EE488. System Software Design
Fall 2022

Lecture 1: Introduction

Youjip Won

KAIST

Course Synopsis

KAIST OSLab Youjip Won 2

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Course Synopsis

O Instructor: Prof. Youjip Won(ywon@Kkaist.ac.kr, N1-309)

© Homepage:
O Class: Tuesday: 14:30 - 16:00, Thursday: 14:30 - 16:00

O Office hour
o Tuesday: 16:00 - 17:00 @ N1-310. or online slack channel

https://join.slack.com/t/oslab-class/shared invite/zt-1fa90yrg9-x£fX

LHepQ FBM2K3fxGEWWA
© two exams (midterm and final) and homeworks
O prerequisite: C/C++, Data Structures, EE415
O grading: homework(50%), midterm(25%), final(25%)

KAIST OSLab Youjip Won 3

Operating Systems Laboratory

https://oslab.kaist.ac.kr/
mailto:ywon@kaist.ac.kr

Resources

O Course Materials
o main materials: lecture notes
o Xv6 book (https://pdos.csail.mit.edu/6.828/2018/xv6/book-rev
11.pdf)
o xv6code (git://github.com/mit-pdos/xv6-public.git)
o xv6 code commentary (https://pdos.csail.mit.edu/6.828/2018/xv6

/xv6-revll.pdf)

O Class homepage:oslab.kaist.ac.kr/2022-fall-ee488

© Office hour (online): slack channel

https://join.slack.com/t/oslab-class/shared invite/zt-1fa9

Oyrg9-xfXLHepQ FBM2Z2K3fxGEwWWA

O Q&A and class announcements: piazza
piazza.com/kaist.ac.kr/£fall2022/ee488

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/
https://oslab.kaist.ac.kr/2022-fall-ee488

To Do

© Create an account

O Register at piazza
piazza.com/kaist.ac.kr/fall2022/ee488

O Join slack workspace

https://join.slack.com/t/oslab-class/shared invite/zt-1fa9
Oyrg9-xfXLHepQ FBMZ2K3fxGEwWWA

O Find a team mate: Homeworks can be done in a group of maximum of two.

O Learn tools. (we will cover the basics of the following tools)

o ctags, cscope, gdb, make

KAIST OSLab Youjip Won 5

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

What are we going to learn?

™ @@

Gowme .
Seftaong Wt s

Modwane, | PV || Mo

KAIST g)pSLa,b Youjip Won

erating Systems Laboratory

https://oslab.kaist.ac.kr/

Computing Device

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Applications

—~
“ I FACJOTE

> g ’ -
o
P
. — < . ~
e Y
s
I

|
I FGENDS

e D
~

Tensortlow
=
S=——

KAIST OSLab Youjip Won 8

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

In essence from hardware

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

What are we going to learn?

KAIST g)pSLa,b Youjip Won 10

erating Systems Laboratory

https://oslab.kaist.ac.kr/

Operating System

© What is Operating System?

O Software that runs hardware.

O Where the hardware and software meet.

ad

e

O Windows, Linux, iOS, MacOS,...

O We will look inside the OS and will learn how it works.

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

XV6

© xv6: x86 port of archaic SV6 OS (Unix version 6).
o Unix Version 6 was developed for PDP11/40 in mid 70’s

Lions' Commentary on UNIX 6th
Edition, with Source Code

o 9K lines
wmmmbﬂummuummwmim
Lions'
Commentary
, on UNIX'
o Let's Hack !l 6th Edition

with Source Code

John Lions

ey
Reissue

Author John Lions

Country Australia (original)
United States (1996 reprint)

Language English; also available in Chinese
and Japanese

Subject Unix operating system

Genre Computer Science

Publisher University of New South Wales
Publication 1976

date

ocLe 36099640
Dewey 005.43
Decimal

LC Class QA76.76 .063 L56

KAIST OSLab Youjip Won

Operating Systems Laboratory

12

https://oslab.kaist.ac.kr/

Life of a program

hlla.

MK_L \\Cuo.o

\FLIOTO\‘('a

e

OXope o

memoyv
O

" KAIST OSLab

Operating Systems Laboratory

Youjip Won

13

https://oslab.kaist.ac.kr/

Execution of a program

ack

Sem \ pie

Tock

= = | OO 7
i

C'JQU\

Pm@w\ﬁ/‘g e TR

KAIST OSLab Youjip Won 14

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

cpu

_va(-wc“@om
st opesgumd 3|
T
= 22t :

@ CR TSIy S Oh"hecf(m/\d»“’e—ot

KAIST 95La,b Youjip Won 15

rrrrrrrrrrrrrrrrrrrrrrrrr

https://oslab.kaist.ac.kr/

library

\le
ng [Tol--- OV

I
‘ = {D

\‘\‘\)Y&(A o C X co\&@e on oé b?N‘O"'a 'gwacﬁwt

_\

LL_I

|

‘ S0 il
tan.0 00

b‘”@ x brag ~
o Lo by, %52\

*Poal tan
Op [Ty K53

KAIST OsSLab Youjip Won
Operating Systems Laboratory

https://oslab.kaist.ac.kr/

system calls

KAIST OSLab Youjip Won 17

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

library call vs. system call

0S = e%ser#ctoﬁkg) o~ k“tbfw‘?fﬁ O“C"\LQCL“TE’“ER‘

MNodulus .
zg \L’(bv“wa | \S . \KQYN&_I
carted) QA a@ess © o OTES g
SleagO \ vy faduran s Mo

: K)ro Wn's : P.(—N“[L@ Ac:(eﬁg\

s

aggﬁa&l@ %@_ '

L) Askex Hwdones

KAIST OSLab Youjip Won 18

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

system calls in xv6

System call

fork()

exit()

wait()

kill(pid)

getpid()

sleep(n)
exec(filename, *argv)
sbrk(n)
open(filename, flags)
read(fd, buf, n)
write(fd, buf, n)
close(fd)

dup(fd)

pipe(p)
chdir(dirname)
mkdir(dirname)

mknod(name, major, minor)

Description

Create a process

Terminate the current process

Wait for a child process to exit
Terminate process pid

Return the current process’s pid

Sleep for n clock ticks

Load a file and execute it

Grow processs memory by n bytes
Open a file; the flags indicate read/write
Read n bytes from an open file into buf
Write n bytes to an open file

Release open file fd

Duplicate fd

Create a pipe and return fd’s in p
Change the current directory

Create a new directory

Create a device file

fstat(fd) Return info about an open file
link(f1, £2) Create another name (f2) for the file f1
unlink(filename) Remove a file
KAIST OSLab Youjip Won 19

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Process and Memory

KAIST QSLa,b Youjip Won 20

rrrrrrrrrrrrrrrrrrrrrrrrr

https://oslab.kaist.ac.kr/

Process and memory

© process = user memory (instructions, stacks and data) + process state
O context switch to execute multiple processes
© each process has pid
O System calls
°©fork
owait

°oexit

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

fork ()

O creates child process

o child process is allocated separate memory space from the process. The child

process has the same memory contents

o for parent, fork() returns PID of child process; for child process, fork() returns O.

fork

ocess &
i Q'QQQ('Qv(_ Skocle =
e —_> 1 ko (P’(A: 229
Yoo © |

- é“\‘://i

S‘i%adc l ‘
-raﬁlg pih= (48]

1l _—

KAIST OSLab Youjip Won 22

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

fork () : parentvs. child

P&GA w, C;\'\"t\&
w -Qto\ s 'Qor\r.cv,

‘ i TN oﬂ
yuk Q,awdﬂ DY

elke §
pak (e el)"
3

KAIST OSLab Youjip Won
Operatin g Systems Laborator y

23

https://oslab.kaist.ac.kr/

fork ()

int pid = fork();
if (pid > 0) {
printf (“parent: child=%d\n”, pid);
pid = wait();
printf (“child %d is done\n”, pid); parent: child=1234
} else if (pid == 0) { child: exi‘.cing |
printf (“child: exiting\n”); parent: child 1234 is done
ex1it () ;

} else {

printf (“fork error\n”);

KAIST OSLab Youjip Won

Operating Systems Laboratory 24

https://oslab.kaist.ac.kr/

exec ()

O Replace the text segment with a new text segment, set up the new stack and heap.
© When succeeds, it starts to execute the newly loaded binary file.

O Parameter of exec () : name of executable and array of parameters

tec (1<),

B
)|
T — o M K) e N

T @r = T

:

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

exec ()

char *argv[3];

argv[0] = Yecho”;
argv([1l] = “hello”;
argv([2] = 0;

exec (“/bin/echo”, argv):;

printf (“exec error\n”);

KAIST OSLab Youjip Won

Operating Systems Laboratory

26

https://oslab.kaist.ac.kr/

wait ()

ot O’

WAHO . \ K | |

&

Powes A toowA WowA QeawA TeawA o A
| - W
2
ity 3| | &ty [ﬁﬁng - 0,1
Cooca B Covcan © Coap B Coocan D
l KAIST gpse!'-aatilzg Systems Laboratory Youjip Won

27

https://oslab.kaist.ac.kr/

KAIST OSLab Youjip Won 28

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

File

O File descriptor

o aninteger that represents a file, a pipe, a directory and a device
In most OS, file descriptor is an index in the per-process file descriptor table.
o File descriptor 0 (Standard Input), 1 (Standard Output), 2 (Standard Error).

Shell exploits these default file descriptors to implement redirection and pipe.

o Redirection: % cat < ”input.txt”

o Pipe: % 1ls | wc

KAIST OSLab

Youjip Won
Operating Systems Laboratory J1p 29

https://oslab.kaist.ac.kr/

/O and File descriptor (Cont.)

KAIST g)pSLa,b Youjip Won

erating Systems Laboratory

30

https://oslab.kaist.ac.kr/

/O and File descriptor (Cont.)

b Deserystor

Yoo & &:Esj:%ow Il C Ry
o vead (o, bd, e
: _T; \ | ol wrtte(0. b Qe
P & ke dus\ov \ SPER.
stsef

KA OSLab i
IST Operating Systems Laborator y Youjip Won 31

https://oslab.kaist.ac.kr/

/O and File descriptor (Cont.)

O (close(fd)

=}

=}

O File
Q

=}

=}

deallocate the File descriptor ‘fd’.

When allocating the new file descriptor, it uses the smallest ‘free’ file descriptor

from the file descriptor table.

descriptor and system call
fork () copies the File descriptor table from the parent to child process.
exec () retains the File descriptor table.

It makes the 1/O redirection through fork (), reopen(), and exec().

KAIST OSLab

Operating Systems Laboratory

Youjip Won

32

https://oslab.kaist.ac.kr/

/O and File descriptor (Cont.)

if (fork() == 0) {
write(l, “hello %, ©6);
exit () ;

} else {
wait () ;
write (1, “world\n”, 6);

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

IO redirection

O Redirection

o Close File descriptor 0~2 and then open new file. —> Then, the user can use

fd 0,1,2 to access regular file.

o Inshell, you canuse >".ex) $ 1s > test.out

© what happens in the following piece of code?

char *argv[2];

argv([0] = “cat”;
argv[l] = 0;
if (fork() == 0) {

close (0) ;
open (“input.txt”, O RDONLY) ;
exec (“cat”, argv);

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

dup (£d)

© Duplicate a file descriptor and return new file descriptor.

dog (N2 5w o emply alt from Mt begom
A & tha & &escnpfm avi vl .«\3

1
—3
ﬂ%.? “——"J :"
. ? I r/
™m -1

fd = dup(1);
write (1, “hello ™, 06);
write (fd, “world\n”, 6);

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Pipe

O gpecial type of file, a kernel buffer that is exposed to a process via a pair of

file descriptors: one for read and one for write.

w96
pire ()

: 3
« & @
‘ ”’f R
il /_j
et (ks

" KAIST OSLab

Youjip Won
Operating Systems Laboratory J'P

36

https://oslab.kaist.ac.kr/

Pipes and we (word count)

int p[2];
char *argv[2];

argv[0] = “wc”;

argv[l] = 0;

== 0) {// child

/ parent

)

]

[

[
bin/wec”, argv);
/

[

[“hello world\n”,
[

L2 g

KAIST OSLab Youjip Won

Operating Systems Laboratory

37

https://oslab.kaist.ac.kr/

pipe and fork

S O

R A 7 Yows B
o I i ———) S—(TY_W o
: : L L SToowm]Q/—;T !
. 3
< e \ 4
Py \m .
C £
AR P oo _— U
’Q\\t J\QSC\'»Q"(N S ’?&O\ &GSCYLV(‘O/‘

'\u\‘)\g, C&(O\e,

evadl

KAIST OSLab Youjip Won

Operating Systems Laboratory

38

https://oslab.kaist.ac.kr/

pipe and fork

R-ku (—\ 'Q\'Ou/u B
o T - —— STTYW)
Anpe L>(STdowl I_; 2
3) ' 3
T (e THEPR 4
Sl o | - Y
£ o e (
L A I —

C e © g
e J\QSC\’LQ:(M‘ ‘ $e deser L@Eow
'\o&)\g, tA(O\Q,
‘evndl

dese (0

KAIST OSLab Youjip Won

Operating Systems Laboratory

39

https://oslab.kaist.ac.kr/

pipe and fork

0 close COY);
l
5 dup (LY,
3
&
5
(
W ol ' ?
ppe Ay
'Q’\ e J\QSCrLQ"(ov A d‘e i LVEM
ACA|
whe kev MQ
‘ I<AI ST g)pse!’-aatilzg Systems Laboratory You‘jip Won 40

https://oslab.kaist.ac.kr/

pipe and fork

Rovn A

, [, cese CO0Y;

g ;:_ dup (P2Y)

3 - C\OSQ C?L"JB)

“; = close GQra),
£

q

*Q’\\e J\escriq‘tov
Tatle
‘ I<AI ST g)pse!’-aatilzg Systems Laboratory You‘jip Won 41 I

https://oslab.kaist.ac.kr/

pipe and fork

R“ e A 'D\'O g _B
c: R iS‘(mw \ :, close (03')-
clase @[ﬂ) 3 g__‘/-\«—)‘ STDou l _—a = ‘(U‘Q (V(fﬂ)
- = \ 3 cloge CQLQB)
WYtk C iy, % o— % |
N “7, g s close ua);
£ (
QR Wi A 7
’q\\ﬁ J\QSCer"(ov 1 - &LIL &G%YLQGM
'\o.kﬂ\g, CA(O\Q,
kev V\QQ
‘ KAIST gpselr-;gilzg Systems Laboratory Youjip Won 42

https://oslab.kaist.ac.kr/

pipe and fork

Rﬂw A ‘Q""‘vw B
S [SN ‘l o cwse(();
|
cose (), 2 [Ls[SToan) 2 dog CTLDY
a7 - L | 3 close (LAY,
m\h.(.\.;ﬂ., tg e . ;_‘- Q,kosq C"&)t_(:b/
3 1, ;
Close (7)) 9 J__ "5 | 1
’Q'\ e J\QSC\'E{(N - §la &9 Saf Lﬁaw
"\o}ﬂ\e, ﬁa(d\e,
\(@VV\LQ
T KAIST oslab o Youjip Won 13

https://oslab.kaist.ac.kr/

Pipes

echo hello world | wc

VS.

echo hello world > ttmp/xyz ; wc </tmp/xyz

O advantages of pipes over using redirection with temporary files

o pipe automatically clean themselves up. When using temporary file, the user

has to explicitly delete it.

o pipe can pass arbitrarily long data while file redirection requires sufficient

available disk space.

o In pipe, reader and write can proceed in parallel while in redirection, the one

has to finish for the others to start.

o To implement inter-process communication, blocking reads and writes are

more efficient than non-blocking ones.

KA' ST OSLab Youjip Won 44

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Filesystem

O creating a file
o mkdir : creating a directory.
o open with O_CREATE : create a new file.

o mknode : create a new device file.

mkdir (“/dir”) ;
fd = open (“/dir/file”, O_CREAT | O_WRONLY) ;
close (£d) ;

mknod (“/console”, 1, 1);

KAIST OSLab Youjip Won

Operating Systems Laboratory

45

https://oslab.kaist.ac.kr/

File system (Cont.)

S, T ckted'o*‘g o\ &eu‘iu?:

A\ ann ‘Si_el
R S Oﬂ\‘a d. T boes vt lve name,

. A 4 has an wode.
D"Nc('o’fé_

‘\"
S oda PWIMNpey

o |1
‘v.e |36
(|

KA OSLab .
IST Operating Systems Laborator y Youjip Won 46

https://oslab.kaist.ac.kr/

File system (Cont.)

O 1ink
o creates another name for an inode.

o same inode number, so are the results of the fstat.

o nlink: the number of links to an inode. open (“a”, O CREAT|O WRONLY);

link (\\aII, \\bli) ;
O unlink
o remove the link between the inode and the name.
o Operating system reclaims the inode and the associated disk space when nlink
becomes 0 inode and there is no file descriptor associated with it.
open(“a”, O CREAT|O WRONLY) ;
link (\\aII, \\b/l) ,.
unlink (“a”) ;
KAIST OSLab

Youjip Won
Operating Systems Laboratory J1p 47

https://oslab.kaist.ac.kr/

File system (Cont.)

crasy & &le creste Chele.¢)

“nod e

5> B

ok (hello.e : 'c‘?‘l‘; Yy

e

1

e Y‘*"‘ 97

leopec |51

welinle (“helloc) 7

5]

F‘h

wn\"tn\:—
P]

| ®

rrrrrrrrrrrrrrrrrrrrrrrrr

Youjip Won

48

https://oslab.kaist.ac.kr/

command types in shell

O user program with fork()/exec(): mkdir, 1n, rm

O puilt-in command: cd

o 'cd' needs to change the current directory. When the shell calls fork () and
calls exec('cd"), it changes the current directory of the child process, not the

shell itself. ‘cd’ should be implemented as a shell itself, not as a user program.

ém WMMWX - WSer [Q\:J. roﬂmm Vs \7\&{“}1\'\ Comwand
. Iepe (euad Qommand® [Shent Rosk© _efec ¢ cw!')-;

Uttensiole | wottz f—~~- --
Dol command. ¢ Ced wmust ke buill-tn
T eds chame T
‘%\

g o ‘C;W-’-L v ariaotes.

KAIST OSLab Youjip Won 49

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Summary

© What is system software?

O Basics of “process/memory” and “file”
© pipe() (and signal) is heart of the modern Unix OS.:
o pipe enables shell programming.
o Shell program enables to build a large program with a set of small programs.
" KAIST OSLab

Youjip Won
Operating Systems Laboratory J1p

50

https://oslab.kaist.ac.kr/

