Filesystem: Logging

Youjip Won

KAIST EE

Crash

BARKING

Rendeced by Matt Kim,
-) B AT

32131708 — Rased upos ATENESS esteony

create (Yhello.c”)

KAIST OSLab Youjip Won 2

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

An Example of Crash

O Scenario

o

Append of a single data block to an existing file.

I.n ode !I)ata Inodes Data Blocks
Bitmap Bitmap
[[v1]
Da
B
V1
Before Append a single data block
KAIST OsLab

Operating Systems Laboratory

Yaujip Wer

https://oslab.kaist.ac.kr/

An Example of Crash

© File system perform three writes to the disk.
o Inode I[v2]
o Data bitmap B[v2]
o Data block (Db)
Inode Data
Bitmap Bitmap Inodes Data Blocks
\
H e
B \/ d
(v2 __
After Append a single data block
KAIST OSLab

Operating Systems Laboratory YBHJ'B WBH

https://oslab.kaist.ac.kr/

Crash Scenario

© Only one of the below block is written to disk.
o Data block (Db): lost update
o Update inode (I[v2]) block: garbage, consistency problem

o Updated bitmap (B[v2]): space leak

© Two writes succeed and the last one fails.
o The inode(l[v2]) and bitmap (B[v2]), but not data (Db).: consistent
o The inode(l[v2]) and data block (Db), but not bitmap(B[v2): inconsistent

o The bitmap(B[v2]) and data block (Db), but not the inode(l[v2]): inconsistent

Metadata should be consistent.

Crash-consistency problem (consistent- update problem)

KAIST OSLab Yeujip Wen

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Crash - No Inode

O |node is lost.
Inode |Bitmap | Data

O Data block write is lost.

Inode |Bitmap | Data

© Bitmap is loat.

Inode |Inode |Bitmap | Data

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Solution: Journaling (Write-Ahead-Logging)

© In filesystem, it is “write -ahead-logging”.

© Bring back the filesystem to safe state after system crash.
© Rule
o when you update the metadata, record it to the log space (journal).
o Ifitis stored to the log space safely, then reflect it to the original location
sometime later.
12. 3y
e
" KAIST OSLab

Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Log Region

O File system reserves some small amount of space within the partition or on

another device.

Super Group 0 Group 1 Group N

without journaling

Log region
Super Group O Group 1 Group N

with journaling

KAIST OSLab Youjip WeR

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Transaction

© A set of blocks that need to be written as a single unit.

° Transaction header (TxB): Place a description of all the disk writes it wishes to make in a lo

g on the disk.
° Log blocks

° Transaction commit mark (TXE): Once the system call has logged all of its writes, it writes a

special commit record to the disk indicating that the log contains a complete operation.

physical logging

©

c

5 TxB [[v2] B[v2] Db TxE >

o

-_

\ J
|
Transaction

KAIST OSLab Youjip Won
- Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Logging and Recovery in XV6

O Recovery
o Scan the log region and replay the log.

© Incomplete transaction
o For the transaction with commit record missing, the recovery code ignores it.
o The state of the disk will be if the operation had not even started.

© Committed transaction (Complete Transaction)

o If the crash occurs after the operation commits, the recovery will replay all of th

e operation’s writes.

replay

v

™B A B | TXxE| TxB C D | TxE | TxB E F

| | |
Recovered Recovered ignored

KA' ST OSLab Youjip Won

Operating Systems Laboratory

10

https://oslab.kaist.ac.kr/

Logging and Recovery in XV6

O The log makes the operation atomic with respect to crash.

o After recovery, either all of the operation’s write appear on the disk, or none of t

hem appear.

nothing

all

KAIST OSLab Youjip Won 11

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Structure of log region in xv6

header
block

Log blocks

o Header block

struct logheader {
int n;
int block[LOGSIZE];
I

O Header block: TxB + TxE

° written when a transaction commits
° count is set to zero after copying the log blocks to the file system.
KA OSLab i
- IST Operating Systems Laboratory Youjip Won 12

https://oslab.kaist.ac.kr/

Structure of Log Region

© The log region can accommodate one log structure.

© Compound transaction

append create

° multiple system calls into one transaction.

© The total number of blocks written by the system calls in a transaction must fit in tha
t space.
° Large system call is broken into smaller pieces.

° A system call can only start when there is a space in the log region.

KAIST OSLab Youjip Won

Operating Systems Laboratory

13

https://oslab.kaist.ac.kr/

Structure of Log Region

O To commit a transaction

° Wait for the existing system call to finish

commit

append create l

append create
l commit

KAIST OSLab Youjip Won 14

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Logging in Xv6

© Transaction: A set of blocks that should be written with ACID properties.

© Commit: Writes a transaction to log area.

© Checkpoint: Writes blocks in a committed transaction to their places.

1. Collects the updated contents in memory and freeze them.(Creating a Transaction).

2. Writes them to log area (Commit).

3. Writes them to its places after commit (Checkpoint).

Updated
Memor
y blocks
_ checkpoint
commit
i v
Disk Boot Super Log Inodes Bitmap Data e Data
0 1 2 32 58 59 1000
block number
I<AI ST (cJ)pSe!’-aatilzg Systems Laboratory Youjip Won 15

https://oslab.kaist.ac.kr/

Log area in xv6

Boot Super Log Inodes Bitmap Data Data
0 1 | 2 32 58 59 1000
block number |
) | _
/ T - o
/ - - < _
/ - ~ — T
log[0] log[1] o log[29]
/ T~ - log area (15 KB)
/ ~ -
/ T~
5212 | =2 3
Y4
(@] o (&)
#HS5 | & | © 3
o o -

log header (124 byte), 31 entries of 4 byte

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Logging (write the block 7 and block 5)

Write data block number 7

Log header
DRAM n=0 Daf?
data = null (no=7)
| @ n+=1 | I I
I 2 data[0] =7 | | |
| | | |
| | | I
| | | |
| | | |
|
' Data Data

Disk (no=5) | | (no=7)

Log area

KA' ST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Logging (write the block 7 and block 5)

Write data block number 5

Log header Dat Dat
ata ata
DRAM n=1
data[0] = 7 (no=5) (no=7)
| On+=1 | | I |
| @ data[l] =5 | I | | I
		11
		11
		11
		11
. : Data Data
Disk (no=5) || no=7)

Log area

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Logging (write the block 7 and block 5)

Operating Systems Laboratory

Log header Dat Dat
n=2 ata ata
DRAM data[0] =7 (n0:5) (nO:7)
data[l] =5
Disk Data Data Data Data
(no=7) | (no=5) (no=5) (no=7)
Log area
" KAIST OSLab Youjip Won

19

https://oslab.kaist.ac.kr/

Logging (write the block 7 and block 5)

Operating Systems Laboratory

Log header Dat Data
DRAM n=2 ata
data[0] =7 (n0:5) (n0=7)
data[l] =5
		.
		.
		.
		.
		.
		.
Log header
Disk n=2 Data Data Data Data
data[0] = 7 (no=7) | (no=5) (no=5) (no=7)
data[l] =5
Log area
" KAIST OSLab Youjip Won 20

https://oslab.kaist.ac.kr/

Checkpoint (write the block 7 and block 5)

Operating Systems Laboratory

Log hezzader Data Data
n=
DRAM data[0] = 7 (n0=5) (n0=7)
data[l] =5
		I
		I
		I
		I
I	I	
		I
Log header
Disk n=2 Data | Data Data Data
datal0] =7 | (no=7) | (No=5) (no=5) | | (no=7)
data[l] =5
Log|area
" KAIST OSLab Youiip Won 21

https://oslab.kaist.ac.kr/

Process of commit in xv6

© Commit starts when there is no committing transaction.

O Write the data blocks specified in the log header to the log area persistently.

O Write the log header to the disk persistently.

Log header
n=3 Data Data Data
(no=5) (no=7) (no=3)
DRAM oty
data[2] =3
/
/
/
Disk Data
(no=7)
Log
KA' ST OSLab Youjip Won 22

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Process of commit in xv6

Operating Systems Laboratory

Log header
= Data Data Data
DRAM i i t t
(no=5)| [(no=7)| | (no=3)
data|Z| =
I /
| /
| /
' /
I /
- Data Data
Disk (no=7) [(no=5)
Log
" KAIST OsLab —

https://oslab.kaist.ac.kr/

Process of commit in xv6

Operating Systems Laboratory

Log header
_ Data Data Data
n=3
D RA M 32::[(1)] z ; (n 0:5) (n 0:7) (n 023)
|
|
|
I /
| /
: Data Data Data
Disk (no=7) [(no=5) | (no=3)
Log
" KAIST OSLab Youjip Won

https://oslab.kaist.ac.kr/

Process of commit in xv6

Operating Systems Laboratory

Log header
n=3 Data Data Data
D RA M data[0] = 7 (no=5) (no=7) (no=3)
data[l] =5
data[2] = 3
! /
| /
| /
| /
|
DI S k Log header Data Data Data
n=3 (no=7) | (no=5) | (no=3)
Log
" KAIST OSLab Youjip Won

https://oslab.kaist.ac.kr/

Process of checkpoint in xv6

O Checkpoint writes the committed data blocks to their original place.

O After the checkpoint, set the number of blocks in the log header to zero. Then, write

the updated log header to the disk.

Log header
n=3
DRAM data[0] = 7
data[l] =5
data[2] = 3
: Data Data Data
Log head
Disk 0g header (no=7) (no=5) (no=3)
i
i Data Data Data
| (no=3) (no=5) (no=7)
Data Area
KAIST OSLab Youjip Won 26

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Process of checkpoint in xv6

Log header
DRAM n=0
data[0] =7
data[l] =5
data[2] =3
I l I
| I
Disk Log header Data Data Data
n=0 (no=7) (no=5) (no=3)
Log Area
Data Data Data
(no=3) (no=5) (no=7)
Data Area
I<AI ST (cJ)pSe!’-aatilzg Systems Laboratory Youjip Won

https://oslab.kaist.ac.kr/

Recovery

O Recovery routine checks the “number of blocks” in the log header.

° If the number of block in the log header is 0, it skip recovery phase.
If there is no block to recover, keep booting Log Area
] Log header
Disk n="0

° Otherwise, it performs recovery; It write the blocks in the log area to the original locations.

Log Area
Disk Log header Data Data Data
n=3 (no=7) (no=5) (no=3)
Data Data Data
(no=3) (no=5) (no=7)
I<AI ST (cJ)pSe!’-aatilzg Systems Laboratory Youjip Wen 28

https://oslab.kaist.ac.kr/

Typical system call pattern

System call ()

1. wait for the existing commit to finish the available space in the log region.

2. update the buffer cache.

3. Register the buffer cache entries at the log header and pin the buffer cache blocks.
4

write them to the log region and checkpoint.

System call ()

1. begin op();

2.
3. bp=bread(..) ;
4. bp->datal..] = .. ;

5. log write(bp)

7. end op() ;

KA' ST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Code: begin op ()

O Before logging, it check status of log area.
© Wait ill
° The current commit finishes,

° there is enough space available, or

° there is no ongoing system calls (log.outstanding)

KA' ST OSLab Youjip Won

Operating Systems Laboratory

30

https://oslab.kaist.ac.kr/

Code: begin op ()

void begin op (void) {
acquire (&log.lock) ;
while (1) {

if (log.committing) {
sleep(&log, &log.lock);

} else if(log.lh.n + (log.outstanding+1l) *MAXOPBLOCKS > LOGSIZE) {
// this op might exhaust log space; wait for commit.
sleep(&log, &log.lock);

} else {
log.outstanding += 1;
release(&log.lock);

break;

KAIST OSLab Youjip Won

Operating Systems Laboratory

31

https://oslab.kaist.ac.kr/

Code: log write ()

\ B Loxcke O

- eods the Hods! gedor H ™ W\emm'é_
- YeSewe o sk wa b?f

Wt budbor on ORTY
‘m)\M(O'(-Q AL budkec -Q(WA goTy L, disk .

' @&S'or i)’l\’ZoV\

Loy Hendon

\ b D i z
1A%

[o}

]

KAIST OSLab Youjip Won 32

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Code: log write()

volid log write(struct buf *b) {

int 1i;

if (log.lh.n >= LOGSIZE || log.lh.n >= log.size - 1)
panic("too big a transaction");

if (log.outstanding < 1)
panic("log write outside of trans");

acquire (&log.lock) ;

for (1 = 0; 1 < log.lh.n; i++) {
if (log.lh.block[i] == b->blockno) // log absorbtion

break;

}
log.lh.block[i] = b->blockno;

if (1 == log.lh.n)
log.lh.n++; Add a new block to the log header
b->flags |= B DIRTY; // prevent eviction

release(&log.lock);

}

KA' ST OSLab Youjip Won

Operating Systems Laboratory

33

https://oslab.kaist.ac.kr/

Code: end op ()

e‘l\&_ovﬂ‘,
) &Qcm\n/\fwkg AL counte ‘a[\s oujte'kau&m% 333@4»/\ call(s .

- M caunk TS C{S) cadl ' covonnit O

- %@QS
O oo Hocks 5t ooy sots - covtte_los)
D ydite o Clack : uovtbe_fuad o)

® dkrond: ekl _franso:
® faag k. e coumbia & 90\«& ‘M '-f:u\o\ﬁc)(;()‘,

KAIST OSLab Youjip Won 34

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Code: end op ()

O Complete logging: Commit and Checkpoint

void end op (void) {
int do commit = 0;
acquire (&log.lock) ;
log.outstanding -= 1;
if(log.committing)
panic ("log.committing") ;
if (log.outstanding == 0) {
do_commit = 1;
log.committing = 1;
} else {
// begin op() may be waiting for log space, and decrementing

// log.outstanding has decreased the amount of reserved space.

wakeup (&109g) ;
}

release(&log.lock);

KA' ST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Code: end op ()

if (do _commit) {
// call commit w/o holding locks,
// to sleep with locks.
commit () ;
acquire (&log.lock);
log.committing = 0;
wakeup (&109g) ;

release(&log.lock);

since not allowed

KAIST OSLab Youjip Won

Operating Systems Laboratory

36

https://oslab.kaist.ac.kr/

Code: commit ()

static void commit () {
if (log.lh.n > 0) {
write log();
write head();
install trans();
log.lh.n = 0;

write head();

//
//
//

//

Write modified blocks from cache to log
Write header to disk —-- the real commit

Now install writes to home locations

Erase the transaction from the log

(D Write log blocks to log area in storage

@ Write log head to log area in storage (commit)

(® Write log blocks to original location in storage(checkpoint)

@ Initialize n of journal head to O(transaction invalidation)

® Write n initialized in @ to storage

KAIST OSLab

Operating Systems Laboratory

Youjip Won

37

https://oslab.kaist.ac.kr/

Code: write log()

O write the updated blocks in the buffer cache to the on-disk log area.

static void write log(void) {
int tail;
for (tail = 0; tail < log.lh.n; tail++) {
struct buf *to = bread(log.dev, log.start+tail+l); // log block

memmove (to->data, from->data, BSIZE);
bwrite(to); // write the log
brelse (from) ;

brelse (to);

struct buf *from = bread(log.dev, log.lh.block[tail]); // cache block

(D Acquiring buffer cache from the log area (to)

@ Acquiring modified buffer cache (from)

(® Copy the contents of modified buffer cache(from) to buffer cache for log area(to)
@ Write buffer cache for log area to storage

®), ® release buffer cache

KAIST OSLab Youjip Won

Operating Systems Laboratory

38

https://oslab.kaist.ac.kr/

Code: write head()

© Write the log header to on-disk log area.

static void write head(void) {

struct buf *buf = bread(log.dev, log.start):;

struct logheader *hb = (struct logheader *)

int i;

hb->n = log.lh.n;

for (i = 0; 1 < log.lh.n; i++) {
hb->block[i] = log.lh.block[i];

}

bwrite (buf) ;

brelse (buf) ;

(buf->data) ;

1. Acquire buffer cache for the first block of log area.
2. Copy the contents of log head to buffer cache.

3. Write buffer cache.

KA' ST OSLab Youjip Won

Operating Systems Laboratory

39

https://oslab.kaist.ac.kr/

Code: 1nstall trans()

© Checkpoint: write modified data blocks in buffer cache to on-disk area.

static void install trans(void) {

int tail;

for (tail = 0; tail < log.lh.n;

brelse (lbuf) ;
brelse (dbuf) ;

struct buf *1lbuf = bread(log.dev,

struct buf *dbuf = bread(log.dev,

tail++) {

memmove (dbuf->data, lbuf->data, BSIZE);

bwrite (dbuf); // write dst to disk

log.start+tail+l); // read log block
log.lh.block[tail]); // read dst

// copy block to dst

KAIST OSLab

Operating Systems Laboratory

Youjip Won

40

https://oslab.kaist.ac.kr/

Recovery

After initializing log area, start recovery

void forkret (void) {

1if (first) {
first = 0;
iinit (ROOTDEV) ;
initlog (ROOTDEV) ;

void initlog(int dev) {
if (sizeof(struct logheader) >= BSIZE)

panic (Yinitlog: too big logheader”);

struct superblock sb;
initlock(&log.lock, “log”);
readsb (dev, é&sb);

log.start = sb.logstart;
log.size = sb.nlog;

log.dev = dev;

recover from log();

KAIST OSLab

Operating Systems Laboratory

Youjip Won

41

https://oslab.kaist.ac.kr/

Recovery

Perform log replay (checkpoint).

static void recover from log(void) {
read head();
install trans(); // if committed,
log.lh.n = 0;

write head(); // clear the log

copy from log to disk

KAIST

OSLab Youjip Won

Operating Systems Laboratory

42

https://oslab.kaist.ac.kr/

Writing to a file

O Write data to file
'CLL«_ Lovite)

s Wilg) &

be,&w_s»()o‘,
1\oclc(1ir 21pY,
¥ gy Cg—-wbp e

funlock C '?'—-) L(ﬂ")
end - O,

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

Code: filewrite ()

4
int filewrite(struct file *f, char *addr, int n) {

int max = ((MAXOPBLOCKS-1-1-2) / 2) * 512;

int 1 = 0;

while (1 < n){ Whole data are devided to max size of log and written.
int nl = n - 1i;
if (nl > max)

nl = max; Excluding inode, indirect block, allocation blocks,
begin op () ; and divided by 2
ilock (f->ip) ;
if ((r = writei(f—>ig, addr + 1, f->off, nl)) > 0)
f->0ff += r;

iunlock (f->ip);
end op () ;
T T LI S T
i+=r;

}

return i == n ? n : -1;

}
KAIST OSLab

Operating Systems Laboratory Youjip Won

https://oslab.kaist.ac.kr/

Code: writei ()

© Write data to block, referring inode

int writei(struct inode *ip, char *src, uint off,

for (tot=0; tot<n; tot+=m, off+=m, src+=m) {

bp = bread(ip->dev, bmap (ip, off/BSIZE));

m = min(n - tot, BSIZE - off%BSIZE);
memmove (bp->data + off%$BSIZE, src, m);

log write (bp);

brelse (bp) ;

uint n) {

(D Find buffer cache of a block to modify

@ Get size to modify in the buffer

® In memory update by memmove(dst, src, sz)

@ Add block number of modified block to log header

& Release buffer cache

?l

* @

What if you switch
(4) and (5)?

KAIST OSLab Youjip Won

Operating Systems Laboratory

45

https://oslab.kaist.ac.kr/

Important of logging

Scaling a file system to manyc{ < 3p A+ C@® E[G¥
using an operation log O 5. BEIX DO F W HDD A
@ ® 1351
Srivatsa S. Bhat,” Rasha Eqbal,* Austin T. Cleme E 20 Supercap
M. Frans Kaashoek, Nickolai Zeldovich] M
MIT CSALL 2 15|« 2131 =(3.4X10)x_l'l
o X y :
S 10} %
ABSTRACT allow file-system-intensive ; 5 ® 0267
1t is challenging to simultaneously achieve multicore scala- 10, 13, 23, 2_6’ 31]. This papg i3} : .'.. 403 584 2296
bility and high disk throughput in a file system. For exam- system _d“‘_l?“ t.hat allows f? % 0 r \H DD . O .V' .’3’ sesssessscases X—
O 0 50 100 150 200 250
Orderless 10 (IOPSX10°)

SpanF'S: A Scalable File System on Fast Storage Devices

Zhang, Tianyu Wo, Weiren Yu, Lian Du, Shuai Ma and Jinpeng Huai
SKLSDE Lab, Beihang University, China

Barrier-Enabled 10 Stack for Flash Storage

mashuai} @act.buaa.edu.cn, zbigegian@gmail.com, huaijp@buaa.edu.cn

Jaemin Jung®* Gyeongyeol Choi'
Seongbae Son! Jooyoung Hwang® Sangyeun Cho?

Youjip Won!

ized file system service with a collection of independent
Joontaek Oh!

micro file system services, called domains, to achieve
scalability on manv-core. Each domain performs its file

NVAND flash-based

nnnnnn latannr and
YHanyang University 2Texas A&M University 3Samsung Electronics

Abstract g A+ ce® EQD GX

. . . . o BX DO Fw HDD A
This work is dedicated to eliminating the overhead re- - O
quired for guaranteeing the storage order in the mod- 13 " supercap
ern IO stack. The existing block device adopts a pro- 5 - (34Xx10) 1.1
hihitivealv synancive annrnach in anonring the ctaraacs Are <] y=L X

KAIST OSLab

Operating Systems Laboratory

Youjip Won

46

https://oslab.kaist.ac.kr/

summary

© Logging
© APIs

° begin op(), log write(), end op()

System call ()

1. begin op();

2.
3. bp=bread(..) ;
4. bp->datal..] = .. ;

5. log write(bp) ;

7. end op() ;

KAIST OSLab Youjip Won

Operating Systems Laboratory

https://oslab.kaist.ac.kr/

