
Youjip Won

EE488: System Software Design

Fall 2022



2Youjip Won

Course Synopsis

https://oslab.kaist.ac.kr/


3Youjip Won

Course Synopsis

Instructor: Prof. Youjip Won(ywon@kaist.ac.kr, N1-309)

Homepage: 

Class: Tuesday: 14:30 - 16:00, Thursday: 14:30 - 16:00

Office hour

Tuesday: 16:00 - 17:00 @ N1-310. or online slack channel

https://join.slack.com/t/oslab-class/shared_invite/zt-1fa90yrq9-xfX

LHepQ_FBM2K3fxGEwWA

two exams (midterm and final) and homeworks

prerequisite: C/C++, Data Structures, EE415

grading: homework(50%), midterm(25%), final(25%)

https://oslab.kaist.ac.kr/
mailto:ywon@kaist.ac.kr


4Youjip Won

Resources

Course Materials

main materials: lecture notes

xv6 book (https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev

11.pdf)

xv6 code (git://github.com/mit-pdos/xv6-public.git)

xv6 code commentary (https://pdos.csail.mit.edu/6.828/2018/xv6

/xv6-rev11.pdf)

Class homepage:oslab.kaist.ac.kr/2022-fall-ee488

Office hour (online): slack channel

https://join.slack.com/t/oslab-class/shared_invite/zt-1fa9

0yrq9-xfXLHepQ_FBM2K3fxGEwWA

Q&A and class announcements: piazza

piazza.com/kaist.ac.kr/fall2022/ee488

https://oslab.kaist.ac.kr/
https://oslab.kaist.ac.kr/2022-fall-ee488


5Youjip Won

To Do

Create an account

Register at piazza

piazza.com/kaist.ac.kr/fall2022/ee488

Join slack workspace

https://join.slack.com/t/oslab-class/shared_invite/zt-1fa9

0yrq9-xfXLHepQ_FBM2K3fxGEwWA

Find a team mate: Homeworks can be done in a group of maximum of two.

Learn tools. (we will cover the basics of the following tools)

ctags, cscope, gdb, make

https://oslab.kaist.ac.kr/


6Youjip Won

What are we going to learn?

https://oslab.kaist.ac.kr/


7Youjip Won

Computing Device

https://oslab.kaist.ac.kr/


8Youjip Won

Applications

https://oslab.kaist.ac.kr/


9Youjip Won

in essence from hardware

https://oslab.kaist.ac.kr/


10Youjip Won

What are we going to learn?

https://oslab.kaist.ac.kr/


11Youjip Won

Operating System

What is Operating System?

Software that runs hardware.

Where the hardware and software meet.

Windows, Linux, iOS, MacOS,…

We will look inside the OS and will learn how it works.

https://oslab.kaist.ac.kr/


12Youjip Won

XV6

xv6: x86 port of archaic SV6 OS (Unix version 6).

Unix Version 6 was developed for PDP11/40 in mid 70’s

9K lines

Let’s Hack !!!

https://oslab.kaist.ac.kr/


13Youjip Won

Life of a program

https://oslab.kaist.ac.kr/


14Youjip Won

Execution of a program

https://oslab.kaist.ac.kr/


15Youjip Won

cpu

https://oslab.kaist.ac.kr/


16Youjip Won

library

https://oslab.kaist.ac.kr/


17Youjip Won

system calls

https://oslab.kaist.ac.kr/


18Youjip Won

library call vs. system call

https://oslab.kaist.ac.kr/


19Youjip Won

system calls in xv6

https://oslab.kaist.ac.kr/


20Youjip Won

Process and Memory

https://oslab.kaist.ac.kr/


21Youjip Won

Process and memory

process = user memory (instructions, stacks and data) + process state

context switch to execute multiple processes

each process has pid

System calls

fork

wait

exit

https://oslab.kaist.ac.kr/


22Youjip Won

fork ()

creates child process

child process is allocated separate memory space from the process. The child 

process has the same memory contents

for parent, fork() returns PID of child process; for child process, fork() returns 0.

https://oslab.kaist.ac.kr/


23Youjip Won

fork(): parent vs. child

https://oslab.kaist.ac.kr/


24Youjip Won

int pid = fork();

if(pid > 0) {

printf(“parent: child=%d\n”, pid);

pid = wait();

printf(“child %d is done\n”, pid);

} else if(pid == 0) {

printf(“child: exiting\n”);

exit();

} else {

printf(“fork error\n”);

}

fork ()

https://oslab.kaist.ac.kr/


25Youjip Won

Replace the text segment with a new text segment, set up the new stack and heap.

When succeeds, it starts to execute the newly loaded binary file.

Parameter of exec(): name of executable and array of parameters

exec ()

https://oslab.kaist.ac.kr/


26Youjip Won

char *argv[3];

argv[0] = “echo”;

argv[1] = “hello”;

argv[2] = 0;

exec(“/bin/echo”, argv);

printf(“exec error\n”);

exec ()

https://oslab.kaist.ac.kr/


27Youjip Won

wait ()

https://oslab.kaist.ac.kr/


28Youjip Won

File

https://oslab.kaist.ac.kr/


29Youjip Won

File

File descriptor

an integer that represents a file, a pipe, a directory and a device

In most OS, file descriptor is an index in the per-process file descriptor table.

File descriptor 0 (Standard Input), 1 (Standard Output), 2 (Standard Error).

Shell exploits these default file descriptors to implement redirection and pipe.

Redirection: % cat < ”input.txt”

Pipe: % ls | wc

https://oslab.kaist.ac.kr/


30Youjip Won

I/O and File descriptor (Cont.)

https://oslab.kaist.ac.kr/


31Youjip Won

I/O and File descriptor (Cont.)

https://oslab.kaist.ac.kr/


32Youjip Won

I/O and File descriptor (Cont.)

close(fd)

deallocate the File descriptor ‘fd’.

When allocating the new file descriptor, it uses the smallest ‘free’ file descriptor 

from the file descriptor table.

File descriptor and system call

fork() copies the File descriptor table from the parent to child process.

exec() retains the File descriptor table.

It makes the I/O redirection through fork(), reopen(), and exec().

https://oslab.kaist.ac.kr/


33Youjip Won

I/O and File descriptor (Cont.)

if(fork() == 0) {

write(1, “hello “, 6);

exit();

} else {

wait();

write(1, “world\n”, 6);

}

https://oslab.kaist.ac.kr/


34Youjip Won

IO redirection

char *argv[2];

argv[0] = “cat”;

argv[1] = 0;

if(fork() == 0) {

close(0);

open(“input.txt”, O_RDONLY);

exec(“cat”, argv);

}

Redirection

Close File descriptor 0~2 and then open new file. —> Then, the user can use 

fd 0,1,2 to access regular file.

In shell, you can use ‘>’. ex) % ls > test.out

what happens in the following piece of code?

https://oslab.kaist.ac.kr/


35Youjip Won

dup (fd)

fd = dup(1);

write(1, “hello “, 6);

write(fd, “world\n”, 6);

Duplicate a file descriptor and return new file descriptor.

https://oslab.kaist.ac.kr/


36Youjip Won

Pipe

special type of file, a kernel buffer that is exposed to a process via a pair of 

file descriptors: one for read and one for write.

https://oslab.kaist.ac.kr/


37Youjip Won

Pipes and wc (word count)

int p[2];

char *argv[2];

argv[0] = “wc”;

argv[1] = 0;

pipe(p);

if(fork() == 0) {// child

close(0);

dup(p[0]);

close(p[0]);

close(p[1]);

exec(“/bin/wc”, argv);

} else { // parent

close(p[0]);

write(p[1], “hello world\n”, 12);

close(p[1]);

}

https://oslab.kaist.ac.kr/


38Youjip Won

pipe and fork

https://oslab.kaist.ac.kr/


39Youjip Won

pipe and fork

https://oslab.kaist.ac.kr/


40Youjip Won

pipe and fork

https://oslab.kaist.ac.kr/


41Youjip Won

pipe and fork

https://oslab.kaist.ac.kr/


42Youjip Won

pipe and fork

https://oslab.kaist.ac.kr/


43Youjip Won

pipe and fork

https://oslab.kaist.ac.kr/


44Youjip Won

Pipes

echo hello world | wc

echo hello world > ttmp/xyz ; wc </tmp/xyz

vs.

advantages of pipes over using redirection with temporary files

pipe automatically clean themselves up. When using temporary file, the user 

has to explicitly delete it.

pipe can pass arbitrarily long data while file redirection requires sufficient 

available disk space.

In pipe, reader and write can proceed in parallel while in redirection, the one 

has to finish for the others to start.

To implement inter-process communication, blocking reads and writes are 

more efficient than non-blocking ones.

https://oslab.kaist.ac.kr/


45Youjip Won

Filesystem

mkdir(“/dir”);

fd = open(“/dir/file”, O_CREAT|O_WRONLY);

close(fd);

mknod(“/console”, 1, 1);

creating a file

mkdir : creating a directory.

open with O_CREATE : create a new file.

mknode : create a new device file.

https://oslab.kaist.ac.kr/


46Youjip Won

File system (Cont.) 

https://oslab.kaist.ac.kr/


47Youjip Won

File system (Cont.) 

open(“a”, O_CREAT|O_WRONLY);

link(“a”, “b”);

link

creates another name for an inode.

same inode number, so are the results of the fstat.

nlink: the number of links to an inode.

unlink

remove the link between the inode and the name.

Operating system reclaims the inode and the associated disk space when nlink

becomes 0 inode and there is no file descriptor associated with it.

open(“a”, O_CREAT|O_WRONLY);

link(“a”, “b”);

unlink(“a”);

https://oslab.kaist.ac.kr/


48Youjip Won

File system (Cont.) 

https://oslab.kaist.ac.kr/


49Youjip Won

command types in shell

user program with fork()/exec(): mkdir, ln, rm

built-in command: cd

'cd' needs to change the current directory. When the shell calls fork() and 

calls exec('cd'), it changes the current directory of the child process, not the 

shell itself. ‘cd’ should be implemented as a shell itself, not as a user program.

https://oslab.kaist.ac.kr/


50Youjip Won

Summary

What is system software?

Basics of “process/memory” and “file”

pipe() (and signal) is heart of the modern Unix OS.: 

pipe enables shell programming.

Shell program enables to build a large program with a set of small programs.

https://oslab.kaist.ac.kr/

