
Youjip Won

2Youjip Won

Crash

create(“hello.c”)

?

https://oslab.kaist.ac.kr/

3Youjip Won

An Example of Crash

Scenario

Append of a single data block to an existing file.

3Youjip Won

I[v1]

Da
B
v1

Inode
Bitmap

Data
Bitmap

Inodes Data Blocks

Before Append a single data block

https://oslab.kaist.ac.kr/

4Youjip Won

An Example of Crash

File system perform three writes to the disk.

inode I[v2]

Data bitmap B[v2]

Data block (Db)

4Youjip Won

I[v2]

Da Db
B
v2

Inode
Bitmap

Data
Bitmap

Inodes Data Blocks

After Append a single data block

https://oslab.kaist.ac.kr/

5Youjip Won

Crash Scenario

Only one of the below block is written to disk.

Data block (Db): lost update

Update inode (I[v2]) block: garbage, consistency problem

Updated bitmap (B[v2]): space leak

Two writes succeed and the last one fails.

The inode(I[v2]) and bitmap (B[v2]), but not data (Db).: consistent

The inode(I[v2]) and data block (Db), but not bitmap(B[v2): inconsistent

The bitmap(B[v2]) and data block (Db), but not the inode(I[v2]): inconsistent

5Youjip Won

Metadata should be consistent.

Crash-consistency problem (consistent- update problem)

https://oslab.kaist.ac.kr/

6Youjip Won

Crash - No Inode

Inode is lost.

Data block write is lost.

Bitmap is loat.

Inode Bitmap Data
... ...

Inode Bitmap Data
... ...

Inode Bitmap Data
... ...

Inode

https://oslab.kaist.ac.kr/

7Youjip Won

Solution: Journaling (Write-Ahead-Logging)

In filesystem, it is “write -ahead-logging”.

Bring back the filesystem to safe state after system crash.

Rule

when you update the metadata, record it to the log space (journal).

If it is stored to the log space safely, then reflect it to the original location

sometime later.

https://oslab.kaist.ac.kr/

8Youjip Won

Log Region

File system reserves some small amount of space within the partition or on

another device.

8Youjip Won

Super Group 0 Group 1 … Group N

Super
Log region

journal
Group 0 Group 1 … Group N

without journaling

with journaling

https://oslab.kaist.ac.kr/

9Youjip Won

Transaction

A set of blocks that need to be written as a single unit.

Transaction header (TxB): Place a description of all the disk writes it wishes to make in a lo

g on the disk.

Log blocks

Transaction commit mark (TxE): Once the system call has logged all of its writes, it writes a

special commit record to the disk indicating that the log contains a complete operation.

TxB I[v2] B[v2] Db TxE

Jo
u
rn

a
l

Transaction

physical logging

https://oslab.kaist.ac.kr/

10Youjip Won

Logging and Recovery in XV6

Recovery

Scan the log region and replay the log.

Incomplete transaction

For the transaction with commit record missing, the recovery code ignores it.

The state of the disk will be if the operation had not even started.

Committed transaction (Complete Transaction)

If the crash occurs after the operation commits, the recovery will replay all of th

e operation’s writes.

TxB A B TxE TxB C D TxE TxB E F

Recovered Recovered ignored

replay

https://oslab.kaist.ac.kr/

11Youjip Won

Logging and Recovery in XV6

The log makes the operation atomic with respect to crash.

After recovery, either all of the operation’s write appear on the disk, or none of t

hem appear.

VS.

all
nothing

https://oslab.kaist.ac.kr/

12Youjip Won

Header block

Header block: TxB + TxE

written when a transaction commits

count is set to zero after copying the log blocks to the file system.

Structure of log region in xv6

struct logheader {

int n;

int block[LOGSIZE];

};

Log blocks

header

block

https://oslab.kaist.ac.kr/

13Youjip Won

Structure of Log Region

The log region can accommodate one log structure.

Compound transaction

multiple system calls into one transaction.

The total number of blocks written by the system calls in a transaction must fit in tha

t space.

Large system call is broken into smaller pieces.

A system call can only start when there is a space in the log region.

append create

…

https://oslab.kaist.ac.kr/

14Youjip Won

Structure of Log Region

To commit a transaction

Wait for the existing system call to finish

append create

…

…

commit

append create

…

create

commit

https://oslab.kaist.ac.kr/

15Youjip Won

Logging in xv6

Transaction: A set of blocks that should be written with ACID properties.

Commit: Writes a transaction to log area.

Checkpoint: Writes blocks in a committed transaction to their places.

1. Collects the updated contents in memory and freeze them.(Creating a Transaction).

2. Writes them to log area (Commit).

3. Writes them to its places after commit (Checkpoint).

LogBoot Super Inodes Bitmap Data Data...Disk

Memory

0 1 2 32 58 59 1000

block number

Updated
blocks

commit
checkpoint

https://oslab.kaist.ac.kr/

16Youjip Won

Log area in xv6

LogBoot Super Inodes Bitmap Data Data...

0 1 2 32 58 59 1000

log[0] log[1] log[29]

(15 KB)

log header (124 byte), 31 entries of 4 byte

...

...#
o

f

b
lo

c
k
s

b
lo

c
k
[0

]

b
lo

c
k
[1

]

b
lo

c
k
[2

9
]

log area

block number

https://oslab.kaist.ac.kr/

17Youjip Won

Logging (write the block 7 and block 5)

...
Data

(no=7)
Disk

DRAM

... ...

Data

(no=7)

Log header

① n += 1

② data[0] = 7

Write data block number 7

Data

(no=5)
...

n = 0

data = null

Log area

https://oslab.kaist.ac.kr/

18Youjip Won

Disk

DRAM
Data

(no=7)

Log header

① n += 1

② data[1] = 5

Write data block number 5

n = 1

data[0] = 7

Data

(no=5)

...
Data

(no=7)
... ...

Data

(no=5)
...

Logging (write the block 7 and block 5)

Log area

https://oslab.kaist.ac.kr/

19Youjip Won

Disk

DRAM

Log header
n = 2

data[0] = 7

data[1] = 5

...
Data

(no=7)
... ...

Data

(no=5)
...

Data

(no=7)
Data

(no=5)

Data

(no=7)

Data

(no=5)

Logging (write the block 7 and block 5)

Log area

https://oslab.kaist.ac.kr/

20Youjip Won

Disk

DRAM

...
Data

(no=7)
... ...

Data

(no=5)
...

Log header
n = 2

data[0] = 7

data[1] = 5

Log header
n = 2

data[0] = 7

data[1] = 5

Data

(no=7)

Data

(no=5)

Data

(no=7)
Data

(no=5)

Logging (write the block 7 and block 5)

Log area

https://oslab.kaist.ac.kr/

21Youjip Won

Disk

DRAM

...

Log header
n = 2

data[0] = 7

data[1] = 5

Log header
n = 2

data[0] = 7

data[1] = 5

Data

(no=7)

Data

(no=5)

Data

(no=7)
Data

(no=5)

Data

(no=7)

Data

(no=5)

Checkpoint (write the block 7 and block 5)

Log area

https://oslab.kaist.ac.kr/

22Youjip Won

Disk

DRAM

Log header

n = 3

data[0] = 7

data[1] = 5

data[2] = 3

Log

Data

(no=7)

Data

(no=7)

Data

(no=5)

Data

(no=3)

Process of commit in xv6

Commit starts when there is no committing transaction.

Write the data blocks specified in the log header to the log area persistently.

Write the log header to the disk persistently.

https://oslab.kaist.ac.kr/

23Youjip Won

Disk

DRAM

Log header

n = 3

data[0] = 7

data[1] = 5

data[2] = 3

Log

Data

(no=7)

Data

(no=5)

Data

(no=5)

Data

(no=3)

Data

(no=7)

Process of commit in xv6

https://oslab.kaist.ac.kr/

24Youjip Won

Disk

DRAM

Log header

n = 3

data[0] = 7

data[1] = 5

data[2] = 3

Log

Data

(no=7)

Data

(no=5)

Data

(no=5)

Data

(no=3)

Data

(no=3)

Data

(no=7)

Process of commit in xv6

https://oslab.kaist.ac.kr/

25Youjip Won

Disk

DRAM

Log header

n = 3

data[0] = 7

data[1] = 5

data[2] = 3

Log

Data

(no=7)

Data

(no=5)

Data

(no=5)

Data

(no=3)

Data

(no=3)

Data

(no=7)

Process of commit in xv6

Log header

n = 3

https://oslab.kaist.ac.kr/

26Youjip Won

Disk

DRAM
n = 3

data[0] = 7

data[1] = 5

data[2] = 3

Log Area

Data

(no=7)

Data

(no=5)

Data

(no=3)
Log header

Log header

Data Area

Data

(no=3)

Data

(no=5)

Data

(no=7)

Process of checkpoint in xv6

Checkpoint writes the committed data blocks to their original place.

After the checkpoint, set the number of blocks in the log header to zero. Then, write

the updated log header to the disk.

https://oslab.kaist.ac.kr/

27Youjip Won

Disk

DRAM n = 0
data[0] = 7

data[1] = 5

data[2] = 3

Log Area

Data

(no=7)

Data

(no=5)

Data

(no=3)

Log header

n = 0

Log header

Data Area

Data

(no=3)

Data

(no=5)

Data

(no=7)

Process of checkpoint in xv6

https://oslab.kaist.ac.kr/

28Youjip Won

Recovery

Recovery routine checks the “number of blocks” in the log header.

If the number of block in the log header is 0, it skip recovery phase.

Otherwise, it performs recovery; It write the blocks in the log area to the original locations.

Disk

Log Area

Log header

n = 0

If there is no block to recover, keep booting

Disk
Data

(no=7)

Data

(no=5)

Data

(no=3)

Log header

n = 3

Log Area

Data

(no=3)

Data

(no=5)

Data

(no=7)

https://oslab.kaist.ac.kr/

29Youjip Won

Typical system call pattern

System call ()

1. wait for the existing commit to finish the available space in the log region.

2. update the buffer cache.

3. Register the buffer cache entries at the log header and pin the buffer cache blocks.

4. write them to the log region and checkpoint.

System call ()

1. begin_op();

2. …

3. bp=bread(…) ;

4. bp->data[…] = … ;

5. log_write(bp) ;

6. …

7. end_op() ;

https://oslab.kaist.ac.kr/

30Youjip Won

Code: begin_op()

Before logging, it check status of log area.

Wait till

The current commit finishes,

there is enough space available, or

there is no ongoing system calls (log.outstanding)

https://oslab.kaist.ac.kr/

31Youjip Won

Code: begin_op()

void begin_op(void) {

acquire(&log.lock);

while(1){

if(log.committing){

sleep(&log, &log.lock);

} else if(log.lh.n + (log.outstanding+1)*MAXOPBLOCKS > LOGSIZE){

// this op might exhaust log space; wait for commit.

sleep(&log, &log.lock);

} else {

log.outstanding += 1;

release(&log.lock);

break;

}

}

}

If other threads is committing, wait for them.

If log area have no enough area to log,

wait for checkpoint by other thread

If it don’t need to wait, increase outstanding and start to log

https://oslab.kaist.ac.kr/

32Youjip Won

Code: log_write()

https://oslab.kaist.ac.kr/

33Youjip Won

Code: log_write()

void log_write(struct buf *b){

int i;

if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)

panic("too big a transaction");

if (log.outstanding < 1)

panic("log_write outside of trans");

acquire(&log.lock);

for (i = 0; i < log.lh.n; i++) {

if (log.lh.block[i] == b->blockno) // log absorbtion

break;

}

log.lh.block[i] = b->blockno;

if (i == log.lh.n)

log.lh.n++;

b->flags |= B_DIRTY; // prevent eviction

release(&log.lock);

}

Add a new block to the log header

https://oslab.kaist.ac.kr/

34Youjip Won

Code: end_op()

https://oslab.kaist.ac.kr/

35Youjip Won

Code: end_op()

Complete logging: Commit and Checkpoint

void end_op(void){

int do_commit = 0;

acquire(&log.lock);

log.outstanding -= 1;

if(log.committing)

panic("log.committing");

if(log.outstanding == 0){

do_commit = 1;

log.committing = 1;

} else {

// begin_op() may be waiting for log space, and decrementing

// log.outstanding has decreased the amount of reserved space.

wakeup(&log);

}

release(&log.lock);

...

https://oslab.kaist.ac.kr/

36Youjip Won

Code: end_op()

...

if(do_commit){

// call commit w/o holding locks, since not allowed

// to sleep with locks.

commit();

acquire(&log.lock);

log.committing = 0;

wakeup(&log);

release(&log.lock);

}

}

https://oslab.kaist.ac.kr/

37Youjip Won

Code: commit()

static void commit(){

if (log.lh.n > 0) {

write_log(); // Write modified blocks from cache to log

write_head(); // Write header to disk -- the real commit

install_trans(); // Now install writes to home locations

log.lh.n = 0;

write_head(); // Erase the transaction from the log

}

}

① Write log blocks to log area in storage

② Write log head to log area in storage (commit)

③ Write log blocks to original location in storage(checkpoint)

④ Initialize n of journal head to 0(transaction invalidation)

⑤ Write n initialized in ④ to storage

https://oslab.kaist.ac.kr/

38Youjip Won

Code: write_log()

write the updated blocks in the buffer cache to the on-disk log area.

static void write_log(void){

int tail;

for (tail = 0; tail < log.lh.n; tail++) {

struct buf *to = bread(log.dev, log.start+tail+1); // log block

struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block

memmove(to->data, from->data, BSIZE);

bwrite(to); // write the log

brelse(from);

brelse(to);

}

}

① Acquiring buffer cache from the log area (to)

② Acquiring modified buffer cache (from)

③ Copy the contents of modified buffer cache(from) to buffer cache for log area(to)

④ Write buffer cache for log area to storage

⑤, ⑥ release buffer cache

https://oslab.kaist.ac.kr/

39Youjip Won

Code: write_head()

Write the log header to on-disk log area.

static void write_head(void){

struct buf *buf = bread(log.dev, log.start);

struct logheader *hb = (struct logheader *) (buf->data);

int i;

hb->n = log.lh.n;

for (i = 0; i < log.lh.n; i++) {

hb->block[i] = log.lh.block[i];

}

bwrite(buf);

brelse(buf);

}

1. Acquire buffer cache for the first block of log area.

2. Copy the contents of log head to buffer cache.

3. Write buffer cache.

https://oslab.kaist.ac.kr/

40Youjip Won

Code: install_trans()

Checkpoint: write modified data blocks in buffer cache to on-disk area.

static void install_trans(void){

int tail;

for (tail = 0; tail < log.lh.n; tail++) {

struct buf *lbuf = bread(log.dev, log.start+tail+1); // read log block

struct buf *dbuf = bread(log.dev, log.lh.block[tail]); // read dst

memmove(dbuf->data, lbuf->data, BSIZE); // copy block to dst

bwrite(dbuf); // write dst to disk

brelse(lbuf);

brelse(dbuf);

}

}

https://oslab.kaist.ac.kr/

41Youjip Won

Recovery

After initializing log area, start recovery

void forkret(void){

...

if (first) {

first = 0;

iinit(ROOTDEV);

initlog(ROOTDEV);

}

}

void initlog(int dev) {

if (sizeof(struct logheader) >= BSIZE)

panic(“initlog: too big logheader”);

struct superblock sb;

initlock(&log.lock, “log”);

readsb(dev, &sb);

log.start = sb.logstart;

log.size = sb.nlog;

log.dev = dev;

recover_from_log();

}

https://oslab.kaist.ac.kr/

42Youjip Won

Recovery

Perform log replay (checkpoint).

static void recover_from_log(void) {

read_head();

install_trans(); // if committed, copy from log to disk

log.lh.n = 0;

write_head(); // clear the log

}

https://oslab.kaist.ac.kr/

43Youjip Won

Writing to a file

Write data to file

https://oslab.kaist.ac.kr/

44Youjip Won

Code: filewrite()

int filewrite(struct file *f, char *addr, int n){

...

int max = ((MAXOPBLOCKS-1-1-2) / 2) * 512;

int i = 0;

while(i < n){

int n1 = n - i;

if (n1 > max)

n1 = max;

begin_op();

ilock(f->ip);

if ((r = writei(f->ip, addr + i, f->off, n1)) > 0)

f->off += r;

iunlock(f->ip);

end_op();

...

i += r;

}

return i == n ? n : -1;

}

Whole data are devided to max size of log and written.

Excluding inode, indirect block, allocation blocks,
and divided by 2

https://oslab.kaist.ac.kr/

45Youjip Won

Code: writei()

Write data to block, referring inode

int writei(struct inode *ip, char *src, uint off, uint n){

...

for(tot=0; tot<n; tot+=m, off+=m, src+=m){

bp = bread(ip->dev, bmap(ip, off/BSIZE));

m = min(n - tot, BSIZE - off%BSIZE);

memmove(bp->data + off%BSIZE, src, m);

log_write(bp);

brelse(bp);

}

...

}

① Find buffer cache of a block to modify

② Get size to modify in the buffer

③ In memory update by memmove(dst, src, sz)

④ Add block number of modified block to log header

⑤ Release buffer cache

What if you switch
(4) and (5)?

https://oslab.kaist.ac.kr/

46Youjip Won

Important of logging

https://oslab.kaist.ac.kr/

47Youjip Won

summary

Logging

API’s

begin_op(), log_write(), end_op()

System call ()

1. begin_op();

2. …

3. bp=bread(…) ;

4. bp->data[…] = … ;

5. log_write(bp) ;

6. …

7. end_op() ;

https://oslab.kaist.ac.kr/

