EE488: System Software Design
Fall 2022

Operating System Organization

Youjip Won

KAISTEE

Operating system organization

© The three requirements of operating system
o Multiplexing

o OS transparently switches the hardware resources from one process to

another. e.g. context switch or virtual memory
o Isolation
o One process should not affect the execution of the other process.
o OS forbids the application to directly access the hardware.
o Interaction
o Provides a mechanism for the processes to communication

° e.g. via pipe or via signal.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

Multiplexing, isolation, interaction

Mutbestny Ls._\a_c_h_m_
C) e
S &)
= | p —
S XS SR
m +‘te
E c' ? b = LN
\ -:’.- i
Teraciaon
BRSO

ﬁ x@e.,
R D ..,y
A4 Iz
F‘?ﬁ- Svaved- quu-&

BeYe NG S |

b U

SN IS NSNS

N

KAIST OSLab

Youjip Won
Operating Systems Laboratory J'p

Abstraction layer

Cb\l’ouu_

Qec
[—Mﬂ s [%(ﬂ }"(__,b
7 :> r\'o s/ j

7
£

A\

KAIST OSLab Youjip Won

Operating Systems Laboratory

Abstraction layer (Cont.)

rrrrrrrrrrrrrrrrrrrrrrrrr

Youjip Won

Abstraction layer : file system

(

e N
Og A\ﬁ\\lr‘t\m L‘AGQ)'L ”‘f}i%@g%fﬁfﬁ&wﬁ

A —
@ il @ &.‘m
Span +-o NP
c\ene -- - wrdg e

[e6s
(€9 — > - Yok QQQ.\Q"'TM

@ rxg%m "Lt g o R

_ ‘Pa’ch o (osolutian

KAIST OSLab Youjip Won

Operatin g Systems La borator y

Abstraction layer : memory management

OQ‘. NfS\hd'bm LMOWW\N“% mama\c\cw?

Soce TORNOA. LA CA
@) oA car_’c'_taw :ﬂ_@ﬁm br e LD
SR Ry 72 —
e LD

—

0S
AOQB ed

O\

KAIST OSLab

Operating Systems Laboratory

Youjip Won

User mode / Kernel mode

O Strong isolation requires a hard boundary between applications and operating

systems. If the application makes a mistake, we do not want the operating system to
fail.

Processors provide hardware support for strong isolation.
° x86 processor has two execution modes: kernel mode & user mode.

° An application can execute only user-mode instructions (e.g., adding numbers, etc.) and is

said to be running in user space.

° The software in kernel mode can execute privileged instructions and is said to be running
in kernel space. (e.g. reading and writing the disk)

O The software running in kernel space (or in kernel mode) is called the kernel.

O CPU provides a special instruction to switch the mode from the user mode to the

kernel mode and enters the kernel at an entry point specified by the kernel.

int in x86

KAIST OSLab

Youjip Won
Operating Systems Laboratory Jp

int instruction

O Switch the execution mode from the user mode to the kernel mode.
o e.g. An application that wants to read or write a file on disk must transition to

the kernel.

© Once the processor has switched to kernel mode, the kernel can then
validate the arguments of the system call, decide whether the application is

allowed to perform the requested operation, and then deny it or execute it.

User . Kernel User
int
mode m»ode return mfde

KAIST OSLab Youjip Won

Operating Systems Laboratory

System call

Stghem Call
\} AR ; /c‘t\omc\g, elp & AR

\.s entey ;

i—::c&hm
c et*va;

' 32%

-
Oy
—

KA'ST QSLab Youjip Won

rrrrrrrrrrrrrrrrrrrrrrrrrr

System call

—

N] .
l - ___.5‘»}9'.'4” s ‘
S

' J OxosoFACo0 | L Ox000TAB0O Y4 d‘}eck. avauma-:k_‘

OxoeotACdo aAd ——

P gy

kel Crrivy Vet shooddt e knasns,
9":&:&*«3 Addrn~ /@ T sqstenmn cad .

KAIST OSLab Youjip Won 11

Operating Systems Laboratory

Kernel Organization

What part of the operating system should run in kernel mode?

© Monolithic kernel
o Entire OS resides in the kernel.

o This organization is convenient because the OS designer doesn’t have to decide

which part of the operating system doesn’t need full hardware privilege.
° Different parts of OS can easily cooperate., e.g. virtual memory and filesystem

° Error prone

© Micro kernel :
° Executing the bulk of the operating system in user mode.

o The kernel interface consists of a few low-level functions for starting applications,

sending messages, accessing device hardware, etc.

o The kernel is relatively simple, as most of the operating system resides in user-level

servers.

© xv6 is implemented as a monolithic kernel.

KAIST OSLab Youjip Won

Operating Systems Laboratory

Process

KAIST OSLab Youjip Won 13

Operating Systems Laboratory

Process

O Unit of isolation

O Has its own state: address space, execution mode, CPU time quantum

Qro cess
‘Ut § Tsolation

 Mtes Spacs. | Execsckion Made, A uspte sl

=

g

Mdress Soagf (| Made b Gl

U&VQMQ | —

v

KAIST OSLab Youjip Won

Operating Systems Laboratory

14

Virtual address space

Vichwd. Abdves Saa OF T —
QR .0 '
o
E C] | ZES otk o Vs pacs.
O Qoco soco 2308
stocle)
3 -
y Herp
Hebe = Wy > g.ock Do
0%‘“@0& T“‘L ;_J)
Peooss Address g\hcﬂ.
(Vertwad Adsess)

KA'ST OSLab Youjip Won

Operating Systems Laboratory

15

Process : struct proc

V'm WAy { Sheact Tvo

Feocess: vtk B Todukon

- PMe ‘A
V2 pd
- Led gtade
P kstocks
- Yun skade
P> stafo ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

16

Process : struct proc (Cont.)

// Per-process state
struct proc {
uint sz;
pde t* pgdir;
char *kstack;
enum procstate state;
int pid;
struct proc *parent;
struct trapframe *tf;
struct context *context;
void *chan;
int killed;
struct file *ofile[NOFILE];
struct inode *cwd;
char name[16];

1

//
//
//
//
//
//
//
//
//
//
//
//
//

Size of process memory (bytes)

Page table

Bottom of kernel stack for this process
Process state

Process 1ID

Parent process

Trap frame for current syscall

swtch () here to run process
If non-zero, sleeping on chan
If non-zero, have been killed
Open files

Current directory

Process name (debugging)

KAIST OSLab

Operating Systems Laboratory

Youjip Won

stack frame for function call

parameters

return addr
Stack frame

Local variables

parameters

Stack frame return addr
L

Local variables

+«——ebp

¥

Stack grows.

«—— esp

(&

(&

(&

to save the followings

o Parameters, Return

address, local variables

ebp (base pointer register)

o the address of the
beginning of the stack
frame, remains
unchanged while the

function executes.

esp (stack pointer)
o address of stack top,
keeps changing while

the function executes.

KAIST OSLab

Operating Systems Laboratory

Youjip Won

18

User stack vs. kernel stack

w«mq T ‘F“"’&Q -- e
L ke stade_ ER) ok ok B
O Owe “:%éis
(&) staclk
. g LE\J %QHV\ 0&9& .TV\JRWU{D
- envrov 1@6 fho lco "\9*9\ :fd\;éizs\ovgm@ Zp
O Sutkin oan Side o HQ&E
"w\ 3’%‘0()\91_ " Ao Da.
2 pase Vil < s
PRSE R eremias o*oooocmbl Text)

[use

ﬂm&.

KA'ST OSLab Youjip Won

Operating Systems Laboratory

19

Summary

Q

overview of booting
creating the first address space
creating the first process

running the first process

do not forget: preview and review

KAIST OSLab Youjip Won

Operating Systems Laboratory

20

