenient because the OS designer doesn’t have to decide

which part of the operating system doesn’t need full hardware privilege.

Different parts of OS can easily cooperate., e.g. virtual memory and filesystem

Error prone

Micro kernel :

Executing the bulk of the operating system in user mode.

The kernel interface consists of a few low-level functions for starting applications,

sending messages, accessing device hardware, etc.

The kernel is relatively simple, as most of the operating system resides in user-level

servers.

xv6 is implemented as a monolithic kernel.

13Youjip Won

Process

14Youjip Won

Process

Unit of isolation

Has its own state: address space, execution mode, CPU time quantum

15Youjip Won

Virtual address space

16Youjip Won

Process : struct proc

17Youjip Won

// Per-process state

struct proc {

uint sz; // Size of process memory (bytes)

pde_t* pgdir; // Page table

char *kstack; // Bottom of kernel stack for this process

enum procstate state; // Process state

int pid; // Process ID

struct proc *parent; // Parent process

struct trapframe *tf; // Trap frame for current syscall

struct context *context; // swtch() here to run process

void *chan; // If non-zero, sleeping on chan

int killed; // If non-zero, have been killed

struct file *ofile[NOFILE]; // Open files

struct inode *cwd; // Current directory

char name[16]; // Process name (debugging)

};

Process : struct proc (Cont.)

18Youjip Won

stack frame for function call

parameters

return addr

Local variables

parameters

return addr

Local variables

Stack frame

Stack frame

Stack grows.

esp

ebp

to save the followings

Parameters, Return

address, local variables

ebp (base pointer register)

the address of the

beginning of the stack

frame, remains

unchanged while the

function executes.

esp (stack pointer)

address of stack top,

keeps changing while

the function executes.

19Youjip Won

User stack vs. kernel stack

20Youjip Won

Summary

overview of booting

creating the first address space

creating the first process

running the first process

do not forget: preview and review

