
1

Spring Semester 2019

KAIST EE415/PD511

Operating Systems and System Programming for EE

Mid-term Exam

Name:

Student ID:

This exam is closed book and notes. Read the questions carefully and focus your answers on
what has been asked. You are allowed to ask the instructor/TAs for help only in understanding
the questions, in case you find them not completely clear. Be concise and precise in your
answers and state clearly any assumption you may have made. You have 120 minutes (1:00 PM
– 3:00 PM) to complete your exam. Be wise in managing your time. Good luck.

Question 1 / 20

Question 2 / 30

Question 3 / 15

Question 4 / 15

Question 5 / 20

Total / 100

2

1. Process/thread address space (20 pts)

Please refer to the following C code for problems 1-(a) to 1-(c). Assume a 32-bit address
space for this process (e.g., sizeof(void *) = 4).

(a) When you run this program, how many threads (e.g., max # of concurrently-running
threads) of this process would you see in the system? (1 pt)

(b) Enumerate all values that “Line A” prints out. (2 pts)

char **ptr;

void *thread(void *vargp)

{

 int myid = (int) vargp;

static int cnt = 0;

printf("vargp=%p\n", vargp); // Line A

 printf("[%d]: %s (svar=%d)\n",myid, ptr[myid], ++cnt);

}

int main()

{

 int i;

 pthread_t tid[2];

char *msgs[2] = {"Hello from foo", "Hello from bar"};

 ptr = msgs;

 for (i = 0; i < 2; i++)

 pthread_create(&tid[i], NULL, thread,(void *)i);

 pthread_join(tid[0], NULL);

pthread_join(tid[1], NULL);
return 0;

}

3

(c) Which memory section do these variables (or strings) get allocated? Indicate whether
the variables (or memory area) are shared by multiple threads or local to a single
thread. Fill out the table below. Note that a memory section name can be one of code,
stack, data or heap. The notation for a variable is function_name::variable_name. For
example, variable i in main() is expressed as main::i, myid in thread() is thread::myid.
(14 pts)

(d) Write all possible value(s) of thread::cnt during the execution of this process. (3 pts)

Variable notation Memory section Local vs. shared

main::i stack local

main::tid

main:msgs[1]

main::”hello from foo”

::ptr

thread::vargp

thread::myid

thread:cnt

4

2. Understanding locks (30 pts)

(a) One way to implement a lock is to disable interrupts at entering a critical section and
enabling them again at leaving the section. Explain two drawbacks of this
implementation. (4 pts)

(b) The textbook says one can easily implement a lock using the atomic test-and-set
instruction (logical operation described in C code below). Unfortunately, Bori (a poodle
who does not believe in locks) licked to remove the important code piece below. Please
recover the function lock() using TestAndSet(). (5 pts)

Bori ripped this code snippet.

5

(c) After recovering the code above, you find two problems in terms of efficiency and
fairness. Explain each problem with an example scenario. (4 pts)

6

(d) Fortunately, the textbook suggests the following code to overcome the problem in (c).
But after studying this code, you realize that it is not entirely correct. Explain the
scenario where threads using this implementation would malfunction. (5 pts)

7

(e) The following code implements a classic synchronization problem called producer-
and-consumer with a single shared buffer. After studying the code, you realize there is
a problem with the code. Explain one scenario where one producer thread and two
consumer threads would malfunction. (Note: count is initialized as 0. mutex and
cond are a mutex variable (initialized as unlocked) and a condition variable,
respectively. put(i) produces an item at index i and get() consumes a valid item and
returns its index) (5 pts)

8

(f) Suggest a fix to the code in (e). (5 pts)

(g) In class, professor emphasized that one should be careful with the usage of
Pthread_cond_signal() and Pthread_cond_wait(). Please describe two de-facto rules
you need to observe when you write the code with these functions to avoid subtle
race conditions that might arise. (2 pts)

9

3. CPU Scheduling (15 pts)

(a) We learned five process states in class. Explain “ready” and “terminated” states. (3 pts)

(b) What is convoy effect? Which scheduling policy suffers from it? (3 pts)

(c) Explain the Shortest Completion-to-Time First (SCTF) scheduling policy. (3 pts)

(d) Explain the strength and weakness of SCTF. (3 pts)

(e) Stride scheduling brings an advantage that eliminates the randomness of lottery
scheduling. Describe two weaknesses of stride scheduling over lottery scheduling (3
pts)

10

4. Virtual memory (15 pts)

We’re using segmentation to translate a virtual address into a physical address. The segment
table is shown below. And a virtual address consists of 2 bits of a segment index and 12 bits
of an offset as shown below. (a) to (c)

Segment Offset

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Virtual address space: program code: 0 to (2K-1), heap: 4K to (6K-1), Stack: 14K to (16K-1)

(a) What is the physical address of a virtual address 4100? (2 pts)

(b) What is the physical address of a virtual address, 11 1100 0000 0100? (3 pts)

(c) What is the main drawback of segmentation? Provide the two-word term for the
problem and describe it in detail (3 pts)

Segment Base Size Grow Positive Protection
Code 32K (=32768) 2048 1 Read/Execute
Heap 34K (=34816) 2048 1 Read/Write
Stack 28K (=28672) 2048 0 Read/Write

11

(d) What is the role of TLB in paging? (2 pts)

(e) Recent x86 CPU supports 4KB, 4MB, and 1GB of page size. What is the main benefit of
having a huge page size like 1GB? (3 pts)

(f) What is the main benefit of multi-level page table? (2 pts)

12

5. Argument Passing and System Calls in Pintos (20 pts)

While debugging my code for the Pintos project 2, I execute the following command line with
the pintos OS.

echo -l foo bar a b c d e f g hhh hello

Note that echo is compiled from echo.c whose code is shown below. During the execution, I
called hex_dump() at the start of syscall_hander() in userprog/syscall.c

echo.c

int main(int argc, char **argv)

{

 int i;

 for (i = 0; i < argc; i++)

 printf(“%s “, argv[i]);

printf(“\n”); return 0;

}

bffffe50 09 00 00 00 | |
bffffe60 XX XX XX XX YY YY YY YY-ZZ ZZ ZZ ZZ 4c 9a 04 08 |............L...|
bffffe70 01 00 00 00 a4 fe ff bf-04 00 00 00 a4 fe ff bf |................|
bffffe80 0d 00 00 00 a0 ff ff bf-a4 fe ff bf 17 9b 04 08 |................|
bffffe90 b9 a3 04 08 44 ff ff bf-57 9a 04 08 a4 fe ff bf |....D...W.......|
bffffea0 00 00 00 00 62 61 72 20-20 00 00 00 00 00 00 00 |....bar |
bffffeb0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 |................|
bffffec0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 |................|
bffffed0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 |................|
bffffee0 00 00 00 00 a8 fe ff bf-04 00 00 00 01 00 00 00 |................|
bffffef0 00 00 00 00 00 00 00 00-03 00 00 00 32 9b 04 08 |............2...|
bfffff00 01 00 00 00 b9 a3 04 08-44 ff ff bf 00 00 00 00 |........D.......|
bfffff10 00 00 00 00 00 00 00 00-00 00 00 00 ef 84 04 08 |................|
bfffff20 b9 a3 04 08 44 ff ff bf-00 00 00 00 00 00 00 00 |....D...........|
bfffff30 00 00 00 00 00 00 00 00-00 00 00 00 c6 80 04 08 |................|
bfffff40 b9 a3 04 08 e4 ff ff bf-00 00 00 00 00 00 00 00 |................|
bfffff50 00 00 00 00 00 00 00 00-78 ff ff bf 00 00 00 00 |........x.......|
bfffff60 00 00 00 00 00 00 00 00-00 00 00 00 fe 80 04 08 |................|
bfffff70 00 00 00 00 fe 80 04 08-0d 00 00 00 a0 ff ff bf |................|
bfffff80 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 |................|
bfffff90 00 00 00 00 00 00 00 00-0d 00 00 00 a0 ff ff bf |................|
bfffffa0 d8 ff ff bf dd ff ff bf-e0 ff ff bf e4 ff ff bf |................|
bfffffb0 e8 ff ff bf ea ff ff bf-ec ff ff bf ee ff ff bf |................|
bfffffc0 f0 ff ff bf f2 ff ff bf-f4 ff ff bf f6 ff ff bf |................|
bfffffd0 fa ff ff bf 00 00 00 00-65 63 68 6f 00 2d 6c 00 |........echo.-l.|
bfffffe0 66 6f 6f 00 62 61 72 00-61 00 62 00 63 00 64 00 |foo.bar.a.b.c.d.|
bffffff0 65 00 66 00 67 00 68 68-68 00 68 65 6c 6c 6f 00 |e.f.g.hhh.hello.|

13

Note that SYS_WRITE is 9 in decimal. Also, note that 0x08049a4c is the return address
to the caller of the write() system call.

(a) Fill in the 12 bytes starting at address 0xbffffe60 in the hex_dump()’ed output. Note
that the leftmost XX/YY/ZZ below represents one byte in hexadecimal at address
0xbffffe60/0xbffffe64/0xbffffe68, respectively. (6 pts)

(b) What is the ASCII code for alphabet ‘h’ in the hexadecimal format (0xYY)? (2 pts)

#define syscall3(NUMBER, ARG0, ARG1, ARG2) \
 ({ \
 int retval; \
 asm volatile \
 ("pushl %[arg2]; pushl %[arg1]; pushl %[arg0]; "\
 "pushl %[number]; int $0x30; addl $16, %%esp" \
 : "=a" (retval) \
 : [number] "i" (NUMBER), \
 [arg0] “r" (ARG0), \
 [arg1] “r" (ARG1), \
 [arg2] “r" (ARG2) \
 : "memory"); \
 retval; \
 })

int
write (int fd, void *buffer, unsigned size)
{
 return syscall3(SYS_WRITE, fd, buffer, size);
}

14

(c) What is the value of argc in the main() function of echo.c? That is, write the result of
printf(“%d”, argc); (2 pts)

(d) What is the memory address of argc in the main() function of echo.c? That is, write
the result of printf(“%p”, &argc); (2 pts)

(e) What is the value of argv in the main() function of echo.c? That is, write the result of
printf(“%p”, argv); (4 pts)

(f) What is the value of ‘i’ in the main() function of echo.c at the time of hex_dump()?
That is, write the result of printf(“%d”, i); at the time of hex_dump() above (2 pts)

